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a b s t r a c t 

Latent Factor Model(LFM), as an effective feature mapping method, is widely applied in 

recommender systems. One challenge of LFM is previous methods usually use the inner 

product to calculate the similarity between users and items in the latent space, which 

cannot characterize different impacts of various latent factors. Another challenge is the 

performance of LFM will be negatively affected when facing data sparsity problem. In this 

paper, we propose a model named DLFM-HSM(Deep Latent Factor Model with Hierarchi- 

cal Similarity Measure) to overcome the challenges above. More specifically, we introduce 

a hierarchical similarity measure to calculate an impact score which can better represent 

the similarity between a user and an item than the inner product. Also, in order to ease 

the data sparsity problem, we extract latent representations of users and items using deep 

neural networks from items’ content information instead of only from user-item rating 

records. By representing users with items they purchased, our model guarantees that users 

and items are mapped into a common space and thus they are directly comparable. Exten- 

sive experiments on five real-world datasets show significant improvements of DLFM-HSM 

over the state-of-the-art methods and demonstrate the effectiveness of our model for al- 

leviating the data sparsity problem. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

People are often inundated with information and choices in the big data era. Recommender Systems (RS), as an effec-

tive way to tackle the information overload problem, provide people with valuable suggestions and help people focus on

the items they may be interested in. It has been developed for a variety of applications, like e-government, e-business,

e-commerce, e-learning, etc. [21] 

RS can be clustered into three common main categories. Content-based Filtering, Collaborative Filtering,and Hybrid Fil-

tering [3] . Content-based Filtering (CBF) makes recommendations according to the previous users’ choosing. Collaborative

Filtering (CF), the state-of-the-art method to build RS, predicts a user’s rating or preference on a candidate item based on

other similar users and items. Hybrid Filtering combines CBF and CF together aiming to exploit the merits of each technique.
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Fig. 1. An example which illustrates the challenge of capturing users’ preference on difference latent factors using the traditional Latent Factor Model 

(LFM). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Recently, fuzzy tools and deep learning techniques are becoming popular and effective, and fuzzy-based recommender sys-

tems [34] and deep learning based recommender systems [35] attract many researchers’ attention. 

Among various CF methods, Latent Factor Model (LFM) is the most popular one due to its effectiveness [17,25] . The

traditional method of LFM first maps both users and items into a shared latent space and then models users’ preferences

on items by computing the inner products of their latent factor vectors. The traditional LFM has its advantage in efficiency

but there are some challenges in its processing procedure. The inner product method is one of the challenges. Let us first

recall the working mechanism of the inner product method. It first multiplies the corresponding elements (latent factors)

of two latent factor vectors and then sums these values together to obtain a score between a user and an item. Further to

explain, the element-wise multiplication on two latent factor vectors (one is for representing a user and another one is for

representing an item) represents the interactions between a user and an item on these latent factors and the summation

means integration of these interactions. We call this score as the impact score . By analyzing the above procedure, we find

that the traditional LFM is limited by the inner product. Because it treats different latent factors in the same way, while

different latent factors may have different significance for different users. Let us give a specific example to better explain this

challenge. As shown in Fig. 1 , we assume that “price ”, “brand ” and “quality ” are the latent factors in the latent space, and the

number on each line represents the extent of a user’s preference or an item’s property on a certain latent factor. Let us focus

on the user u and two candidate items i 1 and i 2 , and consider which one should be recommended to the user u . According

to Fig. 1 , we can easily write the latent vectors of the user and items as follow: u = [5 , 1 , 3] , i 1 = [3 , 1 , 3] , i 2 = [5 , −1 , 1]

and have the inner product between them as u · i 1 = 25 < u · i 2 = 27 . If we use the traditional LFM method, item i 2 will

be recommended to the user because of its higher score than item i 1 . In fact, compared to item i 2 , item i 1 may be more

suitable for the user, because i 1 matches the user well in each factor and it achieves a good balance between “price ” and

“quality ” that the user is interested in, while item i 2 only matches the user on the “price ” factor. 

The core reason for the above challenge is that the traditional LFM uses the inner product to model interactions between

a user and an item, and combines the interactions between different factors with the same weight to get the impact score.

If the interaction on a certain factor is too large or too small, the impact score will have a bias influenced by this factor. In

order to face this challenge, some researchers use factorization machines [28] to model the importance of all interactions

between latent factors. Attentional mechanisms are also proposed to weight interactions between latent factors [5,10] . De-

spite they have a good performance when meeting this challenge, they bring many parameters into the learning process.

