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Abstract
Cross-Domain Recommendation (CDR) transfers user pref-
erences from a source domain to alleviate data sparsity
in a target domain. While disentangling representations
into domain-specific and shared components is a common
method, existing methods overlook user preference hetero-
geneity and item appeal heterogeneity. To this end, we
propose DPGCDR, a Dual-Perspective Group-aware CDR
method that learns symmetric group-aware representations
from both user and item. Conceptually, DPGCDR dynam-
ically clusters users into groups and items into themes,
then symmetrically disentangles user preferences into group-
specific and cross-group shared components, and item at-
tributes into theme-specific and cross-theme shared compo-
nents. We propose a two-stage training scheme: 1) an initial
warm-up stage learns preliminary representations to dynami-
cally cluster users and items into group and theme structures
which generalize cross-domain scenarios into multi-group
disentanglement analogous to multi-domain settings; 2) a
fusion-based aggregation stage integrates these group/theme-
specific components into unified global representations. Ad-
ditionally, an information-theoretic alignment regularizer fur-
ther ensures consistency and discriminability between global
shared and group/theme-specific representations, facilitat-
ing effective knowledge transfer by explicitly modeling and
preserving the inherent multi-group structure within cross-
domain interactions. Extensive experiments show DPGCDR
achieves state-of-the-art performance, with significant gains
of up to 25% in HR@10 over baselines on datasets with
heterogeneous interaction structures. Further analyses con-
firm our dynamic clustering mechanism effectively adapts to
underlying data patterns, enabling fine-grained cross-domain
knowledge transfer.

Introduction
Recommender systems often suffer from data sparsity and
cold-start issues, which degrade accuracy. Cross-domain
recommendation (CDR) alleviates these problems by trans-
ferring knowledge across domains (e.g., movies to books)
to enrich user preference models (Zang et al. 2022;
Zhu et al. 2021a, 2022). Early CDR techniques relied
on content-based aggregation using profiles or item at-
tributes (Tang et al. 2012), then evolved to transfer-learning
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(a) User group distribution. (b) HR@10 of each user group

Figure 1: The pilot experiments on user group structure
and corresponding performance under DisenCDR (Cao et al.
2022) settings on Amazon Dataset.

methods that share latent user/item factors (Man et al.
2017). Advances in deep learning introduced neural mod-
els like DCDCSR (Zhu et al. 2018) and unified frame-
works such as Magnetic Metric Learning (Xu et al. 2021),
both enhancing representation expressiveness. More re-
cently, disentanglement approaches—DisenCDR (Cao et al.
2022) and DIDA-CDR (Zhu et al. 2023)—explicitly sepa-
rate domain-specific, shared, and even domain-independent
factors, reducing negative transfer and boosting performance
on Amazon datasets.

Despite these gains, most CDR methods assume user ho-
mogeneity, ignoring critical user-group heterogeneity and
causing uneven knowledge transfer (Song et al. 2024; Zhu
et al. 2023). Moreover, they often employ asymmetric ar-
chitectures that overlook the symmetric grouping of users
(by preference) and items (by appeal). Addressing this gap
requires a dual-perspective symmetric disentanglement over
the symmetric user and item subgroup structures to achieve
more robust and generalizable cross-domain transfer.

We conducted a pilot study on Amazon datasets using a
standard CDR model, segmenting users via K-means clus-
tering on learned embeddings. Visual analyses revealed un-
even distributions along total interaction volume (Figure 1a),
reflecting distinct user behavioral differences. Evaluating
performance over epochs (Figure 1b) showed substantial
variability among groups, highlighting that uniform disen-



Figure 2: The idea illustration of DPGCDR architecture com-
pared to previous models.

tangle model without explicit subgroup modeling tend to
suffer from overfitting or negtive transfer. Thus, explicitly
modeling user groups is crucial for fine-grained disentan-
glement for cross-domain transfer.

