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With the improvement of people’s living standards, people’s demand of traveling by taxi is increasing, but the taxi service system is
not perfect yet; taxi drivers usually rely on their operational experience or cruise randomly to find passengers. Without
macroguidance, the role of the taxi system cannot be fully utilized. Many scholars have studied taxi behaviors to find better
operational strategies for drivers, but their researches rely on local optimization methods to improve the profit of drivers, which
will lead to imbalance between supply and demand in the city. To solve this problem, we propose a Multiagent Reinforcement
Learning- (MARL-) based taxi predispatching model through analyzing the running data of 13,000 taxis. Different from other
methods of scheduling taxis based on the real-time location of orders, our model first predicts the demand for taxis in different
regions in the next period and then dispatches taxis in advance to meet the future requirement; thus, the number of taxis needed
and available in different regions can be balanced. Besides, in order to reduce computational complexity, we propose several
methods to reduce the state space and action space of reinforcement learning. Finally, we compare our method with another taxi
dispatching method, and the results show that the proposed method has a significant improvement in vehicle utilization rate and
passenger demand satisfaction rate.

1. Introduction

Smart city, an emerging technology, which aims to apply the
new generation of information and communication tech-
nology to all walks of life in the city, is able to alleviate the
“big city disease” [1], coordinate urban development, and
improve the running efficiency of the city and the quality of
citizens’ life [2]. Intelligent transportation [3, 4], as an in-
dispensable part of a smart city, aims at improving the
operation efficiency of transportation systems, making full
use of transportation resources, and ensuring traffic safety
[5]. It plays a vital role in citizens’ lives and the operation of
the whole city. Nowadays, traffic congestion, frequent ac-
cidents, energy waste, air pollution, and other problems
commonly exist in cities and they can be well solved by
intelligent transportation [6, 7].

With the rapid development of wireless communication
technology and the Internet of +ings (IoT), collecting the
trajectory records of mobile objects becomes simple and fast,

which makes intelligent transportation possible [5, 8].
Various devices embedded with GPS are ubiquitous in our
lives, such as smartphones [9, 10], private cars [11, 12], and
public transport [13]. Location information can be obtained
more easily, and a large number of trajectory data are
collected every day. Trajectory data has spatial attributes as
well as temporal attributes; it becomes the main research
object of spatiotemporal data mining technology. +e ap-
plication of trajectory data can not only provide location-
based services for users, but also help urban planning and
intelligent transportation. Gathering and analyzing these
large-scale real-world digital traces have provided us with an
unprecedented opportunity to grasp the city dynamics and
understand the social and economic patterns better [14–16].

However, the corresponding operation strategy did not
develop with the increase of the number of taxis, there are
still many shortcomings, such as the difficulty in finding
taxis in peak hours, uneven distribution of taxis, and the
drivers’ refusal of service [17]. Taxi drivers’ strategies of
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seeking passengers are mostly empirical and substantially
vary among each other [18, 19], which leads to low service
efficiency and low income. Many studies have been devoted
to solving these problems [8, 18, 20, 21], but basically from
the drivers’ point of view, these local optimization methods
may lead to starvation in some areas. So it can neither
provide guidance for taxi dispatching from a global per-
spective nor provide better ride experience for passengers.
+ere are also studies devoted to assigning vehicles to each
order based on the real-time order locations. However,
scheduling based on real-time order status has some
drawbacks; for example, if there are few taxis available
around a passenger, we have to arrange a taxi according to
the shortest distance priority principle to serve this pas-
senger, but the actual distance might be very far. It is not an
ideal arrangement neither for the driver nor for the pas-
senger. Vehicles have to travel longer distances, and pas-
sengers need to wait longer which makes the whole taxi
system inefficient.

To this end, we propose a vehicle prescheduling model
from the perspective of the whole city, so that taxi resources
can be fully utilized and service quality and passengers’
experience can be improved. +rough analysis of the his-
torical trajectory data, firstly we identify the characteristics
of the population movement patterns and taxi operation
rules in cities. Based on these two points, then we count the
number of vehicles that can provide services at the current
time and predict the amount of taxi demands in the future.
According to the predicted results, we can know the quantity
of supply and demand in every area of the city. Finally,
Multiagent Reinforcement Learning can be used for taxi
scheduling, which will eventually balance the global supply
and demand and enable more passengers to take taxis in
shorter time.

Our major contributions are summarized as follows:

(1) We study the crowd movement patterns in different
regions through analyzing the historical taxi tra-
jectory data, which can provide some auxiliary in-
formation for vehicle scheduling.

(2) We propose a taxi predispatching model based on
Multiagent Reinforcement Learning method, which
can balance the number of taxis and requirements in
each region.

(3) We propose a divide-and-conquer method to reduce
the volume of overlarge state space in MARL, which
improves the computational efficiency.

(4) We evaluate the performance of different time series
prediction algorithms in predicting future pickup
requests through experiments and prove the validity
of the proposed model through experimental
comparison.

+e remainder of this paper is organized as follows. In
Section 2, we give a brief review of taxi operation strategy
researches and online order matching methods. In Section 3,
we provide the definition of the problem; then we introduce
the processing pipeline of the article. +e data used in this
paper, the method of processing the data, and the division of

urban areas are introduced in Section 4. In Section 5, we
introduce the scheduling method based on Multiagent Re-
inforcement Learning. +e experimental results are shown in
Section 6. Finally, we conclude the paper in Section 7.