Different from them, we propose a heuristic similarity metric called Hierarchical Similarity Measure (HSM), which is able to

distinguish the different significance of different interactions between users and items. In addition, our proposed HSM is a

parameter-free method and thus it does not require extra training as previous methods. 

Another challenge is the data sparsity. It deteriorates the accuracy of the rating prediction for traditional LFM. Some

scholars aim to use content-based filtering methods [24,26] or use hybrid filtering methods which combine content-based

filtering with collaborative filtering methods [7,9,13] to alleviate this problem. Through analyzing the real world data, we

observe that items are often associated with descriptions which can describe items’ properties. and can also describe users’

interests. Based on this observation, we propose a novel method to represent the users and the items to solve this challenge.

We utilize deep neural networks to learn both users’ interests and items’ properties from items’ descriptions, which can get

more representative features than other methods which do not use deep neural networks. As we know, each user has

rated more than one item, therefore, we propose to use latent matrices instead of latent vectors to represent the users.

In addition, this method can also ensure that users and items are mapped into a common feature space and they can be

compared directly. 

The main contributions of this paper are summarized as follows: 

• We propose a Hierarchical Similarity Measure which is a parameter-free method and can better integrate the interactions

between the users and the items. 

• We utilize deep neural networks to learn both users’ interests and items’ properties from items’ descriptions, which can

better alleviate the data sparsity problem. Furthermore, we propose to use the latent factor matrices instead of using the

latent factor vectors in order to better represent the users. 
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Table 1 

Symbol appointments. 

Symbol Explanation 

U Set of users 

I Set of items 

I u Set of items which are rated by user u 

I −u Set of items which are not rated by user u 

D The set of items’ descriptions 

R Set of user and item pairs with observed rating 

P u Latent matrix of user u 

q i Latent vector of item i 

ˆ r ui The predicted rating of user u for item i 

r ui The actual rating of user u for item i 

� An defined operation on a matrix and a vector 

� An defined operation on a vector 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• We conduct extensive experiments on five datasets to validate the effectiveness of our model. The results show that our

model outperforms the state-of-the-art baselines and can achieve a better performance than baselines when facing the

data sparsity problem. 

The rest of paper is organized as follows: We first give a formal problem definition and a preliminary introduction in

Section 2 . Then the proposed model DLFM-HSM is described in detail in Section 3 and the extensive experiments and the

discussions are presented in Section 4 . Next, we briefly review the recent and classic works about latent factor model in

Section 5 . Finally, we give a conclusion about our paper in Section 6 . 

2. Preliminaries 

2.1. Problem definition 

Our paper is centered on the rating prediction task, which predicts the ratings on unseen items based on users’ previous

transactions using side content information. It can be formulated as follows. Given a user u ∈ U , I u represents the set of

items that user u has rated, and I −u stands for the set of unrated items of user u , and r ui ∈ R denotes the rating that the

user u gave to the item i . We aim to utilize both the content information of I u and the rating records R to predict the rating

that the user u may give to an item in I −u . The symbols we use to introduce our model are listed in Table 1 . 

2.2. Latent Factor Model 

Suppose there are n users U = { u 1 , u 2 , . . . , u n } and m items I = { i 1 , i 2 , . . . , i m 

} . For each user u ∈ U and each item i ∈ I,

their corresponding latent vectors are p u ∈ R 

k and q i ∈ R 

k which are learned from user-item ratings. And the predicted

rating on an unrated item can be modeled as the inner product of the two latent vectors: 

ˆ r ui = p u 
� q i . 

To learn the latent factor vectors, the following objective function is often employed: 

min 

q ∗, p ∗

∑ 

(u,i ) ∈R 

(r ui − p u 
� q i ) 

2 + λ(‖ p u ‖ 

2 + ‖ q i ‖ 

2 ) , 

where R represents the set of user and item pairs with observed rating, r ui represents the actual rating of user u on item i ,

and λ is used to control the strength of regularization in order to prevent the overfitting problem. 

3. Deep Latent Factor Model with Hierarchical Similarity Measure 

In this section, we introduce our model – D eep L atent F actor M odel with H ierarchical S imilarity M easure (DLFM-HSM)

in detail. We first describe the overall framework of our model and then discuss the details about how to extract latent

factors from content information and how to build representations for users and items respectively. Finally, we will cover

the process of measuring the similarity between users and items and the proposed hierarchical similarity measure will be

presented at the end of this section. 