Motivated by these insights, we propose DPGCDR to
learn Dual-Perspective Group-Aware Representations for
CDR. As depicted in Figure 2, comparing with previous
models, DPGCDR introduces dynamic clustering to adap-
tively identify meaningful user groups and item themes di-
rectly from data and performs symmetric dual-perspective
disentanglement from user and item: both sides modeling
specific and share representations similarly. This facilitates
precise bidirectional interactions between users and items,
enhancing generalizable knowledge transfer. Our main con-
tributions include:
• A two-stage framework that performs warm-up training

then dynamically clusters latent user groups and item
themes beyond predefined domain boundaries.

• Dual-perspective disentanglement, which symmet-
rically separates user and item representations into
group/theme-specific and cross-group/theme-shared
components, enabling fine-grained knowledge transfer.

• Comprehensive validation of DPGCDR on multiple
real-world datasets, supported by visual analyses demon-
strating the effectiveness of the learned structures.

Preliminaries
Problem Definition
Let U = {u1, . . . , uNu

} and I = {i1, . . . , iNi
} denote the

sets of users and items respectively, where Nu and Ni are
the number of users and items. We consider a cross-domain
setting with two domains D(A) and D(B). Each observed in-
teraction is a tuple (u, i) ∈ U × I, indicating user u con-
sumed item i. The binary implicit-feedback matrix R ∈
{0, 1}Nu×Ni is defined by Rui = 1 if (u, i) is observed in
either domain and 0 otherwise.

To model structural relations, we build a bipartite interac-
tion graph G = (U ∪ I, E) with adjacency matrix A and its

transpose A⊤ encodes the reverse edges.

Latent Representation Space
Our model defines four types of latent representations. First,
the warm-up representation (zwarm

u , zwarm
i ) serves as the ba-

sis for dynamically clustering users into groups and items
into themes. Next, the group/theme-specific representation
(zspecu , zspeci ) captures fine-grained preferences or attributes
unique to each user group or item theme. The group/theme-
perspective representation (z̃perspu , z̃perspi ) anchors the disen-
tanglement process by providing Gaussian parameters that
guide the separation of shared components. Finally, the
group/theme-shared representation (zshareu , zsharei ) encodes
knowledge useful across multiple groups or themes, sup-
porting effective transfer and generalization.

Methodology
Figure 3 gives an overview of the whole pipeline: a warm-up
stage that discovers latent user groups and item themes,
followed by a dynamic stage that performs symmetric
group-aware disentanglement.

Initial Embedding & Graph Construction
Adjacency matrix. The interactions are encoded in the
block matrix:

A =

[
0 R
R⊤ 0

]
, Rui = 1 iff (u, i) ∈ E . (1)

Learnable initial embeddings. Every user u and item i is
associated with a d-dimensional trainable vector:

e(0)u , e
(0)
i ∼ N (0, σ2I),

where the variance σ2 is fixed at initialisation. Optional side
features (e.g., textual descriptions or images) can be con-
catenated. The tuple

(
e
(0)
u , e

(0)
i ,A

)
forms the input to the

VBGE.

Variational Bipartite Graph Encoder (VBGE)
We build on the Variational Autoencoder (VAE) frame-
work (Kingma, Welling et al. 2013) and 2-hop variational
propagation scheme introduced in DisenCDR (Cao et al.
2022). Let e(l)u ∈ Rd and e

(l)
i ∈ Rd be the layer-l embed-

dings of user u and item i. We perform:

(1) Homogeneous-neighborhood aggregation. First,
each node aggregates information from its same-type
neighbors via a single GCN step:

êu = LeakyReLU
(
Norm(A⊤)U(l) W(0)

u

)
,

êi = LeakyReLU
(
Norm(A) I(l) W

(0)
i

)
,

(2)

where Norm(·) denotes row-wise normalization, and W(0)

are trainable weight matrices. This step effectively propa-
gates information along 2-hop paths of the original bipartite
graph. U(l) ∈ RNu×d (resp. I(l) ∈ RNi×d) is the matrix
whose rows are the d-dimensional embeddings of all users
(resp. items) at layer l. By multiplying the normalized adja-
cency with U(l) or I(l), we update every same-type node in
one batched operation.