2. Related Work

Mining taxi trajectory data has been a research hotspot in the
smart city [22]; many scholars have studied this issue.
+rough the analysis of relevant studies, we find that the
literature on taxi research mainly focuses on two aspects.
One is to analyze the taxi drivers operating strategies and
study which strategy can bring higher income to drivers.+e
other is from the perspective of the overall taxi market,
focusing on dispatching and providing guidance for taxis. In
this section, we mainly introduce the research results of
other scholars from these two perspectives.

Different cities have different characteristics of crowd
movement patterns. But in the same city, the income of
different drivers is also different because they may adopt
different operation strategies. Many scholars have studied
which kind of operation strategy taxi drivers should adopt to
get higher profits. Rong et al. [18] extract efficient opera-
tional strategies through large-scale historical taxi trajectory
data and then analyze these strategies through multiple
indicators to get some valuable insights and use these
strategies to increase drivers’ income. Li et al. [14] design a
simulation model to test the performance of three different
search strategies from two perspectives including passenger
waiting time and vacant taxi travel rate. Chen et al. [23] use
three indicators including the levels of taxi service, taxi
operation, and taxi development to analyze the operation of
taxis, so as to improve the management of the taxi industry
and promote the sustainable development of the taxi
industry.

Some scholars offer advice to taxi drivers by analyzing
crowd movement patterns. Based on these patterns, they
provide suggestions for taxi drivers and recommend some
locations for them. In these locations, there is a greater
possibility of receiving passengers, which can reduce the
cruising time and thus increase their income. Kong et al. [24]
propose a time-location-relationship (TLR) combined ser-
vice recommendation model to improve drivers’ profits
according to the characteristics of passengers in different
functional regions. +e TLR model analyzes the relationship
between passengers getting on and off during every period
and adopts Gaussian Process Regression (GPR) to predict
the amount of passengers and recommends drivers to their
nearest region where the demand of taxi is most at the same
time. Phithakkitnukoon et al. [25] present a predictivemodel
for the number of vacant taxis in a given area based on time
of the day, day of the week, and weather condition. With this
knowledge, we can allocate vehicles for requests more
quickly. Xiaolong et al. [26] investigate human mobility
patterns by analyzing large-scale taxi traces and develop an
improved ARIMA method to predict Pickup Quantity
(PUQ) of those urban hotspots and then recommend taxi
drivers to an optimal hotspot where the taxi driver will spend
the least time to pick up the next passenger.
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Yuan et al. [27] present a recommender system for both
taxi drivers and people expecting to take a taxi, using the
knowledge of passengers mobility patterns and taxi drivers
picking-up/dropping-off behaviors learned from the GPS
trajectories. +is recommender system provides taxi drivers
with some locations and the routes to these locations and
provides people with some locations (within a walking
distance) where they can easily find vacant taxis. Golpaye-
gani and Clarke [28] consider the respective preferences of
drivers and passengers. +ey present a multiagent collab-
orative passenger matching and taxi dispatch model. Pas-
sengers and drivers are modeled as autonomous agents
having multiple often-conflicting preferences. +e attention
to the preferences of passengers and drivers in this paper
gives us great inspiration. A system should consider the
preferences of different users rather than treating them
equally. Dimitriou et al. [16] study the taxi trajectory data of
New York City. By analyzing the travel time and distance of
taxi and the situation of getting on and off in key areas such
as airport, they recommend the optimal location for taxis to
find passengers.

+e above studies are all from the drivers’ point of view;
the goal is to make more profits for drivers.+ese studies are
local optimization, which are not conducive to the quality of
taxi service from the perspective of the whole city. Some
other studies focus on how to match available vehicles with
requests more reasonably. +ey use different algorithms to
achieve this goal; for instance, Kuemmel et al. [29] leverage a
stable marriage assignment algorithm and apply it for dis-
patching taxis to passengers. +e stable marriage algorithm
was developed initially for matching men and women
according to their preferences in polynomial time. Zheng
and Jie [30] also use the stable marriage method. +ey study
the online to offline taxi scheduling problem. In the case of
nonsharing taxi dispatches, it uses the stable marriage
method and uses three rules to find all possible stable
matches. Seow et al. [31] propose a multiagent architecture
to match taxis and requests attempting to improve pas-
sengers satisfaction more globally. +e city is divided into
different regions; each region maintains its own available
taxi queue and request queue. +e system will match the
requests and vehicles in each region at regular intervals. Wei
et al. [17] studied the impact of service refusal on the balance
of supply and demand in the taxi market.

+ere are also some researchers who use reinforcement
learning to achieve their goals. Guériau and Dusparic [32]
propose a reinforcement learning-based decentralized ap-
proach to vehicle relocation as well as ride request assignment
in shared mobility-on-demand systems. Each vehicle au-
tonomously learns its behaviour, including both rebalancing
and selecting which requests to serve, based on its local
current and observed historical demand. +e rebalancing
strategies proposed in this paper are very constructive and
provide us with a good reference. Li et al. [33, 34] both use
MARL to solve the problem of matching vehicles and orders,
but the former follows the distributed nature of the peer-to-
peer ride-sharing problem and adopt the mean field ap-
proximation to simplify the local interactions by taking an
average action among neighborhoods. +e latter uses an

extended version of reinforcement learning: hierarchical re-
inforcement learning (HRL). It models ride-hailing as a large-
scale parallel ranking problem, combines order dispatching
with fleet management, and conducts the decision-making
process in a hierarchical way.