3.1. DLFM-HSM framework 

The framework of DLFM-HSM is illustrated in Fig. 2 . Intuitively, users’ interests are hidden in the items they have rated,

and therefore, we use the content information of rated items to represent users’ preferences. As shown in Fig. 2 , DLFM-HSM

takes one candidate item i ’s description and a set of descriptions of some other items which are rated by user u as input
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Fig. 2. The architecture of our proposed model: Deep Latent Factor Model with Hierarchical Similarity Measure (HSM). All CNNs share the same set of 

parameters. The structure of CNN and HSM are shown in Figs. 3 and 4 respectively. 

Fig. 3. The structure of the convolutional neural network [15] used in our model. 

Fig. 4. The structure of Hierarchical Similarity Measure �. 

 

 

 

 

 

data. For each piece of description, we use a classic convolutional neural networks model (CNN) [15] to process its content

and obtain a latent vector for this description. The details of how to construct users’ and items’ latent representations

are described in Section 3.2 . By using CNN, we can get an abstract representation for each item and then we put the

latent vectors of a user’s rated items together into a matrix to represent a user’s profile. In order to compute the similarity

between a user matrix and an item vector, we propose a Hierarchical Similarity Measure, denoted by �, to get an impact
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score between a user and an item, and then based on this impact score we further get the predicted rating for a given item.

The details of the Hierarchical Similarity Measure is presented in Section 3.3 . 

3.2. Learning latent features for items and users 

Traditional LFM [18] usually uses matrix factorization to learn the latent factors for items and users, which does not make

use of any items’ content information. In order to fully take advantage of the content information, we use convolutional

neural networks model [15] to learn the latent expressive semantic features for each item from its description, which can

mitigate the data sparsity problem by extracting latent factors from content information. The process of how to learn a

latent vector is illustrated in Fig. 3 . It contains four hidden layers: Embedding layer, Convolutional layer, Max-pooling layer,

and Fully Connected layer. The input to this model is a set of descriptions D = { d 1 , d 2 , . . . , d | D | } . 
First, each description will be fed into the Embedding Layer which can learn the embedding representation for each word.

Then the embedding vectors are fed into the Convolutional Layer with different kinds of filters. It can extract contextual

features among words. Next, the features will be put into the Max-pooling Layer which is used to further choose more

important features. Finally, the chosen features will be fed into the Fully Connected Layer to get the final latent vector for

each item. 

A user’s interests can be depicted from several aspects and each aspect is corresponding to an item which the user has

rated. Using items’ descriptions to construct users’ latent vectors enables mapping users and items into the same feature

space. And then, in this new feature space, we can compare their feature vectors directly. 

For each user u with rated history I u , we use a latent matrix instead of a latent vector to represent a user. It can be

represented as following: 

P u = [ q i ] , 

where i ∈ I ud ; each column q i is the latent factor vector of the item i . Previous methods such as the inner product always

operated on vectors, so how to compute the similarity between one user’s matrix and one item’s vector is a challenge. One

simple way is to obtain the latent vector for the user i by averaging all the latent vectors of his rated items: 

p u = 

1 

|I ud | 
∑ 

i 

q i 

where i ∈ I ud . However, as discussed in the introduction, a user’s interests can be diverse and the simple way cannot char-

acterize these varieties. In the next section, we will introduce a hierarchical way to compute the similarity between a user’s

matrix and an item’s vector. 

3.3. Hierarchical Similarity Measure 

Until now, we have obtained the final latent representation for users and items. The next step in traditional LFM is to

model the interactions between users and items to predict ratings for candidate items. Given the user u ’s latent matrix

P u and the candidate item i ’s latent vector q i , we cannot directly use the inner product to model the interaction between

them directly. To this end, we define a Hierarchical Similarity Measure method containing two-level hierarchy to calculate

the impact score between a matrix and a vector and its structure is shown in Fig. 4 . The first level is used to calculate the

impact score of the interactions between each item vector in the matrix and the candidate item vector. The second level is

used to get a final impact score which can characterize the user’s preference on the candidate item. 

From the Fig. 4 , we see that there are two operations. One is a simple element-wise multiplication operator �, the

other one is a new operation � defined in our paper and it is also the key element of the Hierarchical Similarity Measure

method. There are two meanings of the ’hierarchical’: the structure is hierarchical and the new operation is hierarchical. We

first talk about what is the new hierarchical operation and how to use the new operation to measure the similarity between

two vectors. 