Figure 3: The framework of DPGCDR.

(2) Variational parameter head (VAE head). Next, we
form the Gaussian posterior parameters by concatenating
each node’s own embedding and its intermediate represen-
tation:

µu = LeakyReL
(
[êu ∥ e(l)u ]Wu,µ

)
,

logσu = Softplus
(
[êu ∥ e(l)u ]Wu,σ

)
,

(3)

(and analogously for µi and logσi ) where
[
êu ∥ e(l)u

]
∈

R1×2d denotes the concatenation, yielding a 2d vector. Mul-
tiplying by Wu,µ ∈ R2d×d (resp. Wu,σ) and applying the
nonlinearity produces the mean µu ∈ Rd and log-variance
logσu ∈ Rd of the approximate posterior.

(3) Reparameterization and KL regularisation. We
then sample the latent code via reparameterization
trick (Kingma, Welling et al. 2013)

zu = µu + exp
(
1
2 logσu

)
⊙ ϵ, ϵ ∼ N (0, I), (4)

(and analogously for zi). Each layer contributes the KL term
KL

(
N (µ,diag exp(logσ)) ∥ N (0, I)

)
to the overall loss.

Two-Stage Learning Framework
Stage 1: Warm-up & Dynamic Clustering We first train
a single VBGE on the entire interaction graph. Maximizing
the standard Evidence Lower Bound (ELBO) (Liang et al.
2018) produces warm-up embeddings {z̃u, z̃i}.

The warm-up embeddings {z̃u} and {z̃i} are then clus-
tered via K-Means. The number k is searched from Kmin to
Kmax with the highest silhouette score (Rousseeuw 1987)
above a given threshold. If no candidate k exceeds this
threshold, it falls back to 1. The final group assignments
g(u) ∈ {1, . . . , G} are then obtained. An identical proce-
dure is performed to obtain t(i) ∈ {1, . . . , T}.



Stage 2: Dual-Perspective Disentanglement Guided by
the discovered clusters, we construct four parallel encoding
branches—two for users, two for items— that each side si-
multaneously models specific and share factors.

Gradient Masking for Specific Paths. We allow VBGE
to aggregate information from all neighbors, yet restrict
back-propagation to update parameters and embeddings
only for the nodes in group g or theme t. Concretely, we
form the masked input:

ĥu = mg ⊙ hu + (1−mg)⊙ hdetach
u , (5)

(and analogously for ĥi) where hdetach
u is the same embed-

ding but with its gradient detached and mg ∈ {0, 1}|U| with
mg = 1 if u belongs to group g, and 0 otherwise.

Fusion Layer for Shared Paths. To build the share rep-
resentation, we first run VBGE for each group g (or theme
t) to obtain perspective parameters (µg, log σg). We then
fuse these perspective parameters into one share distribution
via an attention-based weighted sum, which learns a scalar
weight for each group/theme, applies softmax to obtain at-
tention scores, and compute the weighted sum of means
and log-variance across perspectives. Finally, we sample the
shared embedding from the share distribution via the repa-
rameterization trick, yielding (zshareu , zsharei ).

Embedding Combine. To obtain the final embed- dings,
we concatenate the specific and share embeddings with a
learnable gate:

zfinalu = [zshareu ∥ zspec, g(u)], (6)

(and analogously for zfinali ) where the gate adapts the weight
between transferable knowledge and subgroup nuances.

Prediction. The interaction score is computed as:

sui =
(
Zfinal

u

)⊤
Zfinal

i . (7)
For implicit feedback, the probability of observing an in-

teraction (u, i) in the bipartite graph is:

Pθ

(
Â

∣∣ Zfinal
u , Zfinal

i

)
= sigmoid

(
sui

)
. (8)

Optimization & Disentanglement Objective
To ensure that shared factors truly capture transfer-
able knowledge while specific factors preserve group- or
theme-level nuances, we optimize a composite loss

L = Lrec︸︷︷︸
reconstruction

+ λKLD LKLD︸ ︷︷ ︸
VAE regularizer

+ βalign Lalign︸ ︷︷ ︸
disentanglement

.

