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Abstract

Sparse Urban CrowdSensing (Sparse UCS) is a practical
paradigm for completing full sensing maps from limited
observations. However, existing methods typically rely on
a time-discrete assumption, where data is considered static
within fixed intervals. This simplification introduces signif-
icant errors as real-world data changes continuously. To ad-
dress this, we propose a framework for time-continuous data
completion. Our approach, Time-Aware Mamba-based Deep
Matrix Factorization (TIME-DMF), leverages the Mamba ar-
chitecture as a powerful temporal encoder. Crucially, we en-
hance Mamba with a novel time-aware mechanism that ex-
plicitly incorporates the actual, often irregular, physical time
intervals between observations into its state transitions. This
allows our model to accurately capture true temporal dynam-
ics and generate high-fidelity data for any queried moment in
time through a query-generate mechanism. Extensive exper-
iments on five diverse sensing tasks demonstrate that TIME-
DMF significantly outperforms state-of-the-art methods, val-
idating the superiority of the time-continuous paradigm for
Sparse UCS.

Code — https://github.com/JLUDhhh/Time-DMF

Introduction
Mobile CrowdSensing (MCS) (Ganti, Ye, and Lei 2011; Wu
and Wang 2023) has emerged as a transformative paradigm,
leveraging the ubiquity of smart devices to create large-scale
dynamic sensing networks. In practice, budget limitations
and inaccessible areas often render MCS data incomplete.
The Sparse UCS paradigm (Wang et al. 2016) addresses this
challenge directly by employing inference strategies to re-
construct a complete sensing map from these partial obser-
vations. This has already shown great advantages in some
practical applications, such as air quality monitoring (Liu
et al. 2020; Feng et al. 2018), traffic control (Liu, Ong, and
Chen 2020; Ali et al. 2021) and urban sensing (Calabrese,
Ferrari, and Blondel 2014; Liu et al. 2019).

Data inference is the most essential part of Sparse UCS,
yet most of existing works critically undermine its potential.
As illustrated in Figure 1, existing methods study the data
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Figure 1: Time-discrete and time-continuous formulation.

inference problem from a time-discrete perspective (Wang
et al. 2015, 2017; He and Shin 2018; Xie et al. 2019; Liu
et al. 2022; Wang et al. 2022). The entire timeline of sens-
ing data is typically discretized into fixed-length time units,
and all observations arriving within the same unit are ag-
gregated. Then, assuming intra-interval data stasis, they use
data inference methods, such as compressive sensing (Aly,
Basalamah, and Youssef 2016; He and Shin 2018) or matrix
completion (Fan and Cheng 2018; Zhang and Chen 2019)
to infer the missing data. However, this time-discrete as-
sumption is routinely violated in practice, as the sensing
data evolves continuously, resulting in significant errors in
change-sensitive applications. This coarse-grained method
inherently fails to resolve rapid changes, such as sharp
fluctuations in environmental data during severe weather,
thereby masking critical local dynamics.

Therefore, time-continuous data inference has become a
pressing issue in Sparse UCS. In this paper, we shift from
the traditional time-discrete paradigm to a more realistic
time-continuous perspective. This fundamental change in-
validates the common assumption of static data within fixed
periods, precluding data aggregation and thus creating a
challenge of extreme data sparsity. Consequently, our first
challenge is to develop a model robust to this sparsity.
Furthermore, the nature of real-time data collection results
in irregular time intervals between observations. Our second
challenge is to effectively model and leverage this tem-
poral irregularity, which contains crucial dynamic infor-
mation. Finally, discrete methods are inherently incapable
of inferring data at arbitrary moments. Therefore, our third



challenge is to achieve true continuous completion by en-
abling on-demand inference for any point in time.

To address the challenges, we propose a progressive
framework, starting with tackling extreme sparsity. By mov-
ing from coarse-grained aggregation to a “fine-grained” set-
ting where each submission occupies a unique time step,
we introduce Mamba-enabled Deep Matrix Factorization
(Mamba-DMF). This model leverages the Mamba architec-
ture (Gu and Dao 2023) as a temporal encoder to share in-
formation across time, effectively compensating for the lack
of spatial context at each moment. However, Mamba-DMF
remains fundamentally ordinal, processing events as an or-
dered sequence while ignoring the crucial physical time in-
tervals between them. To exploit this temporal irregularity,
we enhance our framework to create Time-Aware Mamba-
DMF (TIME-DMF), whose core innovation is a mechanism
that makes Mamba’s state transitions explicitly sensitive to
actual elapsed time. Finally, to achieve true continuous com-
pletion, we equip TIME-DMF with a Query-Generate (Q-G)
strategy, transforming it from a static completion tool into
a dynamic generative framework capable of providing on-
demand inference for any arbitrary point in time.