+e existing researches dispatch vehicles in real time
according to the location of orders. Due to the imbalance of
supply and demand in different regions, some taxis need to
travel a long distance to serve passengers, which will prolong
the waiting time of passengers and reduce the operational
efficiency. If we can know in advance the prospective de-
mand of each region, we can take somemeasures to deal with
this problem. Fortunately, we now have a variety of very
mature predictive models, including machine learning
models, deep learning models, and various time series
models, all of which can achieve high accuracy. +erefore,
the preschedulingmodel proposed in this paper first predicts
the future pickup requests by time series predicting model
and then dispatches taxis to achieve the balance between
supply and demand in each region. After doing so, only a
small-scale scheduling is required. +e simulation results
show that the proposed method can effectively avoid taxi
congregation caused by local optimization methods and
improve the operating efficiency of taxis.

3. Overview

In this section, we will introduce the problem definition and
processing pipeline to have a better understanding of what is
stated in this article.

3.1. ProblemDefinition. Regardless of the size of the city and
the number of taxis, the number of available taxis and taxi
demands in different areas of a city is unbalanced, especially
in rush hours. +erefore, we propose a taxi predispatching
model to balance the supply and demand of taxis in different
regions and finally improve the utilization rate of taxis, meet
more demands, and reduce passenger waiting time.

+is paper regards the study area on the map as a two-
dimensional plane and then divides it into equal-sized grids.
According to the real-time GPS data uploaded by taxis, we
can get the location of each taxi and the number of taxis in
each grid (supply quantity), which compose the supply
matrix St (t represents the time). And after forecasting the
demand of each grid the demand matrix Dt can be obtained
by combining the values of all grids according to their spatial
locations. By subtracting the two matrices, we can get the
objective matrix, through which we can know the supply and
demand situation of the entire area. +e problem then turns
to how to schedule taxis so that more values in the target
matrix are greater than or equal to zero. In this paper,
Multiagent Reinforcement Learning is used to let the ma-
chine automatically explore the best adjustment scheme to
achieve this goal.

3.2. Processing Pipeline. +emain processing pipeline of our
method is illustrated in Figure 1. It mainly consisted of four
parts: data preprocessing, map partitioning, demand
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forecasting, and taxi dispatching. Data preprocessing is used
to remove unnecessary and error information in the GPS
data and facilitate later application. Map partitioning divides
the city into grids of the same size and then analyses the
crowd travel patterns in different grids to provide assistance
for taxi scheduling later. +e demand forecasting section
uses several time series forecasting methods to predict the
prospective number of taxi demands in each grid, so that the
future demand situation of each region can be grasped in
advance. After that, taxi dispatching can be done according
to the current taxi distribution and future demand situation.

4. Data Process

Shanghai is one of the most prosperous cities in China. +e
demand for taxis is very large. Taxi plays an essential role in
the urban traffic. It is of great significance to optimize the
efficiency of taxi service.+is paper uses the GPS positioning
data of 13700 taxis in Shanghai from April 1, 2015, to April
30, 2015, to study the taxi demand in Shanghai. Taxis’ po-
sitions are sampled every 10 seconds, and a piece of data is
generated whenever passengers get on or off. In 30 days,
about 3 billion pieces of data are generated. +e fields in the
data and their meanings are shown in Table 1.

4.1. Data Preprocess. Due to the device failure, transmission
interference, or storage errors, data may be incorrect. For
example, when a taxi driver is after work, he may keep the
taximeter on although there is no passenger in the taxi. Taxi
state and taxi location are very important for subsequent
experiments, so unreasonable data should be corrected or
deleted for the purpose of getting more accurate results. To
clarify the real vacant and occupied trajectories (trajectories
with and without passenger, respectively), the data pro-
cessing steps are performed as follows.

Step 1. Sort data by time.
Sorting the data of each taxi according to time, the state
of taxi should be regularly converted between available
and occupied ones. Corresponding to the data, taxi
status field should change between 0 and 1. For ex-
ample, 0011. . . 1100 or 1100. . . 0011, from 1 to 0,
means receiving passenger and from 0 to 1 means
passenger getting off. Combining latitude and longi-
tude, we can know where passengers get on and off.
Step 2. Eliminate errors in state transition.
+e state of a vehicle might transform frequently, for
example, 00100110001 or 111011011101. Obviously,
these situations are unreasonable. It will cause erro-
neous records of getting on and off many times, which
will have an impact on the results. +e way to deal with
such errors is to limit the shortest time with passengers
on board and empty cars. If it is below the time
threshold, it will be considered as a wrong conversion.
+rough statistical analysis of the data, the minimum
time of taxi with passengers on board and no load are
set to five minutes and one minute, respectively.
Step 3. Correct the wrong location point.

Due to the errors of GPS equipment, weak satellite
signals, or transmission errors, the position of some
points in the trajectory may be abnormal; that is, the
distance between two points exceeds the maximum
distance a car can travel over a period of time. In order
to deal with this situation, we take the midpoint of the
position of the two records (before and after the error
record) as the actual location of the point. Since the
object of analysis is grid, it is not necessary to get a very
precise location.