(9)

Reconstruction loss Lrec. For implicit feedback, a bilin-
ear decoder predicts r̂ui = sui and we minimize the binary
cross-entropy:

Lrec =−
∑

(u,i)∈E+∪E−

[
Rui log σ(sui)

+ (1−Rui) log(1− σ(sui))
]
.

(10)

Variational regularizer LKLD. For each VBGE path we
compute a regularizer penalty. Let q(z) = N (µ,diag(σ2))
with elementwise log-variance ℓ = logσ2. The KLD to the
standard normal prior p(z) = N (0, I) has the closed form:

(
q∥p

)
=

1

2

d∑
j=1

(
µ2
j + exp(ℓj)− ℓj − 1

)
. (11)

Alignment loss Lalign. The share distribution aim to
summarise information contained in all group/theme per-
spective distributions, while remaining distinct from the
corresponding specific distribution. For a user u, let
qshareu = N (µs

u,diag(σ
s
u)

2) be the user-shared posterior,
and qpersp,gu = N (µg

u,diag(σ
g
u)

2) the g-th user-perspective
posterior (g = 1:G). The KL divergence between two diag-
onal Gaussians admits

(
qshareu ∥ qpersp,gu

)
=

1

2

d∑
j=1

[
log

(σg
u,j)

2

(σs
u,j)

2
− 1

+
(σs

u,j)
2

(σg
u,j)

2
+

(µs
u,j − µg

u,j)
2

(σg
u,j)

2

]
.

(12)

Aggregating over all groups and users gives the align-
ment–aggregation term

Lagg
user =

1

|UB|
∑
u∈UB

1

G

G∑
g=1

(
qshareu ∥ qpersp,gu

)
, (13)

where UB is the set of users in the batch. The item side is
analogous.

During training, the three losses are computed for every
mini-batch and back-propagated jointly. The detailed algo-
rithm is presented in the appendix.

Experiments
In this section, we aim to answer the following questions:

• RQ1: How does DPGCDR perform compared to single-
domain and cross-domain recommendation methods?

• RQ2: Can the dynamically identified user groups effec-
tively improve cross-domain transfer performance, and
how do different groups benefit from our method?

• RQ3: What is the contribution of each component of the
proposed dual-perspective disentanglement?

• RQ4: How sensitive is DPGCDR to disentanglement hy-
perparameters.

Experimental Setup
Datasets To make a fair comparison, we evaluate our
model on four real-world benchmark datasets from Ama-
zon. We follow the preprocessing of BiTGCF (Liu
et al. 2020a), combining the datasets into four CDR
scenarios: Elec&Phone, Elec&Cloth, Sport&Phone and
Sport&Cloth. Moreover, we follow the preprocessing of
DisenCDR (Cao et al. 2022), removing the cold-start items
from the test set.



Datasets Metrics@10 single domain methods cross domain methods
BPRMF LightGCN DPGCDR* PPGN BiTGCF DisenCDR DPGCDR

Elec HR 20.65 24.60 24.56 20.14 21.64 24.88 29.21 (+ 17.4%)
NDCG 11.66 14.32 14.16 11.37 12.23 14.60 18.27 (+ 25.1%)

Cloth HR 9.47 13.22 10.43 12.45 13.11 15.14 13.63 (– 9.9%)
NDCG 5.07 7.55 5.18 6.46 6.80 8.44 7.95 (– 5.8%)

Elec HR 15.71 21.60 20.62 17.14 19.04 23.20 23.26 (+ 0.2%)
NDCG 9.19 12.97 12.24 9.42 10.47 13.45 13.59 (+ 1.0%)

Phone HR 16.32 25.43 26.46 20.78 21.62 26.45 27.78 (+ 5.0%)
NDCG 8.53 13.88 15.11 12.28 12.79 14.72 15.15 (+ 0.3%)

