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Abstract. Fine-grained urban flow inference provides important insights
for smart city applications such as urban planning and traffic manage-
ment, but its accuracy is often hindered by incomplete observations due
to sparse sensor deployment. While existing methods can handle minor
data gaps, their performance degrades significantly under high missing
rates, particularly in newly developed urban areas. Along these lines,
we propose a novel cross-city super-resolution data map inference frame-
work (CrossFM), designed to transform incomplete coarse-grained ur-
ban flows into accurate fine-grained data maps by harnessing cross-city
spatio-temporal dynamics. Specifically, we first perform temporal align-
ment between the source city and the target city data using timestamps.
Then, guided by Point-of-Interest (POI) similarity to identify similar re-
gions, we impute missing values in the target city’s coarse-grained flow
maps. This completion adaptively leverages information from both the
source and target city data, resulting in an enhanced coarse-grained rep-
resentation. Finally, a super-resolution module processes the spatial pat-
terns within the completed coarse data to generate the high-resolution
urban flow maps. The framework components are trained jointly end-to-
end within a multi-task setup. We conduct extensive experiments on two
real-world datasets and demonstrate that CrossFM significantly outper-
forms the state-of-the-art methods, especially under severe data scarcity.

Keywords: Transfer Learning · Super-Resolution · Fine-Grained Infer-
ence · Spatio-Temporal Data.

1 Introduction

Fine-grained urban flows, like taxi and bike flows, depict human mobility pat-
terns crucial for smart city applications such as urban planning, traffic man-
agement [7, 22]. Acquiring such data requires dense sensor networks, incurring
substantial operational and maintenance costs. However, sensor deployment is
often sparse and uneven due to budget and logistical constraints, resulting in
coarse-grained and incomplete observations[19]. This necessitates methods for
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Fig. 1: Fine-grained urban flow inference with incomplete data. The white cell
regions denote that the urban flows are unavailable. With high data scarcity, it
is challenging to complete the flow map using only the target city’s data.

inferring high-resolution urban flows from limited sensor data, a research prob-
lem that has garnered significant attention[20].

Traditional urban flow inference relied on statistical methods like interpola-
tion and tensor factorization [9]. However, these approaches often struggle with
urban data’s scale and complexity and typically ignore external factors (e.g.,
weather, holidays), limiting accuracy. More recently, inspired by computer vi-
sion super-resolution (SR) [21], researchers framed urban flow inference as a
spatio-temporal SR task [20], treating flow snapshots as images. Building on
early image SR methods (e.g., SRCNN [3], VDSR [10]), UrbanFM first adapted
SR to urban flows, incorporating external factors [12]. UrbanPy introduced a
pyramidal approach for higher upscaling rates [16]. Addressing the common is-
sue of incomplete coarse data, MT-CSR proposed a multi-task framework for
joint data completion and super-resolution [11].

However, a critical limitation remains: existing methods addressing data in-
completeness heavily rely on intra-city context. Consequently, their performance
degrades significantly with high missing rates, common in newly developed areas
or regions with exceptionally sparse sensor coverage. Accurately inferring fine-
grained flows under such severe data scarcity remains a significant challenge [4,
5].

The challenge arises primarily from: (1) Failure of Intra-City Completion un-
der High Scarcity: When the available data within the target city is extremely
limited, completion methods relying solely on local neighborhood correlations or
intra-city semantic similarities (like POI) become unreliable and insufficient for
accurate completion. (2) Effectively Leveraging External Data Sources: While
using external data holds promise, naively incorporating it is problematic. Uti-
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lizing data from a different city, for instance, requires robust mechanisms to
ensure relevance. This involves precise temporal alignment to compare corre-
sponding time periods and effective spatial correspondence methods to identify
functionally similar, though geographically distinct, regions across different ur-
ban environments.