4.2. Map Description and Process. We mainly study the area
between longitude 121.4100°–121.5045° and latitude
30.1940°–31.2750° in Shanghai. +is area includes com-
mercial centers, railway stations, residential areas, and many
tourist attractions. It is highly representative for analyzing
the taxi situation of the whole city. Generally, there are two
methods to divide a region. +e first one is to divide the
region according to the main roads, and the other is to divide
the region into the same size grids [35]. +e method of
dividing by main roads is not easy in choosing the right
roads because of various ring roads and viaducts and the
nonuniformity of grids’ size; therefore it will bring extra
difficulty to the future prediction and scheduling. So we
choose the second method. +e research area is divided into
9 × 9 grids and tabbed from 1 to 81; the size of each grid is
1 km × 1 km. Figure 2 shows the results of partitioning.

4.3. Relationship of Getting On and Getting Off. +e latitude
and longitude range of each grid can be determined after the
meshing is completed. +e data uploaded by taxis contains
latitude and longitude. So we can match each piece of data to
the corresponding grid. +en, according to the time in-
formation in the uploaded record, we can get the number of
available taxis and taxi demands in each grid.

After sorting the data according to time, the state of each
taxi should change regularly between occupancy and idle-
ness in the continuous time series. For example,
1⟶ 1⟶ 0⟶ · · ·⟶ 0⟶ 1⟶ 1 or 0⟶
0⟶ 1⟶ · · ·⟶ 1⟶ 0⟶ 0. A transition of 1⟶ 0
means that the state of taxi has changed from empty state to

Step 1. Trajectory data 
processing

Step 2. Map processing

Step 3. Future demand 
forecasting

Step 4. Taxi dispatching

Data preprocessing

Getting on and off 
position extraction

Grid partition

Analysis of travel 
patterns

Task decomposition

Dispatching using 
MARL

Figure 1: Processing pipeline.
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occupied state; that is, a demand is satisfied. We can count
the number of transitions over a period of time to get the
demand in each grid. Similarly, if the state symbol changes
from 0 to 1, it means that a passenger gets off. After the above
processing, we can get the quantity of getting on and getting
off in each grid during all time periods.

As shown in Figure 3, we show the quantitative rela-
tionship between passengers getting on and off in three grids
during weekdays and weekends. People in residential areas go
out to work in the morning and go home in the evening, so
the number of people getting on a taxi in the morning is more
than the number of those getting off a taxi and the situation at
night is just the opposite. As shown in Figures 3(a) and 3(d),
the morning rush hour of working day is 8 o’clock, the
evening rush hour is 20 o’clock, and the weekend morning
and evening peaks are at 10 a.m. and 22 p.m., respectively.
Compared with workdays, the morning and evening rush
hours of weekends are later, because people go out later on
weekends, and taking part in various entertainment activities
at night also makes people go home later.

Commercial areas, for recreation and entertainment,
maintain a relatively high number of boarding and dis-
embarking times in comparison to residential districts. As
shown in Figure 3(b), a lot of people arrived before noon and
the amount of people getting on is much higher than the
amount of those getting off after 21 o’clock, because people
start going home. Weekends show the same trend as
workdays, but the peak traffic is much busier. +is is in line
with our expectations; there will definitely be more people to
entertain when they do not need to go to work.

Compared with residential areas, working areas have the
opposite pattern of travel. People arrive at work in the
morning and go home in the evening. +e get-off peak is at

8-9 o’clock and the boarding rush hour is at 20 o’clock. But
the traffic during evening rush hour is weaker than the early
rush hour, because there is no hurry to go home from work.
Some people may use different modes of transportation to go
home, such as subway or bus. Comparing weekends with
workdays, the patterns are the same, but the traffic and the
specific time of the early peak are much weaker and later,
indicating that some people still go to work on weekends, but
the number of people is less, and the time is later.

+rough the analysis of different functional areas, we
could understand the pattern of crowd travel in different
functional areas. +is information can assist the scheduling
process and make it more reasonable, such as dispatching
more taxis to working areas during evening rush hour.

5. Dispatch Model

+rough the study of historical data above, we know the
supply and demand situation of taxis in different regions and
can use different forecasting methods to predict the quantity
of taxi demand in the future. With this knowledge, we utilize
reinforcement learning method to schedule taxis, so that all
regions can achieve balance between supply and demand.

5.1.WoLF-PHCAlgorithm. +ere are some commonly used
MARL algorithms, such as Minimax Q-learning, Nash
Q-learning, Friend-or-Foe Q-learning (FFQ), and WoLF
Policy Hill-Climbing (WoLF-PHC). +e first three methods
need to maintain Q-function for all agents in the learning
process; the space required by the three methods is very
large. In order to solve this problem, we expect each agent to
maintain the Q-value function only by knowing its own
actions. WoLF-PHC is such an algorithm that each agent
only saves its own actions to complete the learning task. So
we use WoLF-PHC in this paper.

WoLF-PHC combines “Win or Learn Fast” rule with
policy hill-climbing algorithm (PHC). WoLF refers to
adjusting parameters carefully and slowly when the agent
does better than the expected value and speeding up the pace
of adjusting parameters when the agent does worse than the
expected value [36]. PHC is a single agent learning algorithm
in the stable environment. +e core of this algorithm is the
idea of reinforcement learning, which increases the prob-
ability of choosing the action that can get the maximum
cumulative expectation [37].