Our work has the following contributions:
• We reformulate the problem of data inference from a

time-continuous perspective in Sparse UCS. This new
formulation abandons the flawed discrete-time assump-
tion and addresses the fundamental challenges of ex-
treme sparsity, temporal irregularity, and on-demand
generation, bringing inference models closer to real-
world dynamics.

• We propose TIME-DMF, a novel framework featuring a
time-aware Mamba encoder. By introducing a dynamic
timescale adaptation mechanism, TIME-DMF can ex-
plicitly and effectively leverage the irregular physical
time intervals between observations, moving beyond the
limitations of purely ordinal sequence processing.

• We design a Query-Generate (Q-G) strategy that works
in synergy with TIME-DMF, transforming it into a gen-
erative neural process. This enables on-demand inference
for any arbitrary moment in time, achieving true contin-
uous data completion.

• Extensive experiments on four diverse, real-world
datasets demonstrate the superiority of our time-
continuous approach and the effectiveness of TIME-
DMF, which significantly outperforms a wide range of
state-of-the-art baselines.

Related Work
Our work intersects with two key research areas: data infer-
ence in Sparse UCS and continuous-time modeling.

Data Inference in Sparse UCS
Inferring complete data from partial observations is a cen-
tral task in Sparse UCS (Wang et al. 2016). Methodologies
for this task have evolved from relying on strong structural
priors to leveraging data-driven deep learning models.

Early approaches were often built upon pre-defined as-
sumptions about the data’s structure. Compressive Sensing

(CS), for instance, leverages signal sparsity in a transform
domain to reconstruct the complete data (Aly, Basalamah,
and Youssef 2016; He and Shin 2018). A more prevalent
paradigm, Matrix Completion (MC), typically assumes that
the underlying spatiotemporal data matrix is low-rank, en-
abling recovery from a small subset of entries (Fan and
Cheng 2018; Zhang and Chen 2019). While effective in
data-scarce scenarios, the performance of these methods is
often constrained by their strong structural priors, which
may not adequately capture complex real-world dynamics.

To overcome the limitations of these prior-based methods,
recent research has shifted towards deep learning. Trans-
formers, in particular, have demonstrated state-of-the-art
performance by learning intricate spatiotemporal patterns
from large, complete datasets (Liu et al. 2023; Chen et al.
2021). However, the main limitation of these powerful, data-
driven models is their reliance on extensive historical data,
a luxury often unavailable in practical Sparse UCS applica-
tions.

Despite their different underlying philosophies, both
paradigms are almost universally built upon a flawed time-
discrete assumption, aggregating data into fixed slots (Wang
et al. 2017). This process fundamentally ignores the contin-
uous nature of real-world phenomena, erodes temporal fi-
delity, and discards crucial information encoded in irregular
time intervals.

Continuous-Time Modeling
Our work directly confronts this blind spot by focusing on
temporal granularity. While fine-grained spatial modeling
often requires costly sensor deployment (Thepvilojanapong,
Ono, and Tobe 2010), continuous-time modeling has been
less explored in Sparse UCS.

Relevant prior work includes continuous extensions to
classical models like ARMA (Brockwell 2001) and event-
based state-space approaches (Higuchi 1988; Kidger et al.
2020). More directly, Zhu et al. (Zhu et al. 2017) pioneered
the use of time gates in deep learning to handle unequal in-
tervals in recommendation systems. The advent of selective
State Space Models like Mamba (Gu and Dao 2023) offers
a new, powerful mechanism, as its ability to dynamically
adapt its internal state transitions based on input content
is inherently suitable for handling varying time intervals.
Drawing from these insights, we propose our framework for
time-continuous completion in Sparse UCS.

System Model and Problem Formulation
In this section, we first establish the system model, be-
ginning with the traditional time-discrete formulation and
then introducing our novel time-continuous approach. Sub-
sequently, we provide a formal problem formulation.