To tackle these challenges, we propose CrossFM, a novel Cross-City Fine-
Grained Urban Flow Inference framework. CrossFM introduces a strategy to
leverage data from an auxiliary source city to aid inference in the target. Specif-
ically, CrossFM operates sequentially by first performing temporal alignment
between the auxiliary source city and the target city using timestamps to en-
sure that comparisons and data borrowing respect temporal dynamics. Guided
by Point-of-Interest (POI) similarity, which helps identify functionally similar
urban regions across the two cities, our Cross-city Completion module (Cross-
CMP) completes missing values in the target city’s coarse-grained flow map.
CrossCMP adaptively leverages information from both the temporally-aligned
source and the available target city data, creating an enhanced, more complete
coarse-grained representation. Finally, this enhanced representation is fed into
a super-resolution module that processes the spatial patterns to generate the
final high-resolution, fine-grained urban flow maps for the target city. The entire
CrossFM framework is designed to be trained end-to-end.

The contributions of this paper are summarized as follows:

– To the best of our knowledge, we are the first to address the problem of
fine-grained urban flow inference through cross-city transfer learning under
conditions of high data scarcity.

– We propose CrossFM, a novel cross-city transfer learning framework that
leverages a data-rich source city to enhance fine-grained urban flow inference
for a data-scarce target city.

– We design the CrossCMP module to perform completion by considering
cross-city spatio-temporal dependencies and global POI similarity between
the source and target city.

– We conduct extensive experiments on two real-world datasets, demonstrating
that CrossFM significantly outperforms state-of-the-art methods.

2 Related Work

2.1 Fine-grained Urban Flow Inference

Inferring fine-grained urban flows often employs super-resolution (SR) techniques
adapted from computer vision, with recent advancements leveraging diffusion
models and other deep learning approaches [23]. Urban-specific SR models, such
as UrbanFM and UrbanPy [12, 16], were developed to incorporate domain knowl-
edge like external factors or handle high upscaling rates. Recognizing data in-
completeness, MT-CSR proposed joint intra-city data completion and SR [11].
However, these methods primarily rely on information within the target city and
struggle significantly when coarse data suffers from high missing rates. CrossFM
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is specifically designed to address such high scarcity scenarios where intra-city
information is insufficient.

2.2 Spatio-Temporal Data Completion

Spatio-temporal data completion aims to complete missing values in sparse
datasets like urban flows. Early approaches included statistical algorithms, exe-
mplar-based inpainting seeking similar patches [2], efficient patch-matching tech-
niques [1], and offset fusion methods [6], though these often struggled with com-
plex spatio-temporal correlations. More recently, deep learning (DL) has gained
prominence, frequently treating gridded spatio-temporal data as images to lever-
age image completion advances [8]. Notable DL examples include Context En-
coders using encoder-decoder structures [17], Partial Convolutions designed to
handle missing data explicitly [13], and edge-focused models like EdgeConnect
aimed at reducing blurriness [15]. Despite these methodological advances, a key
limitation persists across many approaches, from traditional to deep learning.
They fundamentally rely on sufficient surrounding context within the same do-
main [14]. This dependence causes performance to degrade significantly under
high global scarcity or when extensive regions are missing – precisely the chal-
lenging conditions CrossFM targets. Consequently, CrossFM introduces a novel
completion methodology specifically designed to overcome this reliance on intra-
city data by leveraging external information from an auxiliary cross-city source,
enabling more robust completion even under severe data scarcity.

3 Nations and Problem Definition

We will first give some definitions to help state the studied problem, and then
present a formal problem definition.

Definition 1. (Region). We divide a city into a grid map based on latitude
and longitude, consisting of I × J cell regions. The set of all regions is denoted
as R = {ri,j |1 ≤ i ≤ I, 1 ≤ j ≤ J}, where ri,j represents the cell region at the
i-th row and j-th column.

Definition 2. (Urban Flow Map). For a given time interval t, the urban
flow map captures the movement intensity. For each region ri,j , we define inflow
Xt

in,i,j and outflow Xt
out,i,j based on trajectories T :

Xt
in,i,j =

∑
f∈T

{(ft−1 /∈ ri,j ∧ ft ∈ ri,j)} (1)

Xt
out,i,j =

∑
f∈T

{ft ∈ ri,j ∧ ft+1 /∈ ri,j} (2)

where ft is the location of urban flow trajectory f at time t. We represent
the inflow and outflow for all regions at time t as an urban flow map tensor
Xt ∈ R2×I×J .