+is algorithm defines two strategies: current strategy
h(s, a) and average strategy 􏽥h(s, a′). +e current strategy is a
probability distribution function with an initial value of

Figure 2: Partition result.

Table 1: Taxi data description.

Fields Description
Car_id Unique code to identify each vehicle
State +e state of a taxi: 1 means that the taxi is vacant and 0 means that it is occupied
Time +e sample timestamp “YYYY-MM-DD HH:MM:SS”
Longitude Longitude of the sampling position
Latitude Latitude of the sampling position
Speed Instantaneous speed at the sampling time
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h(s, a) � (1/|Ai|). +is probability distribution function will
be updated when agent chooses action in the following way.
For Q-function, if it is the best action, i.e.,
a � argmaxaQ(s, a′), it will increase the probability, while
other actions will reduce the probability. WoLF-PHC
constantly updates the average strategy and compares it with
the current strategy: if the average reward value of the
current strategy is greater than that of the average strategy,
i.e., 􏽐ah(s, a)Q(s, a)>􏽐a

􏽥h(s, a)Q(s, a), the agent will be
considered as “win.” At this time, the average strategy will
adopt the rate δwin to update the strategy slowly. Otherwise,
the current agent will be considered as “lose,” and the larger
rate δlose will be used for faster adaptive learning.

5.2. Dispatch Process. After forecasting the demand for each
grid in the next period, the demand matrix D can be ob-
tained by combining the predicted results of each small grid
according to its spatial position. Dij represents the demand
of the grid in row i and column j. +e supply matrix S can be
obtained by counting the number of taxis in each grid at the
current time. A new matrix X (as shown in Figure 4) can be
obtained by subtracting the demand matrix from the supply
matrix, in which the positive value represents the number of
available taxis and the negative value represents the un-
satisfied demands. Our goal is to minimize the negative
number in the matrix with the shortest driving distance.

In order to achieve this goal, we use WoLF-PHC al-
gorithm, which regards each taxi as an agent and uses grid
number to represent its spatial position. +e spatial position
of each taxi constitutes the current state. After a taxi takes
action, its position will change, and the state will change

accordingly. Each taxi can take five actions at each step,
including up, down, left, right, and stay, but it can stay only
when a grid needs taxis. If a grid does not need it, it is
meaningless to keep it in this grid. When the number of
available taxis is larger than the total demand, we should try
to satisfy all the demands. In this situation, termination state
of the algorithmmeans that all values in the target matrix are
positive; that is, the termination state is reached when all
requests are satisfied. Otherwise, the termination state
means that there are only negative numbers and zero in the
matrix, which means that no extra taxis can be used. If the
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algorithm reaches the balance state after all agents have
taken action, all agents will get a reward of 100 points;
otherwise they will get − 1 points. All agents take actions
according to their Q table until they reach the termination
state. For the same matrix, there may be many scheduling
methods to achieve balance, but after the algorithm has
updated the strategy it will eventually find an optimal way to
achieve balance.

+e location of all agents represents the state of the
environment at a given time.+ere are 81 grids, so the size of
the state space is |G||C|, |G| is the number of grids, and |C| is
the number of agents. Each agent can take five actions, so the
action space is 5. +e Q table size of each agent is |G||C| · 5;
|C| could reach thousands, so the state space and Q table will
be very large and the computational complexity will be very
high. In practice, it will take a long time to calculate the
location of each taxi. In order to reduce the computational
complexity, we need to make the state space smaller. We can
achieve this by reducing the size of |G| and |C|.

(i) Reduce the size of |G|: we can divide 81 grids into
3× 3 large grids, each of which is also composed of

3× 3 small grids. In this way, the state space is re-
duced to 1/9 of the original. After large grids have
been adjusted and balanced, small grids will be
scheduled.

(ii) Reduce the size of |C|: we can divide the matrix into
two matrices of the same size by dividing the number
of taxis in each grid equally, and the same effect can be
achieved by balancing each submatrix.+e number of
agents in matrix can be reduced by half, and the
resulting submatrices can be calculated in parallel,
which improves the calculation speed further.

+e pseudocodes of the algorithms used in this paper are
shown in Algorithms 1 and 2.

Different scheduling algorithms have different goals,
such asmaximizing the drivers’ profit, letting drivers find the
next passenger faster, or minimizing the waiting time for
passengers. +e goal of this paper is to improve the utili-
zation rate of taxis and to meet as many demands as possible
with a certain number of available taxis. At the same time,
the efficiency of the scheduling algorithm is also considered,
which means using less taxis to meet more demands.

Require: current vehicle distribution matrix S and predicted demand matrix D for each grid in the next t minutes
Ensure: the dictionary of vehicle exchange between grids
(1) ori mat � S − D : supply matrix subtracts demand matrix to obtain initial difference between supply and demand in each grid
(2) get big grid mat by dividing the region into large grids and calculate the difference between supply and demand in each large

grid
(3) big grid map⟵MATRIX PROCESS (big grid mat)
(4) adjust the value of the small grids in each large grid according to the scheduling result big grid map and get the new matrix

grids in each large grid
(5) small grid map� []
(6) for each grid gridi in grids in each large grid do
(7) mapi⟵ Matrix_process gridi

(8) append the mapi to the small grid map
(9) end for
(10) return big grid map, small grid map

ALGORITHM 1: WoLF-PHC-based taxi dispatch algorithm.