System Model
In Sparse UCS tasks, the sensing map covers N regions over
M irregular time slices. At moment t, a submission is rep-
resented by a one-hot position vector c(t) ∈ RN (with the
i-th element as 1 if data comes from the i-th sub-region) and



a data vector y′(t) ∈ RN (with the i-th element as the sub-
mitted value, and others set to meaningless values like 0 or
negative).

For M submissions, users sense partial locations, yielding
the position matrix C ∈ RN×M and observed data matrix
Y ′ ∈ RN×M :

C = [cT1 , c
T
2 , . . . , c

T
M ], (1)

Y ′ = [y′T1 , y′T2 , . . . , y′TM ]. (2)

The ground truth Y = [yT1 , y
T
2 , . . . , y

T
M ] gives:

Y ′ = Y ⊙ C, (3)

where ⊙ is the Hadamard product.
Unlike traditional methods aggregating into discrete units,

our approach uses precise temporal information in T , divid-
ing the problem into two subtasks.

The first finds mapping f(·) to complete Y ′ leveraging T ,
similar to time-discrete scenarios:

Ŷ = f(Y ′) ≈ Y. (4)

The second identifies model g(·) for inference ŷ ∈ RN at
any t:

ŷ = g(Y ′, t), t ∈ (t0, tM ). (5)

B. Problem Formulation
Problem : Given sparse sensed data Y ′ and time vector T ,
we aim to achieve the following two objectives:

• Identify a mapping f(·) to complete all the unsensed data
in the matrix Y ′. The mapping f(·) should adequately
consider the high sparsity of Y ′ and the temporal infor-
mation in T .

• Identify a model g(·) to accomplish the completion at any
given time t′. y(t

′)′ can be a column in Y ′ or not.

In this process, the mean square error is used to measure
the quality of the completed and generated data. The follow-
ing value should be minimized:

ϵ(Y, Y ′) =

N∑
i

M∑
j

|Yij − Y ′
ij |. (6)

Methodology
Overall Framework
Our proposed framework, TIME-DMF, addresses three chal-
lenges in time-continuous data completion: extreme sparsity,
temporal irregularity, and on-demand generation. It builds
on DMF principles, evolving into a time-aware system. To
tackle sparsity, we first introduce Mamba-DMF, leveraging
Mamba as a temporal encoder to share information across
time. TIME-DMF then extends it for time-continuity, incor-
porating a time-aware mechanism that makes state transi-
tions sensitive to physical intervals. In Figure 2, learnable
tensors process through Mamba for temporal correlations,
followed by DMF for low-rank relations in completion; Fig-
ure 3 details the Time-Aware Mamba. This achieves a map-
ping from sparse, asynchronous observations to a continu-

ous spatiotemporal representation via Q-G for on-demand
inference.

The model takes as input the primary low-rank represen-
tation of the data, denoted as Zprim = [X1, X2, . . . , XM ],
where each Xt is a learnable embedding for a submission at
time t. Crucially, it also takes the vector of precise physical
time intervals between submissions, ∆̃Traw, as an additional
input. The TIME-DMF framework consists of two primary
components:

A Time-Aware Mamba Encoder. This is the central in-
novation of our work. Unlike standard sequence models that
are merely ordinal, our encoder is explicitly designed to be
sensitive to the physical passage of time. It processes the
sequence of primary low-rank vectors Zprim while dynam-
ically incorporating the information from the time interval
vector ∆̃Traw. This allows the encoder to learn nuanced,
physically-grounded temporal dependencies. The output of
this stage is a sequence of context-aware, encoded low-rank
representations Zenc.

A DMF-like Decoder. Following the encoder, we employ
a non-linear projection function, similar to the decoder in the
standard DMF framework. This decoder takes the encoded,
context-aware representations Zenc and maps them back to
the high-dimensional data space, producing the final com-
pleted data matrix Ŷ .

Ŷ = f(Zenc). (7)

By jointly training the encoder and decoder, TIME-DMF
learns to effectively leverage both the content of the sub-
missions and their precise temporal context. This integrated
design enables the model to perform robustly even with ex-
tremely sparse and irregularly sampled data, forming the ba-
sis for our subsequent time-continuous inference capabili-
ties.