CrossFM: Cross-City Urban Flow Inference 5

Definition 3. (Coarse- and fine-grained Flow Maps). A coarse-grained
urban flow map represents the observed urban flows derived from the flow sen-
sors. It is generated by integrating neighboring grids within an N×N range from
a fine-grained urban flow map, where N is the upscaling factor. We denote the
coarse-grained and fine-grained urban flow maps at time t as Xt

cg ∈ R2×I×J and
Xt

fg ∈ R2×NI×NJ , respectively. In practice, the observed coarse-grained map
X̂t

cg ∈ R2×I×J is often incomplete.
Definition 4. (Point-of-Interest Features). To capture functional char-

acteristics essential for our cross-city approach, we use Point-of-Interest (POI)
features. These are represented as a tensor P ∈ RK×I×J for a given city, where
K is the number of POI categories (e.g., commercial, residential) aggregated
within each coarse-grained region ri,j . Both the target city D and source city D′

have associated POI features, denoted as PD and PD′
, respectively.

Problem Statement. Given the upscaling factor N , the sequence of ob-
served incomplete coarse-grained flow maps {X̂t

cg,D}t∈TD
from the data-scarce

target city D, the sequence of relatively complete coarse-grained flow maps
{Xt′

cg,D′}t′∈TD′ from the data-rich source city D′, and the POI features PD and
PD′

for both cities, our goal is to infer the complete fine-grained urban flow map
Xt

fg,D ∈ R2×NI×NJ for the target city D at time t.
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Fig. 2: Framework of the proposed CrossMF model.

4 Methodology

4.1 Cross-City Completion Network

The CrossCMP network completes missing values in coarse-grained urban flow
maps of a target city by leveraging data from potentially richer source city and
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local spatio-temporal dynamics from the limited data in the target city, as shown
in Fig. 2. Let the input be a time series X̂target ∈ RT×C×I×J . To conduct data
completion over the regions where the data are unavailable, we first define the
mask operation as follows:

Mcg(ri,j) =

{
1 if ri,j > 0

0 otherwise
, (3)

where Mcg() is a mask function,where marks the regions without observations
as 0 and the regions with data as 1. CrossCMP produces a completed coarse-
grained map Xcmp ∈ RC×I×J through two complementary branches: Local
Spatio-Temporal Completion (SpaCMP) and Adaptive Cross-City Completion
(AdaCMP).

Local Spation-Temporal Completion This module aims to capture local
spatial correlations and their temporal evolution inherent in urban flow data.
By modeling how flow patterns in nearby regions influence each other over
time, SpaCMP can effectively complete missing values based on observed spatio-
temporal context within the target city. This is achieved using a recurrent archi-
tecture employing convolutional layers to process the spatial map at each time
step while propagating temporal information via a hidden state.

Let X̂t
cg be the input map at time t and Ht−1 be the hidden state from the

previous step. The hidden state Ht is computed as follows:

Ht = σ(F(X̂t
cg,Wx, bx) + F(Ht−1,Wh, bh)). (4)

Here, σ represents a non-linear activation function, and F denotes the standard
2D convolution operation with learnable weight kernels (Wx,Wh) and bias terms
(bx, bh). The application of F captures local spatial dependencies. By recurrently
applying Eq 4 for t = 1, ..., T , the network integrates information across both
space and time. The final hidden state after processing all time steps, Xspa =
HT , encapsulates the learned local spatio-temporal representation and serves as
the output of this branch.