Previous works [14,18] often use the inner product of two latent vectors to model the interactions. Let us first recall the

basic principle of the inner product. Given two vectors x and y , the inner product can be written as follow: 

x · y = 

∑ 

j 

v j = 

∑ 

j 

x j × y j . 

It performs an element-wise multiplication between two vectors to obtain an intermediate vector v . After that, it adds each

element in the vector v to get a final value. We call the vector v as the interaction vector because each element v j in vector

v can be treated as an interaction between two vectors on the latent factor j and the value of v j determines the relevance

between two vectors on the latent factor j . Therefore, the main idea of the inner product is to measure the interaction

between two vectors on each latent factor and integrate these interactions together to give a final evaluation. However, the

inner product gives each interaction the same weight, which is easily affected by a certain latent factor. If an interaction on

one latent factor is too high or too low, the final evaluation will be decided by this latent factor and omit other interactions.
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In order to alleviate the problem above, we define a new operation � on an interaction vector v instead of simply adding

the elements in v as: 

�v = σ

( 

σ

( ∑ 

j 

v j 

) 

+ σ ( max 
j 

v j ) − (1 − σ ( min 

j 
v j )) 

) 

, (1) 

where σ represents the sigmoid function. Eq. (1) contains three parts and each part is squeezed to the interval (0,1) by using

sigmoid functions. Eq. (1) generates a score which is used to characterize the interactions between two latent vectors from

three aspects. The first part, σ ( �j v j ), like the inner product, considers the interaction in each latent factor and sum them to

gain a basic score for measuring the overall impact. To better explain the meaning of the rest parts in Eq. (1) , we use the

example in Fig. 1 . We find that the interaction (derived from the element-wise multiplication) between the user u and the

item i 2 on the factor “price ” is far greater than the interaction on the factor “brand ”. So if we treat the interactions equally,

the negative impact of the weak interaction will be omitted and it will further affect the overall evaluation. To capture

the negative impact of this weak interaction, we introduce an element: σ (min j v j )which represents the weakest interaction,

reflecting the most negative aspect, e.g., the “brand ” factor on item i 2 ( Fig. 1 ). Because the value of σ (min j v j ) will be small

if the interaction is weak, we use 1 − σ ( min j v j ) to represent its negative impact to the whole and we call it as the weak

impact . A low value on the weakest interaction means that the user may have no interest in this item, so we subtract the

weak impact from the basic score. Similar to this, we introduce the element strong impact: σ (max j v j ) which represents the

impact of the strongest interaction to distinguish from the case with many moderate interactions over a large number of

factors, instead of a strong single factor. The strongest interaction means that the user may have a strong interest in this

item, so we add the strong impact into the basic score. And then, we get the final impact score. 

Based on �, the extension of the inner product can be written as follows: 

x • y = �v = σ

( 

σ

( ∑ 

j 

x j ∗ y j 

) 

+ σ ( max 
j 

x j ∗ y j ) − (1 − σ ( min 

j 
x j ∗ y j )) 

) 

, (2) 

where the v is the interaction vector which is equal to the element-wise multiplication between the p and q . We use the

new inner product to calculate the similarity between the user u and item i 1 and item i 2 (the example in introduction)

separately and now we can get u · i 1 > u · i 2 . 

Based on the new operation � and the new inner product • , the Hierarchical Similarity Measure denoted as �, can be

formalized as follows: 

P u � q i = �[ p uj • q i ] , 

where p uj represents the column vector of the matrix P u , “[ · ]” is an operation which constructs a new vector by concate-

nating all elements in it. It first calculates the interaction between each vector in the matrix P u and the candidate item

vector q i by the new inner product function. After that, we get m impact scores and we integrate these scores together

to construct a new vector. The new vector contains the interactions between the matrix and the vector and then we use

the new operation � on the new vector to get a final impact score which can characterize the user’s preference on the

candidate item. 

3.4. Model fitting 

Our paper is centered on the rating prediction task and we train our model by fitting the observed ratings. Given a

batch of training examples R , in order to estimate the parameters set θ , one can solve the least squares problem with the

hierarchical similarity measure, which we call it Hierarchical Loss: 

L H = min 

θ

∑ 

(u,i ) ∈R 

(r ui − ˆ r ui ) 
2 = min 

θ

∑ 

(u,i ) ∈R 

(r ui − scale × σ (P u � q i )) 
2 , (3) 

where scale represents the rating scale (usually is 5). Specifically, during the training process, the parameters in the Em-

bedding Layer are jointly learned with other layers in the neural networks rather than using a pre-trained embedding. The

objective function is minimized by the gradient decent approach and we employ Adam [16] optimization method to acceler-

ate the training process. 