Mamba-Enabled Deep Matrix Factorization
(Mamba-DMF)
To confront the challenge of extreme data sparsity, a natural
solution is to enable information sharing across time steps.
This requires a powerful sequence model to encode the tem-
poral context within a proven non-linear factorization frame-
work like DMF. To this end, we propose Mamba-enabled
Deep Matrix Factorization (Mamba-DMF).

1) Foundational Components
Deep Matrix Factorization (DMF). As a foundational

framework for the following works, DMF extends traditional
matrix factorization by learning a non-linear mapping f(·)
from a low-rank representation Z to the full data space Y .
This is achieved by fitting the input vectors Z and the param-
eters of a deep neural network (DNN), which represents the
function f(·). The parameters of both the latent representa-
tion Z and the DNN are optimized jointly during training.
(See Appendix for detailed descriptions and visual instruc-
tion). This structure allows it to capture complex, non-linear
spatiotemporal correlations:

Y = f(Z). (8)
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Figure 2: The inner structure of Mamba-DMF.

However, in its original form, DMF learns the low-rank
vector for each time step independently, making it unable to
leverage temporal correlations to combat extreme sparsity.

Mamba Architecture. Mamba (Gu and Dao 2023) is a
selective State Space Model (SSM) that excels at modeling
long sequential data with linear-time complexity. Its core
strength lies in its ability to selectively process informa-
tion and capture context-dependent, long-range dependen-
cies, making it an ideal candidate for a temporal encoder.
(See Appendix for detailed description).

2) The Mamba-DMF Framework
The central idea of Mamba-DMF is to address the limi-

tation of the standard DMF by explicitly modeling the tem-
poral dependencies between the low-rank representations of
different time steps. Instead of learning independent low-
rank vectors, we treat them as a sequence and use Mamba to
encode this sequence. As shown in Figure 2, the framework
operates as follows:

Primary Low-Rank Representation. We begin with a
sequence of learnable primary low-rank vectors Zprim =
[X1, X2, . . . , XM ]. Each Xt serves as a learnable parameter
representing the initial embedding for the t-th time step.

Mamba Encoder. The sequence Zprim is fed into a
Mamba Encoder. This encoder processes the entire se-
quence, allowing information to propagate across all time
steps. It captures the temporal correlations and produces a
sequence of context-aware, encoded low-rank representa-
tions Zenc:

Zenc = MambaEncoder(Zprim), (9)

DMF Decoder. Finally, the encoded sequence Zenc, now
imbued with rich temporal context extracted by Mamba, is
subsequently fed into the downstream DMF decoder:

Ŷ = f(Zenc). (10)

Here, f(·) represents the non-linear projection function of
the DMF decoder.

By structuring the problem this way, Mamba-DMF trans-
forms the task from independent vector completion to
sequence-to-sequence modeling. The Mamba encoder effec-
tively shares information across time, allowing the model
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Figure 3: The inner structure of TIME-DMF.

to make robust inferences for a given time step by leverag-
ing the context of the entire timeline. This approach proves
significantly more effective than the standard DMF in ex-
tremely sparse scenarios. All components of the Mamba-
DMF model are jointly optimized.

Time-Aware Mamba-DMF (TIME-DMF)

While Mamba-DMF effectively addresses sparsity by mod-
eling temporal sequences, it inherits a fundamental limi-
tation from standard sequence models: it is ordinal, not
truly temporal. It processes events based on their order
but remains oblivious to the actual, non-uniform physical
time intervals that separate them. This insensitivity to real-
world time progression motivates our core innovation: Time-
Aware Mamba Encoder for Continuous Dynamics.

The key to achieving time-awareness is to make the
Mamba encoder’s internal state transitions explicitly sensi-
tive to the passage of physical time. (See Appendix for de-
tails). We achieve this by dynamically modulating Mamba’s
timescale parameter, which we denote as ∆̃t, based on the
actual time intervals between submissions.

Physical Time Interval Calculation. Given a sequence
of timestamps T = [t1, t2, . . . , tM ], where M is the to-
tal number of time steps in the current input sequence, we
first compute the sequence of raw physical time intervals,
∆̃Traw = [∆̃t1, ∆̃t2, . . . , ∆̃tM ]. For each time step k from
1 to M , the interval ∆̃tk is calculated as ∆̃tk = tk − tk−1.
For the initial step t1, ∆̃t1 is conventionally set to zero, rep-
resenting no elapsed time before the first observation in the
sequence. This raw sequence undergoes suitable preprocess-
ing to ensure numerical stability for model input.