Adaptive Cross-City Completion However, SpaCMP’s reliance on local
spatio-temporal patterns fails under extensive target city data scarcity, poten-
tially leaving large gaps. To ensure robust completion even with severe scarcity,
we introduce the Adaptive Cross-City Completion (AdaCMP) module. AdaCMP
complements SpaCMP by using Point-of-Interest (POI) guided spatial similar-
ity and adaptively leveraging a data-rich source city when target information is
insufficient. Meaningful regional similarity is needed to leverage spatial relation-
ships with missing data; we use POI distributions for this. Since regional POI
distributions reflect urban function (e.g., commercial, residential), which shapes
mobility and flow patterns (volume, direction, timing), comparing POI profiles
identifies functionally similar regions expected to exhibit similar flows. This pro-
vides a reliable basis for knowledge transfer, even across different cities. We first
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define a function Sim(ra, rb) to compute the similarity between the POI feature
vectors Pra and Prb of any two regions ra, rb. Cosine similarity is employed:

Sim(ra, rb) =
Pra · Prb

||Pra ||2||Prb ||2
. (5)

Adaptive Completion Logic: For each target region rk where the data is missing
(M(rk) = 0), AdaCMP adaptively selects the best available information source
based on POI similarity using a prioritized strategy:

Intra-City Similarity: It identifies the region r∗target within the target city’s
observed regions Rtarget = {rj |M(rj) = 1} that is most similar to rk based on
POI data:

r∗target = argmax
rj∈Rtarget

Sim(rk, rj). (6)

If the similarity Sim(rk, r
∗
target) meets or exceeds a predefined threshold θ, the

flow value from this most similar observed region within the target city is used
for completion:

XT
fill(rk) = XT

target(r
∗
target). (7)

Cross-City Similarity: If the intra-city similarity is below the threshold θ,
indicating insufficient guidance from within the target city, the module attempts
to leverage information from the source city. It identifies the region r∗source in
the source city Rsource most similar to rk:

r∗source = argmax
rl∈Rsource

Sim(rk, rl). (8)

If the source data Xsource(r
∗
source) at the corresponding location is considered

valid, its value is used:

XT
fill(rk) = XT

source(r
∗
source). (9)

Let Xfill ∈ RC×H×W be the map containing the completed values Xfill(rk) for
all originally missing locations. The final output of the AdaCMP branch, Xada, is
constructed by combining the original observed values with the newly completed
values:

Xada = M ⊙ X̂t
cg + (1−M)⊙Xfill, (10)

where ⊙ denotes element-wise multiplication. This adaptive cross-city strategy
significantly enhances completion capabilities, especially in data-scarce target
regions, by intelligently borrowing information from a data-richer source city
based on functional similarity.

Module Combination The CrossCMP network integrates the complemen-
tary information captured by two branches. The output from the local spatio-
temporal branch Xspa and the adaptive cross-city completion branch Xada are
fused using a learnable weight ω:

Xcmp = ω ·Xspa + (1− ω) ·Xada. (11)
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This learnable weight ω allows the model to dynamically balance the contribu-
tions from local spatio-temporal patterns and POI-based spatial similarities dur-
ing end-to-end training, yielding the final conpleted coarse-grained map Xcmp.

4.2 Recurrent Super-Resolution Network

Feature Extraction The ReSRNet first processes the input completed coarse
map Xcmp to extract an initial set of features suitable for the subsequent en-
hancement and upscaling tasks. If optional external features Eext (e.g., weather
data, holidays) are provided, they are processed by a separate feature extraction
sub-network, and the resulting embeddings are typically fused with the features
derived from Xcmp. Let the output feature map after the extraction and fusion
be denoted as F :

F 0 = Fextract(Xcmp, Eext), (12)

where Fextract represents the combined operations of convolution and external
feature integration.

Recurrent Super-Resolution Blocks The core of the ReSRNet comprises
a sequence of L stacked Recurrent Super-Resolution blocks. These blocks are
designed to progressively refine the feature representation while simultaneously
increasing the spatial resolution. Each block takes the feature map F t−1 from
the preceding block and produces a higher-resolution feature map F t. The total
upscaling N is achieved across these stages.