4. Experiments 

In this section, we conduct abundant experiments on five datasets to validate the efficiency of our proposed model. We

firstly compare our proposed model DLFM-HSM with the state-of-the-art ones, then we investigate how does Hierarchical

Similarity Measure work and further analyze the performance of the DLFM-HSM from different aspects. 
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Table 2 

Characteristics of datasets. 

Dataset #users #items #ratings density 

ML-1M 6040 3544 993,482 4.641% 

CDs & Vinly 75,258 64,443 1,097,592 0.02% 

Baby 857,664 147,472 1,415,622 0.001% 

Video games 826,767 50,210 1,324,753 0.003% 

Musical instruments 339,231 83,046 500,176 0.001% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. Experimental setting 

4.1.1. Datasets 

Because we need user-item rating records and items’ descriptions as input to build our model, we choose five public

datasets containing both information to validate the performance of our model. The statistics of the five datasets are listed

in Table 2 . The details of each dataset are as following: 

Movielens 1M(ML-1M) , is a movie dataset that has been widely used in rating prediction task. It has 1 million ratings

from 60 0 0 users on 40 0 0 movies. Due to the original dataset does not have any content information about movies, we

adopt another edition 

1 used in [14] . The authors in [14] collected these descriptions of movies from IMDB. 2 

Amazon , as far as we know, is the largest public recommendation datasets which include more than 143 million rating

records with textual information. 3 It contains 21 categories which are independent of each other and each category can

be treated as a separate dataset that is still large and sparse. Therefore, we choose four datasets: CDs & Vinly, Baby, Video

Games and Musical Instruments, and the density of the sparsest dataset is only 0.001%. 

4.1.2. Evaluation metrics 

To compare with baselines, we use mean average error (MAE) and mean square error (MSE) as evaluation metrics, which

are frequently used in the rating prediction task. The definitions are as follows: 

MAE = 

1 

N 

N ∑ 

n =1 

| r ui − ˆ r ui | , (4)

MSE = 

1 

N 

N ∑ 

n =1 

(r ui − ˆ r ui ) 
2 
, (5)

where r ui is the observed rating score of user u to item i and ˆ r ui is its corresponding predicted rating score. 

Both of them can measure the distance between the real rating and the predicted rating and they are negatively-oriented

scores, which means lower values are better. Since the errors are squared before they are averaged, the MSE gives a relatively

high weight to large errors. 

4.1.3. Baselines 

In order to evaluate our proposed model, we use the following methods as comparison baselines: 

SVD++ : S ingular V alue D ecomposition++ [18] is a classic LFM that maps both users and items into a joint latent factor

space. It tries to mix the strengths of the latent factor model as well as the neighborhood model. 

PMF : P robabilistic M atrix F actorization [25] is another common matrix factorization method which models each latent

factor for users and items by Gaussion Distribution. 

ConvMF : C onvolutional M atrix F actorization [14] is a method which integrates convolutional neural network into proba-

bilistic matrix factorization. 

DeepCoNN : Deep Co operative N eural N etwork [36] uses two parallel neural networks to jointly learn the latent factors

for users and items and then connects the two parallel neural networks through a top shared layer. 

FM : F actorization M achines [28] can model all interactions between variables using factorized parameters. 

DLFM : D eep L atent F actor M odel is another version of our model which is simply based on the inner product. 

4.1.4. Experimental setups 

We follow the convention in [11] to split each dataset into three sub-categories: a training set, a validation set, and

a test set with the ratio: 80%, 10%, 10%. The training set is used to train a model, the validation set is used to tune the

hyperparameters, and the test set is used to evaluate the performance of the model. And then we need to preprocess the

textual data as follows: 1) setting the maximum length of the description l of each item as 50; 2) removing stop words;
1 http://dm.postech.ac.kr/ ∼cartopy/ConvMF/data/movielens.tar . 
2 Plot summaries are available at http://www.imdb.com/ . 
3 http://jmcauley.ucsd.edu/data/amazon/links.html . 

http://dm.postech.ac.kr/~cartopy/ConvMF/data/movielens.tar
http://www.imdb.com/
http://jmcauley.ucsd.edu/data/amazon/links.html
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Table 3 

The MSE / MAE results on various datasets. 