Adaptive Timescale Fusion. The standard Mamba
model generates its timescale parameter ∆̃t based on the in-
put content xt. Our key insight is to fuse this content-driven
timescale with the preprocessed physical time interval
sequence ∆̃Traw. As illustrated in Figure 3, we introduce
a learnable gating mechanism to adaptively combine these
two sources of temporal information. First, the preprocessed
physical time interval sequence ∆̃Traw is transformed by a



Dataset Sensed GP KNN-S MC DMF STformer iTransformer Autoformer Mamba-DMF

Sensor-
Scope

1/57 4.3 4.2 3.9 4.7 6.6 6.1 5.3 2.5 ± 0.36
2/57 4.1 4.1 2.5 2.4 6.5 5.8 5.2 2.0 ± 0.09
3/57 3.6 3.2 2.5 2.0 5.6 5.0 5.0 1.8 ± 0.06
4/57 3.3 3.3 1.7 1.9 5.4 4.7 4.9 1.7 ± 0.07
5/57 3.2 3.2 1.6 1.7 5.0 4.1 4.9 1.5 ± 0.05

U-AIR

1/36 53.0 55.8 56.5 60.7 51.4 74.5 90.4 43.6 ± 1.86
2/36 54.2 44.6 44.4 46.5 47.9 67.8 89.3 38.5 ± 2.24
3/36 53.0 41.6 38.9 39.3 35.8 62.2 88.5 34.4 ± 4.59
4/36 52.5 39.4 36.9 38.6 34.3 57.2 88.1 34.1 ± 1.26
5/36 50.6 58.2 34.1 37.7 33.5 53.3 87.2 28.8 ± 1.53

Highways
England

1/15 66.5 70.5 66.1 40.7 30.7 79.8 52.0 22.9 ± 0.8
2/15 56.2 60.3 49.6 31.6 19.2 58.3 51.7 18.1 ± 0.48
3/15 50.7 53.8 41.6 28.5 17.6 43.5 51.2 17.5 ± 0.23
4/15 45.9 49.9 36.9 26.9 16.2 31.7 42.4 15.8 ± 0.22
5/15 42.5 52.4 29.8 25.9 13.0 26.2 37.2 11.7 ± 0.23

TaxiSpeed

1/30 39028.1 38252.8 31450.2 10474.5 8778.2 8876.7 11921.1 7632.0 ± 91
2/30 39990.3 32182.1 28295.3 9859.5 7831.3 8691.6 11876.0 7493.1 ± 70
3/30 38637.5 29491.2 24141.7 9220.7 7683.9 8414.7 9139.1 7361.5 ± 82
4/30 36617.3 28337.3 22709.9 7417.5 7428.0 8277.5 8984.9 7241.1 ± 86
5/30 35991.2 26787.2 21344.1 7012.0 6713.5 8139.8 8803.8 6472.2 ± 71

Table 1: Full RMSE results under different sparsity on four datasets.

dedicated projection network:

∆̃Tproj = Projection(∆̃Traw). (11)

After that, a gate G is then computed using both the
projected physical intervals ∆̃Tproj and the original
content-driven timescale ∆̃t:

G = σ(GateNet([∆̃Tproj , ∆̃t])), (12)

where GateNet(.) is an MLP network. The final timescale
parameter is denoted as:

∆f = G⊙ ∆̃Tproj + (1−G)⊙ ∆̃t. (13)

where ⊙ represents element-wise multiplication.
Time-Aware State Transitions. With the fused timescale

∆f updating equations, the state transition matrices A and
B, which govern the evolution of Mamba’s latent state, are
now functions of both the data content and the real-world
time flow:

Ā = exp(∆fA),

B̄ = (∆fA)−1(exp(∆fA)− I) ·∆fB.

ht = Āht−1 + B̄xt, yt = Cht.