Sport HR 10.43 14.84 16.32 13.64 14.83 16.77 19.26 (+ 14.8%)
NDCG 5.41 8.78 9.15 7.31 7.95 9.27 10.86 (+ 17.1%)

Cloth HR 11.53 14.03 11.91 14.24 14.68 15.70 13.65 (– 13.0%)
NDCG 6.25 8.38 6.38 7.69 7.93 8.51 7.30 (– 14.2%)

Sport HR 9.89 18.60 15.49 18.53 18.63 20.15 18.74 (– 7.0%)
NDCG 5.16 10.58 8.80 10.51 10.11 11.23 10.88 (– 3.1%)

Phone HR 13.60 22.88 23.73 20.04 21.10 22.03 27.46 (+ 24.6%)
NDCG 7.27 13.09 13.53 10.69 11.25 11.87 15.97 (+ 34.5%)

Table 1: Overall comparison on four cross-domain tasks (HR@10 / NDCG@10).

Baselines We compare our method against three single-
domain baselines and cross-domain baselines. For single-
domain recommendation, we consider BPRMF (Rendle
et al. 2009), which employs Bayesian Personalized Rank-
ing with matrix factorization, LightGCN (He et al. 2020),
a simplified graph convolutional network for collaborative
filtering, and DPGCDR*, which denotes our model trained
only in the warm-up stage. For cross-domain recommenda-
tion, we compare against PPNG (Zhao, Li, and Fu 2019),
a model employs two distinct GCNs to learn user and item
representations, while sharing an initialized user embedding
layer, BiTGCF (Liu et al. 2020a), a bidirectional transfer
GCN with feature-transfer layers, and DisenCDR (Cao et al.
2022), which applies disentangled VAE on bipartite graphs.

Evaluation Metrics We adopt the leave-one-out evalua-
tion protocol following Zhu (Liu et al. 2020b): for each test
user, one positive and 999 randomly sampled negatives are
ranked among 1000 candidates. We report two widely used
metrics: Hit Rate at 10 (HR@10), which measures the frac-
tion of users whose ground-truth item appears in the top-10
positions, and Normalized Discounted Cumulative Gain at
10 (NDCG@10), which evaluates the position-aware gain
for the ground-truth item within the top-10 ranked list. All
reported results are averaged over three independent runs
with different random seeds.

Implementation Details Our implementation is built
upon the DisenCDR framework (Cao et al. 2022), with ex-
tensions for dynamic grouping and dual-perspective fusion.
The model is trained on a single NVIDIA 3090 GPU. We set
the embedding and GNN dimensions to d = 64, and apply
two VBGE layers with a dropout rate of 0.3. Training is di-
vided into two stages: a warm-up stage of 20 epochs with a
learning rate of 1×10−3, and a dynamic stage of 30 epochs
with a learning rate of 5×10−4. Optimization is performed
using Adam with β1 = 0.9, β2 = 0.999, and weight decay

of 5×10−4. The batch size is set to 1024 user–item pairs.We
use a silhouette threshold of τ = 0.5 and set the the KLD
weight λKLD = 0.01 and the alignment weight βalign = 0.1.
The source code is presented in the appendix.

Performance Comparisons (RQ1)
Table 1 presents the overall results on four cross-domain
recommendation scenarios, evaluated by HR@10 and
NDCG@10. From the experimental results, we draw several
key observations: (1) Compared to traditional single-domain
approaches (e.g., BPRMF), the graph-based models (Light-
GCN and DPGCDR with our base VBGE encoder) achieve
consistently better performance across all datasets. This
demonstrates that effectively modeling higher-order collab-
orative signals significantly enhances recommendation qual-
ity. (2) Cross-domain methods consistently outperform their
single-domain counterparts. Specifically, methods explic-
itly designed for cross-domain transfer, such as PPGN and
BiTGCF, show clear advantages over graph-based single-
domain methods. This highlights the importance of utiliz-
ing dedicated cross-domain transfer mechanisms instead of
directly merging multiple domains into a single model. (3)
Within the cross-domain methods, disentanglement-based
models (DisenCDR and DPGCDR) consistently outper-
form other methods, including GNN-based transfer models
(PPGN and BiTGCF). This suggests that explicitly model-
ing disentangled domain-specific and shared representations
effectively reduces negative transfer, facilitating superior
knowledge transfer across domains. (4) Compared to Dis-
enCDR, DPGCDR out performances in most scenarios, par-
ticularly in datasets with clearer subgroup structures. How-
ever, performance gains become smaller or slightly negative
in more homogeneous or sparse domains, indicating that the
advantage of our model is most pronounced when distinct
subgroup structures and rich cross-domain interaction pat-
terns exist.