Require: the matrix to be processed by the dispatching algorithm
Ensure: scheduling map obtained by algorithms
(1) function Matrix_process (mat)
(2) if mat can be handled by the computing resources at hand then
(3) processing the mat with the WOLF-PHC-based dispatch algorithm
(4) return scheduling map obtained by the algorithm
(5) else
(6) Divide the matrix mat into two smaller ones mat1 and mat2
(7) map1 � Matrix_process mat1
(8) map2 � Matrix_process mat2
(9) get the result map by merging the map1 and map2
(10) end if
(11) return map
(12) end function

ALGORITHM 2: Matrix process.
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+erefore, the objective function of the scheduling model is
defined as follows:

TAR � rds · rtu · etd, (1)

rds �
demand satisfied
total demand

,

rtu �
taxi utilized

min(total demand, total taxi)
,

etd �
demand satisfied
taxi dispatched

.

(2)

In equation (1), rds represents the demand satisfaction
rate, which is calculated by dividing the total pickup requests
by the satisfied demand as shown in equation (2). A good
dispatching algorithm should satisfy as many demands as
possible, so the higher the demand satisfaction rate is, the
better the scheduling result will be. rtu denotes the utilization
rate of taxis. +e calculation method, as shown in equation
(2), equals the number of taxis that are effectively utilized
(meaning that the taxi is dispatched and meets a certain
demand) divided by the smaller value between the total
pickup requests and the total number of taxis. +ere may be
two situations; one shows that the number of taxis is less
than the demand, in which case all taxis can be effectively
utilized; the other is that the number of taxis is more than the
demand, in which case taxis that can be effectively utilized
are equal to the total demand at most. Sometimes, after the
completion of the scheduling, some demands are not sat-
isfied, but there are still some available taxis, which indicates
that the scheduling algorithm is not good, so we hope that
the value of rtu is larger. etd represents the efficiency of taxi
dispatching. As shown in equation (2), the calculation
method is equal to the demands satisfied divided by the
number of taxis dispatched, which means how many de-
mands are satisfied by each taxi. +e larger the value of etd is,
the higher the efficiency of the dispatching algorithm is. Our
goal is to adjust the proposedmodel to maximize the value of
the objective function.

6. Experiment

In this section, we first compare the performance of three
time series forecasting models under different indicators and
then use the best performing model to provide data support
for the subsequent scheduling. +en we compare the
scheduling method proposed in this paper with another
method in many aspects to test the effectiveness of our
model.

6.1. Prediction Experiment. In order to have a precise pre-
diction result for different time periods in the future, we
divided a day intoM time segments, each of which is t-hour
length. For different types of cities or different regions of the
same city, the change rate of traffic conditions is different, so
for prosperous areas we should use a smaller t to respond to
rapidly changing demand situations. For remote areas or

small cities, traffic conditions are relatively stable; we can set
t longer, which can reduce the frequency of calculation and
ensure the accuracy of prediction.

In this section, three algorithms ARIMA, LSTM, and
FBprophet are evaluated to predict demands. Two indica-
tors, RMSE and MAE, are used to compare the performance
of the three methods.

(1) RMSE (root mean square error): it is used to measure
the deviation between the predicted values and the
true values. It focuses on items with large difference
between predicted and real values, and the smaller
the value is, the better the algorithm will be. It can be
defined as follows:

RMSE �

������������

􏽐
n
i�1 􏽢yi − yi( 􏼁

2

n

􏽳

. (3)

+e predicted value and the real values are denoted
by 􏽢yi and yi, respectively, and the number of
measurements is defined as n.

(2) MAE (mean absolute error): it represents the average
absolute error between the predicted and observed
values. It focuses on the sum of all the differences
between predicted and real values. It can be defined
as follows:

MAE �
1
n

􏽘

n

i�1
􏽢yi − yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (4)

As shown in Figure 5, FBprophet has the best perfor-
mance under the two metrics whether it is tested under the
condition of weekdays or weekends. +is method does not
need to adjust parameters. It has good generality to data and
the prediction speed is very fast. And it is insensitive to the
size of the data; even when forecasting on weekends with less
data the accuracy is still high. LSTM’s forecast results of
working days are similar to FBprophet. It performs worse
than FBprophet on weekends, but better than ARIMA. Its
disadvantage is that it depends on the quality of network
structure design and the setting of various parameters, and
the training process of the network will consume a long time.
ARIMA, a traditional model, does not perform well in this
prediction problem, probably because there are many factors
affecting the daily traffic conditions, and the model cannot
predict these fluctuations very well. Moreover, this model
needs to adjust different autoregressive coefficients p and
moving average terms q for different data sets, which is high
time cost, so it is not suitable for the prediction of multiple
time series. In summary, we decide to use the FBprophet
model for forecasting, because faster and higher accurate
forecasting can make the scheduling results better.

6.2.DispatchExperiment. By using the FBprophet model, we
can get the taxi demands in each grid in the future. +en we
can use the model proposed in this paper to schedule all
available taxis in the range. In order to validate the
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performance of our model, we conducted experiments on
different periods of weekdays and weekends and compared it
with time-location-relationship (TLR) combined taxi service
recommendation model proposed in [24]. +e main idea of
TLR model is that when a taxi driver needs to find pas-
sengers, the model compares the demands in eight grids
around the taxi and then recommends the grid of the
greatest taxi demands for the taxi as its destination. +is
scheduling method can easily result in taxis clustering in one
area. In this paper, a small improvement is made in the
process of implementation. +is model will recommend a
grid for the taxi, which is selected by the certain possibility
from two grids with the most taxi demands. +e experi-
mental results are as follows.