Model / Dataset ML-1M Musical instruments Video game CDs & Vinly Baby 

SVD ++ [18] 0.898/0.705 1.314 / 0.863 1.638 / 0.998 0.929 / 0.674 1.475 / 0.929 

PMF [25] 0.897/0.702 1.302 / 0.864 1.575 / 0.983 0.941 / 0.692 1.440 / 0.925 

ConvMF [14] 0.853/0.684 1.134 / 0.806 1.337 / 0.977 0.938 / 0.721 1.330 / 0.923 

DeepCoNN [36] 0.851/0.673 1.100 / 0.790 1.321 / 0.979 0.940 / 0.709 1.329 / 0.914 

FM [28] 0.795 /0.686 1.481 / 0.911 1.865 / 1.079 1.366 / 0.808 1.935 / 1.127 

DLFM 0.842/0.677 1.010 / 0.843 1.323 / 0.976 1.019 / 0.744 1.304 / 0.935 

DLFM-HSM 0.824/ 0.668 0.954 / 0.741 1.294 / 0.973 0.925 / 0.671 1.292 / 0.900 

Improvement over best baseline −3.51%/0.63% 13.27%/6.2% 2.04%/0.41 % 0.43%/0.45% 2.78%/1.53% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3) constructing vocabulary by selecting the word whose frequency is larger than 5; 4) representing each description as a

word-index vector. 

There are some hyperparameters requiring tuning. We will introduce the validation process in the later part (see details

in Section 4.3 ). We first give the hyperparameters setting as follows: Batch size is 256 and the maximum epoch is 3; the

maximum length of description is 50; the dimension of word embedding is set to be 100 and the word embedding vectors

will be trained through the optimization process; in the convolutional layer, we use three kinds of filters with different

window size: 3, 4, 5 and each has 64 filters; the final dimension of the latent factor is 45. Finally, in order to keep the

reliability of the model, we do the whole process five times and the average test errors are reported. 

4.2. Performance comparison 

We first present the overall performance compared with all the baselines. Table 3 shows the MSE and the MAE results

for all models on the five datasets and the best results are indicated in bold. We also show the improvements of our model

compared with the best baseline on the different datasets. From the results we can observe that: 

(1) Our proposed model achieves the best performance on all the datasets. Specifically, it achieves the biggest improve-

ment on the Musical Instruments dataset which is the sparsest dataset (see Table 2 ). It indicates that our model can

better alleviate the data sparsity problem. The reason is that our model learns the latent factors from item descrip-

tions instead of from a rating matrix, which means that our model can learn more semantic factors. Therefore, when

the rating matrix is sparse, our model is less affected. 

(2) The baselines can be divided into two categories: with content information (ConvMF [14] and DeepCoNN [36] ) and

without content information (SVD++ [17] , PMF [25] ). By comparing the two kinds of methods, we find that utilizing

content information can actually improve the performance of the model. Although PMF performs better than SVD++

on most datasets, neither of them achieves better performance compared to other baselines which utilize side content

information. When the user-item rating matrix is sparse, the gap between them will be further widened. 

(3) Compared with FM [28] , we both try to model interactions between latent factors. From the results, we see that FM

performs better than our model on the ML-1M dataset because ML-1M is far denser and has less number of users

and items than the other four datasets. When the data is getting extremely sparser, the performance of FM is the

worst one among all compared method. This can demonstrate that our model can better alleviate the data sparsity

problem than the FM model. 

(4) We find that ConvMF, DeepCoNN and our model utilize convolutional neural networks (CNN) to learn features for

users and items. ConvMF uses CNN to guide the training process of PMF and DeepCoNN uses CNN to learn latent fea-

tures for users and items respectively. Different from the models above, our model learns latent factors directly from

item descriptions and also make users and items map into the same latent space which guarantees that users and

items can be compared directly. And with hierarchical similarity measure, DLFM-HSM shows consistent improvements

over ConvMF and DeepCoNN. 

4.3. Model analysis 

In this section, we try to answer the following questions: (1) Does the Hierarchical Similarity Measure actually improve

the performance of the model? (2) When the data gets sparser, how is the performance of the models? (3) Why we choose

these hyperparameters? We conduct five sets of experiments to further analyze the performance of the DLFM-HSM. (1)

Hierarchical Similarity Measure is the key to our model DLFM-HSM. To evaluate the effectiveness of Hierarchical Similarity

Measure, we compare DLFM-HSM with DLFM which is a variant of our model and the results are in Fig. 5 . DLFM just

simply uses the traditional inner product instead of the hierarchical similarity measure to obtain the impact score. From

the results, we see that DLFM-HSM has always outperformed DLFM, which verifies that HSM can help the model to explore

deeper interactions between users and items than DLFM. Through further analyzing the results in Table 3 , we see that the

DLFM can achieve a better performance than other baselines on some datasets with abundant content information, which

can indirectly verify our model’s ability – extracting deep and effective factors. 
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Fig. 5. Comparison between DLFM-HSM and DLFM. 