(a) HR@10 on domain A (Elec) (b) HR@10 on domain A (Elec) (c) HR@10 on domain A (Sport)

Figure 4: Ablation study of item-side, user-side, and both-sides disentanglement settings on scenario Elec&Phone (a),
Elec&Cloth (b) and Sport&Phone (c). The dashed line indicates the division of stages.

(a) User group clustering. (b) User share embeddings.

Figure 5: Visualization on Elec&Phone scenario.

Clustering & Transfer Effectiveness (RQ2)
Clustering quality. Figure 5a demonstrates that the three
automatically identified groups (G0–G2) exhibit well-
separated interaction patterns with limited overlap, indicat-
ing meaningful behavioural segmentation in the interaction
matrix. Correspondingly, the t-SNE visualization shown in
Figure 5b reveals three clearly separated cluster with mini-
mal intermixing, indicating that our dynamic grouping cap-
tures distinct behavioural patterns. These two views demon-
strate that the learned clusters reflect meaningful, behav-
iorally coherent user segments.

Per-group transfer effectiveness. Figure 6 shows
HR@10 and NDCG@10 for each user group (all users start
in a single group during the warm-up stage). Once the model
transitions to dynamic training, every groups experiences
an immediate improvement in recommendation accuracy,
but the benefit is most pronounced for the group that was
weakest initially. The cold-start group, which lagged behind
during warm-up, sees its hit rate increase by roughly forty
percent after clustering, demonstrating that group-specific
parameters can significantly help users whose cross-domain
affinities were previously under-modelled. The balanced
group also enjoys a substantial gain (nearly 30%) as
finer-grained alignment enhances its performance without
compromising generality. Even the high-transfer group,
already strong at the end of warm-up, achieves an additional

(a) HR@10 on domain A (b) NDCG@10 on domain A

Figure 6: Groups performance on domain Sport (A) &Phone
(B) scenario. The dashed line indicates the division of
stages.

lift in HR@105, indicating that disentangling item factors
benefits all user segments. Overall, these results confirm that
the automatically discovered clusters capture meaningful
behavioral distinctions and that our group-aware transfer
mechanism delivers sizable improvements across every
groups, particularly rescuing those with the lowest initial
accuracy.

Ablation Study (RQ3)
To examine the contributions of different disentanglement
components, we evaluate three settings: (1) Item-side,
which retains only the item branch; (2) User-side, which re-
tains only the shared user branch; and (3) Both-sides, which
activates both branches. Figure 4 plots HR on three scenar-
ios:

Scenario I – Clear Dual-Perspective Advantage. In
the Phone→Elec scenario (Figure 4a), where the two do-
mains differ markedly in catalogue structure, (Both-sides)
achieves a substantially higher hit rate compared to the
user-only variant once dynamic grouping begins, underscor-
ing that leveraging both user and item signals is crucial when
cross-domain heterogeneity is pronounced.

Scenario II – User-Side Dominates but Dual View Still
Helps. In Cloth→Elec scenario (Figure 4b), the much



(a) HR@10 on domain A (b) NDCG@10 on domain A

(c) HR@10 on domain B (d) NDCG@10 on domain B

Figure 7: Hyperparameter Sensitivity Analysis (KLD
Weight & Beta) on Elec (A) &Phone (B) scenario.

larger target catalogue makes modeling user preferences es-
sential. Although the user-only model (User-side) already
outperforms the item-only baseline, the dual-perspective ap-
proach delivers a modest additional gain and converges more
quickly, demonstrating that even a weaker item perspective
can refine group boundaries and speed up training.