In Figure 6, the deeper the red in this grid is, the more
available the vehicles there will be, the deeper the blue in this
grid is, the more the demands there will be, and the number
in the grid represents the specific value. In the scenario
shown in Figure 6(a), demands are 44 more than the number
of available taxis, and the unsatisfied demands are 527 at the

beginning. After our model scheduling, there are 44 un-
satisfied demands, the demand satisfaction rate is 91.65%,
and the taxi utilization rate is 100%. After TLR model
scheduling, the unsatisfied demands are 160, the satisfaction
rate is 69.64%, and the taxi utilization rate is 75.9%. In the
scenario shown in Figure 6(d), demand is 114 less than the
number of available vehicles, and the unsatisfied demand is
450 at the beginning. After our model scheduling, all the
demands have been satisfied and the satisfaction rate is
100%. After TLR model scheduling, there are still 106 un-
satisfied demands and the satisfaction rate is 76.44%.

According to Figure 6, we can see that the model pro-
posed in this paper performs better in all time periods.
During the peak period, 9 a.m. on weekdays, as shown in
Figure 6(a), the imbalance between supply and demand is
serious, and the number of available taxis is less than the
demands. In this case, after our model scheduling, as shown
in Figure 6(b), all available vehicles are utilized; in other
words, no more taxis can be scheduled to meet the demand;
and, for the TLR model, as shown in Figure 6(c), most of the
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Figure 5: Comparison of the results of three methods under different indicators in different time periods. (a) RMSE-weekdays. (b) RMSE-
weekends. (c) MAE-weekdays. (d) MAE-weekends.
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requirements are met, but there are still many available taxis
leaving unused. At 9 p.m. on weekends, as shown in
Figure 6(d), the degree of imbalance is relatively light, and
the total number of available taxis is larger than the de-
mands. In this case, after our model scheduling, as shown in
Figure 6(e), all the demands are satisfied, and the remaining
taxis are evenly distributed. However, the TLR model, as

shown in Figure 6(f ), cannot satisfy all the demands even
when the number of taxis is more than the demands. In
addition, it can be seen from Figures 6(c) and 6(f) that the
hot zone and the cold zone are separated after the dis-
patching of the TLRmodel, which shows that if the cold zone
and the hot zone are far away, the taxis in the hot zone
cannot be used. +is indicates that the contrast model is a

–1

1

–5

3

–13

–8

–22

–14

–11

3

8

26

7

10

4

17

–12

–32

6

28

–5

–17

–27

2

–25

2

14

–33

31

–21

–7

–11

–11

–1

–6

3

6

24

30

38

9

3

–22

–22

–21

–12

–3

–1

8

–29

45

21

11

17

–6

0

–1

–12

15

4

–2

–23

6

2

0

16

–2

8

–23

–22

1

5

–16

–17

9

11

15

–5

–6

–7

–71

2

3

4

5

6

7

8

9

2 3 4 5 6 7 8 91

(a)

–7

–16 –5

–5

–2

–2

–5

–1

–1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

2

3

4

5

6

7

8

9

2 3 4 5 6 7 8 91

(b)

7

–22

–22

–2 –2

–6 –1–1

–5

–4 –11

–516

–2

–1

–22

–6

0

0

0

0 10 5

–18

–7

8

290

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

–6

–6

0

0

0

0

0

0

–7

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0

0

0

0

–14

0

0

20

9

2

0

20

0

0

1

2

3

4

5

6

7

8

9

2 3 4 5 6 7 8 91

(c)

–3

4

8

–9

–1

–1

–20

–10

9

0

13

20

9

–6

–3

27

–11

6

32

15

2

–34

–4

19

–17

–6

–31

–24

18

–17

5

–17

–12

–17

–12

0

0

26

16

42

6

16

–41

–13

–5

–16

3

4

0

–30

47

25

11

13

–18

–13

2

–4

72

0

12

5

–9

0

4

6

–14

3

5

5

–1

0

14

17

6

–31

9

2

7

9

11

2

3

4

5

6

7

8

9

2 3 4 5 6 7 8 91

(d)

10

10

10 10

10

2 2

22 3

2

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3 13

11 7

71

2

3

4

5

6

7

8
9

2 3 4 5 6 7 8 91

(e)

0

0

0

0

0

0

0

–3

–24

–18

–9

–4 –9

–10 –11

–8

–1

–1

6

6

416

20

6

38–20

0

0

0

0

0

0

0

0

0

0

0

016

4

26 3

13

5

0

0

0

0

11

–120

0

0

0

0

0

0

0

0

0

0

0

4

0

0

0

0

0

0

4 19

47

–5

–1

0

0

0

0

0

0

01

2

3

4

5

6

7

8

9

2 3 4 5 6 7 8 91

(f )

Figure 6: Dispatch result of the two models. (a) Unscheduled status at 9:00 on weekdays. (b) +e result of (a) after the scheduling of model
proposed in this paper. (c)+e results of (a) after the scheduling of TLR model. (d) Unscheduled status at 21:00 on weekends. (e)+e results
of (d) after the scheduling of model proposed in this paper. (f ) +e results of (d) after the scheduling of TLR model.
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Figure 7: Model performance comparison. (a) +e performance on weekdays. (b) +e performance on weekends.
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local optimization model, and our model is a global opti-
mizationmodel, which can achieve the balance of supply and
demand in the global scope.