Table 4 

MSE results over different percentages of the Musical Instruments dataset. 

Model/Percentage 20% 30% 40% 50% 60% 70% 80% 

DLFM-HSM 1.018 1.018 1.014 1.017 1.014 1.004 0.995 

FM 1.519 1.503 1.480 1.491 1.452 1.470 1.481 

SVD ++ 1.381 1.392 1.405 1.387 1.377 1.362 1.354 

PMF 1.366 1.376 1.387 1.373 1.374 1.352 1.352 

ConvMF 1.311 1.308 1.325 1.261 1.154 1.141 1.139 

DeepCoNN 1.118 1.118 1.116 1.114 1.110 1.107 1.103 

Table 5 

MAE results over different percentages of the Musical Instruments dataset. 

Model/Percentage 20% 30% 40% 50% 60% 70% 80% 

DLFM-HSM 0.853 0.846 0.844 0.845 0.833 0.818 0.741 

FM 0.918 0.918 0.914 0.917 0.917 0.909 0.912 

SVD ++ 0.894 0.901 0.907 0.899 0.899 0.888 0.884 

PMF 0.890 0.897 0.899 0.895 0.895 0.887 0.879 

ConvMF 0.862 0.860 0.853 0.836 0.817 0.811 0.806 

DeepCoNN 0.871 0.851 0.842 0.858 0.820 0.804 0.790 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2) Furthermore, to demonstrate that DLFM-HSM has an ability to deal with the sparse problem, we apply the DLFM-

HSM to different percentages of the training dataset. The results are reported in Tables 4 and 5 . Compared with other

baselines, DLFM-HSM can also achieve good performance when only using 20% of the training data, which indicates that

our model can work well in the sparse situation. The reason is that though the dataset has few ratings, it still has some

content information and our model can extract latent factors for users and items using a deep model from them and then

alleviate the rating sparsity problem. 

(3) In Fig. 6 , we show the performance of DLFM-HSM on the validation sets of five different datasets with varying em-

bedding dimensions from 25 to 200 and latent vector dimensions from 10 to 60 to investigate its sensitivity. As can be seen,

it does not improve the performance much when the embedding dimension and latent vector dimension is greater than 100

and 45. Thus, we fix the embedding dimension as 100 and the latent vector dimension as 45. 

(4) Lastly, we report the MSE of DLFM-HSM for each iteration on four datasets in Fig. 7 . From the results, we can see

DLFM-HSM reaches convergence quickly, which indicates that DLFM-HSM can improve performance without sacrificing effi-

ciency. 

5. Related work 

In this section, we will give a brief review of the previous works which are closely related to LFM and distinguish our

work from them. 

Learning effective representations of users and items is the core of building recommender systems. A good feature rep-

resentation can directly improve the quality of recommendations. LFM, as an effective way to learn representations, is the

most widely used collaborative filtering approach, which exploits the hidden factors to represent users’ interests and items’

properties. 

One of the most successful realizations of LFM is Matrix Factorization (MF) [18] . It is a classic model which many other

models are based on. MF model maps users and items into a joint latent space and utilizes the inner product to capture
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Fig. 6. The impact of the dimension of embedding vectors and latent vectors on the performance of DLFM-HSM in terms of MSE on different datasets. 

Fig. 7. Validation MSE of DLFM-HSM w.r.t the number of iterations on different datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the interactions between users and items. The idea of MF is intuitive but effective for a recommendation. After this, many

extensions of MF come out. Some people observe that there are some biases among ratings, therefore, they introduce the

biases into the rating modeling process. SVD++ [17] is an example. It merges the factor and neighborhood models and

exploits both explicit and implicit feedback by the users; Minh and Salakhutdinov [25] improve MF from another aspect.

They proposed a model called Probability Matrix Factorization which models each latent factor by Gaussian Distribution to

scale linearly with the number of observations. There is an obvious problem caused by ”latent”. Due to the ”latent factor,

these models cannot give specific explanations about why they recommend these items. Therefore, there are two kinds of

improvements to LFM. One is focusing on how to improve the accuracy of recommendations, the other one is studying how

to provide explanations for recommendations. 