(14)

By introducing this mechanism, our Time-Aware Mamba
Encoder can dynamically adapt its behavior. For long time
gaps, it can learn to expect greater state changes, while
for short intervals, it can enforce smoother transitions. This

Algorithm 1: Query-Generate (Q-G) Strategy
Input: Sparse data Y ′, time vector T , query time t
Output: Inferred vector ŷ at time t

1: Generate random vector Xq ∼ N (0, I).
2: Insert Xq into low-rank matrix Z ′ at position for t.
3: Update raw time intervals ∆Traw based on new t in T .
4: Compute Ŷ = TIME-DMF(Y ′, Z ′,∆Traw).
5: Extract ŷ as the column of Ŷ corresponding to t.
6: return ŷ

adaptation is achieved without altering the underlying par-
allelizable structure of Mamba’s Selective Scan algorithm,
thus preserving its computational efficiency. The result-
ing time-aware encoder, combined with the DMF-like de-
coder, forms the complete TIME-DMF framework, which is
trained end-to-end.

Query-Generate (Q-G) Strategy
While our TIME-DMF model can infer missing data for

observed time points, a truly continuous approach must han-
dle the infinite moments on a timeline, a task impossible for
standard completion strategies. To overcome this, we pro-
pose the Query-Generate (Q-G) strategy, an inference-time
procedure that enables on-demand data generation for any
arbitrary moment. The strategy leverages the generative na-



Dataset GP KNN-S MC DMF STformer iTransformer Autoformer TIME-DMF
Sensor-Scope 14.0 40.4 49.7 50.6 13.7 14.8 15.2 12.6

U-AIR 105.7 93.0 96.9 103.3 80.2 84.4 90.2 80.8
TaxiSpeed 33213.7 26283.4 23232.2 13129.9 10068.7 10337.1 10748.0 8822.4

Hishways England A 66.5 70.5 66.1 71.5 27.3 47.6 42.6 22.9
Hishways England B 146.7 129.6 89.1 82.9 47.0 79.5 54.0 39.6
Hishways England C 207.7 182.0 109.6 124.1 50.8 100.2 103.4 42.5

Table 2: Direct comparison of time-continuous and time-discrete methods.
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Figure 4: Partial RMSE results of different data sparsity under different datasets.

ture of our framework: for a query at a new time point tq ,
we insert a randomly initialized placeholder vector Xq into
the primary low-rank sequence Zprim and correspondingly
update the physical time interval sequence ∆̃Traw. We then
perform a full forward pass through the pre-trained TIME-
DMF model to dynamically generate a context-aware result.
A key aspect is that this process does not affect the model’s
learned parameters, as the placeholder Xq is isolated from
any gradient backpropagation during training or fine-tuning.

Experiments
Experimental Setup
In this section, we introduce the datasets and the comparison
methods.

1) Datasets: We evaluate our models on four diverse real-
world datasets: U-Air (Zheng, Liu, and Hsieh 2013), Sensor-
Scope (Ingelrest et al. 2010), TaxiSpeed (Shang et al. 2014)
and Highways England (HE) (Service 2022). (See Appendix
for detailed descriptions).

2) Baselines: We compare our method with seven Sparse-
supervised models for completion task: MC, KNN-S, GP,
DMF (Wang et al. 2020), STformer (Wang et al. 2023),
iTransformer (Liu et al. 2023) and Autoformer (Chen et al.
2021), as well as three predictive models for generative task:
LINEAR, WNN and NAR. (See Appendix for detailed de-
scriptions on each baseline).

Performance Comparison
In typical sparse data completion tasks, sensing rates range
from 20% to 80%, providing ample spatiotemporal infor-
mation. However, fine-grained time-continuous completion

involves matrices with sensing ratios of 1/n per column, pos-
ing challenges for traditional methods. To validate our hy-
pothesis, we first demonstrate Mamba-based models’ effec-
tiveness on extremely sparse data, then highlight the time-
continuous paradigm’s clear advantages.

Table 1 shows completion results on extremely sparse
data (1–5 observations per column). Mamba-DMF outper-
forms all baselines, including Transformer variants. Figure 4
visualizes this across varying sensing ratios, revealing con-
sistent and growing advantages as data increases. This con-
firms Mamba’s inductive bias excels at capturing long-range
dependencies in sparse sequences.

We further compare time-continuous TIME-DMF against
time-discrete methods. As in Table 2, TIME-DMF signif-
icantly surpasses all discrete competitors across datasets.
This underscores that avoiding aggregation yields superior
temporal precision, outweighing sparsity challenges, and
establishes the time-continuous approach as fundamentally
better for real-world Sparse UCS.