Figure 7 shows the comparison result of two scheduling
models under objective function 1 on weekdays and
weekends. +e experiment compares the scheduling results
of the two models from 8 a.m. to 10 p.m. using the one-
month data. It is clear from the graph that the proposed
model is better than the comparative model as a whole. And
the proposed model is more stable than the comparative
model; the results of the comparative model are worse
during the morning and evening peak periods than other
periods; the reason is that the strategy of adjacent grid
scheduling used by the comparative model cannot make full
use of taxi resources, especially when many grids need taxis.
Compared with weekdays, the objective function values of
both methods become higher, and the gap between the two
methods becomes smaller at weekends.+e reason is that the
spatial-temporal distribution of the demand becomes more
uniform on weekends and the rush hour in the morning and
evening is weaker. According to the above, the model
proposed in this paper can make more efficient use of taxi
resources and meet the needs of passengers better.

+e experiment is carried out on an 8-core machine with
an 8G RAM.+e number of times in which a target matrix is
split varies with the number of agents. But the splitting
operation is very fast; the total splitting time does not exceed
0.01 s. Hence the running time is mainly determined by the
speed of reinforcement learning algorithm. Reinforcement
learning algorithms need some time to explore the optimal
strategy. We repeat the experiment 100 times and the av-
erage running time of the program is 13.88s.

7. Conclusion

In this paper, we have proposed a MARL-based taxi pre-
dispatchingmodel to balance the supply and demand of taxis
in different areas of the city. +rough the analysis of the
historical data, we find that different functional regions have
different crowd mobility patterns, and they all have regu-
larity. +en, in order to react to the taxi demand situation in
advance, we use three time series forecasting methods to
predict the taxi pickup requests of each grid in the future and
compare the results of them. Finally, according to the dis-
tribution of taxis at the current time, the scheduling model
based on the multiagent reinforcement learning is used to
dispatch taxis among grids. To reduce the computational
complexity of the algorithm, we adopt the divide-and-
conquer strategy, dividing the general tasks into subtasks
that can be processed by a single machine, and each small
task can be paralleled. +e final scheduling method is ob-
tained by summing up the results of all subtasks, which
greatly improves the computational speed and the real-time
performance of taxi scheduling.

In the experimental part, we first compare the prediction
results of the three prediction models. +e results show that
the FBprophet model performs best under the two evalu-
ation metrics, so we finally use the prediction results of
FBprophet to approximate the real demand situation in the

future.+en we compare the proposed scheduling algorithm
with the TLR combined service recommendation method.
We can see from the results that the proposed dispatching
algorithm has better performance in various scenarios, and
the performance is stable under different traffic conditions.

In the future, we will further carry out more fine-grained
scheduling; specifically we will study which taxi should be
dispatched in each grid, how to choose route for each taxi,
and where to find passengers after reaching the designated
grid.We will try to solve these problems and further improve
the efficiency of taxi service.
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[29] M. Küemmel, F. Busch, and D. Z. Wang, “Taxi dispatching
and stable marriage,” Procedia Computer Science, vol. 83,
pp. 163–170, 2016.

[30] H. Zheng and W. Jie, “Online to offline business: urban taxi
dispatching with passenger-driver matching stability,” in
Proceedings of the 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS), Atlanta, GA, USA,
June 2017.

[31] K. T. Seow, N. H. Dang, and D. H. Lee, “A collaborative
multiagent taxi-dispatch system,” IEEE Transactions on Au-
tomation Science Engineering, vol. 7, no. 3, pp. 607–616, 2010.

[32] M. Guériau and I. Dusparic, “SAMoD: shared autonomous
mobility-on-demand using decentralized reinforcement
learning,” in Proceedings of the 2018 21st International
Conference on Intelligent Transportation Systems (ITSC),
pp. 1558–1563, Maui, HI, USA, November 2018.

[33] M. Li, Zhiwei Qin, Y. Jiao et al., “Efficient ridesharing order
dispatching with mean field multi-agent reinforcement
learning,” in Proceedings of the 2019 World Wide Web
Conference, San Francisco, CA, USA, 2019.

[34] J. Jin, M. Zhou, W. Zhang et al., “Coride: joint order dis-
patching and fleet management for multi-scale ride-hailing
platforms,” in Proceedings of the 28th ACM International
Conference on Information and Knowledge Management,
Beijing, China, November 2019.

[35] J. Yuan, Y. Zheng, and X. Xie, “Discovering regions of dif-
ferent functions in a city using human mobility and pois,” in
Proceedings of the 18th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, Beijing,
China, August 2012.

[36] L. Buoniu, R. Babuka, and B. D. Schutter, Multi-Agent Re-
inforcement Learning: An Overview, MDPI, Basel, Switzer-
land, 2010.

[37] H. M. Schwartz, Multi-Agent Machine Learning: A Rein-
forcement Approach, Wiley, Hoboken, NJ, USA, 2014.

12 Journal of Advanced Transportation