Scenario III – Similar Ceilings, Faster Convergence. In
Phone→Sport Scenario (Figure 4c), all three variants reach
comparable performance plateaus, but the dual-perspective
model attains its peak several epochs earlier and maintains
a slight lead. When interaction patterns are relatively homo-
geneous, the primary benefit of the dual view is improved
training efficiency rather than a large boost in final accuracy.

Conclusion. Our dual-perspective disentanglement con-
sistently beats its single-view counterparts while adapting
to the structural characteristics of each dataset: the larger
the divergence between user and item transfer patterns, the
larger the gain; when divergence is low, dual views mainly
speed up convergence without hurting final accuracy.

Hyperparameter Sensitivity (RQ4)
Figure 7 presents the sensitivity analysis regarding two key
hyperparameters—KLD weight (λ) and alignment weight
(β). Both metrics show consistent patterns across domains,
revealing distinct performance regions. Specifically, exces-
sively large values of λ lead to sharp performance drop due
to the posterior collapse (Bowman et al. 2016). Meanwhile,
optimal performance occurs within an median range of β,
indicating the importance of balancing alignment strength.

Overall, the performance plateaus are broad, suggesting
robustness of the model’s effectiveness within moderate
ranges of λ and β.

Related Work
Cross-Domain Recommendation. CDR aims to miti-
gate data sparsity by transferring knowledge between do-
mains (Zang et al. 2022). Early methods leveraged con-
tent and side information to identify domain commonalities,
such as user profiles or item attributes (Hou et al. 2022; Li
et al. 2023). Later, latent factor transfer approaches, like col-
lective matrix factorization (Singh and Gordon 2008) and
embedding mapping (e.g. EMCDR (Man et al. 2017)), en-
abled sharing of learned representations across domains ei-
ther asymmetrically or symmetrically.

Recent methods increasingly use graph neural networks
(GNNs) and meta-learning. GNN-based models, such as
PPGN (Zhao, Li, and Fu 2019) and BiTGCF (Liu et al.
2020a), leverage heterogeneous graphs to propagate em-
beddings across domains. Meta-learning frameworks like
TMCDR (Zhu et al. 2021b) pre-train domain-specific mod-
els and adapt to cold-start scenarios using meta-adaptation.
Recognizing the challenge of negative transfer, models like
TrineCDR (Song et al. 2024) explicitly filter irrelevant
cross-domain signals. Recent studies (Jiang et al. 2023) em-
phasize the benefit of modeling such intervals, suggesting
potential for context-aware enhancements in CDR.

Disentangled Representation Learning for Recom-
mendation. Disentangled representation learning separates
latent factors underlying user-item interactions to enhance
generalization and interpretability (Ma et al. 2019; Wang
et al. 2022). In the context of single-domain recommen-
dation, methods such as DGCF (Wang et al. 2022) and
DICE (Zheng et al. 2021) are designed to capture diverse
user intents and isolate genuine preferences from external
influences.

In cross-domain settings, recent disentangled methods
aim to separate domain-specific from domain-shared factors.
For example, DisenCDR (Cao et al. 2022) employs varia-
tional bipartite graph encoders with mutual information reg-
ularizers to encourage factor separation. Moreover, unified
embedding approaches like MML (Xu et al. 2021) further
emphasize preserving collaborative signals across domains
through metric learning.

Conclusion and Future
In this paper, we emphasize that inherent user group struc-
tures analogously to item domain in CDR. Motivated by this
dual symmetry, we propose DPGCDR to learn the Dual-
Perspective Disentanglement on the dynamically discovered
both user and item subgroup structures.

For future work, we hope to explore more robust and ef-
ficient clustering methods to better adapt to diverse dataset
structures. Additionally, we hope to extend our framework
to multi-domain scenarios, investigating the generalizability
of our approach.
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