Ablation Study
To verify our time-aware mechanism’s effectiveness, we
compare TIME-DMF with Mamba-DMF. Since public
datasets often feature uniform sampling, we simulate irreg-
ularity by randomly deleting columns from the full High-
ways England matrix, then applying standard masking. As
in Table 3, TIME-DMF consistently outperforms Mamba-
DMF, with the gap widening at higher deletion ratios. Both
degrade with increased unevenness, but TIME-DMF shows
greater robustness: its timescale dynamically adapts to phys-
ical intervals, unlike Mamba-DMF’s content-only approach.
This allows it to better adapt its state transitions to the actual



Dataset Method
Slices Deleted Ratio

0.5 0.6 0.7 0.8 0.9

1month
Mamba-DMF 30.4 34.0 38.4 51.0 75.2
TIME-DMF 29.2 29.5 31.4 32.5 42.8

2months
Mamba-DMF 31.5 34.7 38.5 44.2 58.7
TIME-DMF 31.8 34.6 36.8 37.5 40.7

3months
Mamba-DMF 34.1 36.5 40.8 48.2 76.6
TIME-DMF 34.4 36.0 37.2 38.0 41.2

Highways England for 2021

Dataset Method
Slices Deleted Ratio

0.5 0.6 0.7 0.8 0.9

2weeks
Mamba-DMF 29.9 32.5 37.1 41.7 56.2
TIME-DMF 30.3 31.4 32.4 34.3 37.3

1month
Mamba-DMF 30.4 33.9 38.8 49.2 81.4
TIME-DMF 29.3 31.6 32.1 33.4 35.5

2months
Mamba-DMF 59.2 63.7 69.8 78.5 115.3
TIME-DMF 59.9 64.9 66.1 66.4 68.7

Highways England for 2022

Table 3: RMSE results of the ablation study of time gates.
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Figure 5: RMSE of different data unevenness under different datasets.

Model Sparse-Supervised
Only

Parameter
Count

Training Time
/ Epoch

Time-DMF ✓ 12k 1.8ms
iTransformer × 51k 58ms
Autoformer × 56k 66ms
STformer ✓ 11M 400ms

Table 4: Training condition, speed and parameter count.

temporal spacing of the data, directly proving the effective-
ness of our time-aware enhancements.

Demonstration of Generative Capability
Our time-continuous paradigm enables data generation at
any moment, beyond completing fixed observations. We
evaluate TIME-DMF’s generative ability via single-moment
generation tasks, comparing it against predictive models
(configured for single-step prediction) since traditional com-
pletion methods lack this feature.

To test under temporal irregularity, we create datasets via
random column deletion and masking. Given single-point
instability, we run multiple random constructions and show
aggregated box plots in Figure 5. The results show that
TIME-DMF achieves a superior overall generation accuracy,
evidenced by the lower median error across most datasets.
The box plots also reveal that as temporal unevenness in-
creases, the performance of all models becomes more vari-

able, but TIME-DMF consistently maintains its advantage.

Model Parameter Comparison
Transformers, popular for time-series modeling, often re-
quire complete historical data, which is unavailable in sparse
UCS scenarios. Our Mamba-based TIME-DMF is more ef-
ficient and suitable, excelling in data-scarce conditions. As
shown in Table 4, it features fewer parameters and faster per-
epoch training. These advantages make it ideal for resource-
constrained environments, like on-device UCS deployments.

Conclusion
In this paper, we challenge the prevailing, yet flawed, as-
sumption in Sparse UCS that data remains static within dis-
crete time periods. To address this, we propose Time-Aware
Mamba-DMF (TIME-DMF), a novel framework for time-
continuous completion. Building upon a DMF foundation,
TIME-DMF incorporates an enhanced Mamba-based tem-
poral encoder. The core of our innovation lies in making
this encoder time-aware: it dynamically modulates Mamba’s
internal timescale parameters based on the actual physical
time intervals between observations. This mechanism, lever-
aging Mamba’s selective state-space architecture, enables
TIME-DMF to effectively capture complex temporal depen-
dencies from non-uniformly sampled data. In cooperation
with a Query-Generate (Q-G) strategy, our framework pro-
vides on-demand, generative responses for any arbitrary mo-
ment. Extensive experiments on real-world datasets validate
the effectiveness of our approach.
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