We first review the works aim to improve the accuracy of recommendations. Because of the huge users and items on

the internet, the data sparsity problem always exists. To tackle this problem, some models [1,23] try to incorporate side

information (such as reviews) and have shown promising performance in collaborative filtering. In recent years, deep learn-

ing, as an effective technique extract expressive features, has been widely applied in many research areas, such as computer

vision [19] , natural language processing [30] , etc. Because of its strong ability in representation learning, many researchers

introduce deep learning to recommender systems [20,22] which can also alleviate the data sparsity problem to some ex-

tent. Some methods [20,29,33] employ Auto-Encoder and Restricted Boltzmann Machine to accomplish collaborative filtering

based on the user-item rating matrix and the authors of [27] design a deep convolutional neural network to learn the latent

factors directly from music data to make music recommendations. These methods just try to combine deep learning method

with recommender systems together, not further consider how to utilize deep learning technique in depth. With the rapid

development of deep learning technique, more and more researchers put the emphasis on the improvement of algorithms

of recommender systems using deep learning technique, not the simple combination between algorithms and deep learning.

For example, ConvMF [14] seamlessly integrates CNN into PMF to capture contextual information which can improve the

accuracy of rating prediction. Different from them, Zheng et al. [36] want to exploit abundant review data which contains
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much available information can be used to make recommendations. In order to make the learned features beneficial to the

rating prediction, they propose a joint deep learning model DeepCoNN which can jointly learn item properties and user

behaviors from the review data. Catherine and Cohen [4] extend the DeepCoNN by introducing an additional latent layer

representing the target user-target item pair even when the target user’s review for the target item. He et al. [12] propose a

model named Neural Collaborative Filtering (NCF). It leverages a multi-layer perceptron to capture the interactions between

users and items instead of using the inner product. The motivation of NCF is similar to our paper, the difference between

NCF with our model is reflected in two aspects: 1. The objective task is different, NCF is proposed for the item ranking task,

while our model is proposed for the rating prediction task. 2. Compared with NCF, our model does not introduce many

parameters (which need to train) into the training process. 

Different from the above works, some researchers want to give an explicit explanation about the item they recom-

mend. Therefore, they want to add some mechanism to make latent factors can be interpretative. To this end, some

works [27,31] learn latent factors from textual information and incorporate topic LDA [2] into the training process. Au-

thors in [8] propose a probabilistic model based on collaborative filtering and topic model to extract aspects and sentiments

of users and items. Recently, Wang et al. [32] propose a novel solution named Tree-enhanced Embedding Method that

combines the strengths of embedding based and tree-based models. They first employ a tree-based model to learn explicit

decision rules (aka. cross features) from the rich side information, then design an embedding model that can incorporate

explicit cross features and generalize to unseen cross features on user ID and item ID. At the core of their embedding

method is an easy-to-interpret attention network, making the recommendation process fully transparent and explainable.

Cheng et al. [6] apply a proposed aspect-aware topic model (ATM) on the review text to model user preferences and item

features from different aspects, and estimate the aspect importance of a user towards an item. The aspect importance is

then integrated into an aspect-aware latent factor model (ALFM), which learns user’s and item’s latent factors based on rat-

ings. ALFM introduces a weighted matrix to associate those latent factors with the same set of aspects discovered by ATM,

such that the latent factors could be used to estimate aspect ratings. There is a common problem among them. The process

of latent factor learning and the user aspect learning are not jointly modeled, which may lose some interaction information

between them. 

6. Conclusion 

In this work, we devise an effective model DLFM-HSM to solve the rating prediction problem. Specifically, in order to

better measure the similarity between users and items, we design a Hierarchical Similarity Measure to replace the popular

inner product. Furthermore, in order to make the model less susceptible to the data sparsity problem, we employ deep

neural networks to learn users’ preferences and items’ profiles from items’ descriptions. Extensive experiments have been

conducted on five real-world datasets, and our results demonstrate the improvement of DLFM-HSM over state-of-the-art

baselines. 

From the experiment section, we can see that DLFM-HSM has a good performance when content information is abundant.

But the performance of DLFM-HSM will be affected by lacking content information. Besides items’ descriptions, there are

many kinds of other content information, like users’ comments on items. In the future, we will further explore how to

merge these different kinds of content information together to better represent users and items. 
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