Within each block, a recurrent mechanism iteratively refines the features over
S steps (s = 1, ..., S). Let Ht

0 be the initial state derived from the block input
F t−1. The refinement process uses a shared-parameter module Frefine based on
residual connections:

Ht
s = Frefine(H

t
s−1). (13)

The refined features Ht
s from each internal step are then upscaled and poten-

tially post-processed by Upscale. The final output F t for stage t aggregates
the information from all refinement steps via a weighted summation, allowing
contributions from features at different refinement levels:

F t =

S∑
s=1

αs · Upscale(Ht
s). (14)

After the final stage (t=L), the resulting feature map FL captures the high-
frequency details learned through the staged, recurrent process. The final high-
resolution ouput, Xfg, is then obtained via a global residual connection as fol-
lows:

Xfg = Fidisup(Xcmp, N) + FL, (15)

where Fdisup(Xcmp,N) represents the completed coarse-grained map Xcmp after
being upsampled by a factor of N using a distributional upsampling function.
The residual designed facilitates the learning of these fine details, learning to the
final high-resolution output Xfg.
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4.3 Training Strategy

The proposed CrossFM framework, comprising the Cross-City Completion Net-
work (CrossCMP) and the Recurrent Super-Resolution Network (ReSRNet), is
trained in an end-to-end manner. The objective combines two pixel-wise loss
terms. The completion loss Lcmp quantifies the difference between the com-
pleted coarse map output Xcmp and its corresponding ground truth X ′

cg. The
super-resolution loss Lsr measures the difference between the final fine-grained
map Xfg and its ground truth X ′

fg:

Lcmp = ||Xcmp −Xcg||2F , (16)

Lsr = ||Xfg −X ′
fg||2F . (17)

The total loss L minimized during end-to-end training is a weighted combination
of these two components:

L = λLcmp + µLsr, (18)

where λ and µ are hyper-parameters balancing the contribution of each task.

5 Experiment

Table 1: Dataset Description
Dataset BJTaxi NYCTaxi

Longitude (115.42, 117.51) (-74.25, -73.70)
Latitude (39.44, 41.06) (40.50, 41.08)
Time Span 3/1/2015-6/30/2015 1/1/2016-6/30/2015
Time Interval 30 minutes 30 minutes
Coarse-grained Shape 32 × 32/64 × 64 32 × 32/64 × 64
Fine-grained Shape 128 × 128 128 × 128
Upscaling Factor 2/4 2/4
#POI 79063 177824

5.1 Datasets

We evaluate CrossFM using two real-world datasets: BJTaxi, the target city for
completion and super-resolution, and NYCTaxi, the source city for cross-city
information. Table 1 summarizes their specifications after preprocessing.

– BJTaxi: This dataset comprises taxi trip records from Beijing, China (March
1 - June 30, 2015), processed into coarse-grained urban flow maps. The data
is split into training (70%), validation (20%), and test (10%) sets.

– NYCTaxi: This dataset contains taxi trip records from New York City,
USA (January 1 - June 30, 2016). It serves as an external data source for
cross-city insights and is not split for training/validation/testing.
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5.2 Experimental settings

Evaluation Metrics. We use Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE) to evaluate the inference performance. .

Baselines. We compare CrossFM against several baseline methods. These in-
clude straightforward statistical approaches like Mean partition (Mean), which
evenly distributes coarse-grained flow, and Historical Average (HA), which ap-
plies this distribution based on historical averages. We also consider advanced
deep learning models for Fine-grained Urban Flow Inference (FUFI). Specifically,
UrbanFM [12] utilizes distributional upsampling and fuses external factors.
UrbanPy [16] employs a pyramid architecture with multiple components for
upsampling and refinement. UrbanSTC [18] applies contrastive self-supervised
learning for efficient pre-training, especially in low-resource scenarios. The most
recent state-of-the-art model, MT-CSR [11], tackles FUFI with potentially in-
complete coarse data through multi-task learning for simultaneous completion
and super-resolution.

Table 2: Model Performance on BJTaxi Dataset (Best results bold, second best
underlined)

Model Mean HA UrbanFM UrbanPy UrbanSTC MT-CSR CrossFM Improve

BJTaxi

2

40% MAE 9.50 9.30 7.50 7.23 5.99 6.10 6.05 -1.0%
RMSE 26.60 26.04 21.02 20.24 17.10 17.40 17.25 -0.9%

60% MAE 10.51 10.30 8.22 8.00 6.90 6.85 6.45 5.8%
RMSE 29.43 28.84 22.96 22.42 19.60 19.45 19.01 2.3%

80% MAE 11.80 10.67 9.30 9.12 8.05 8.01 7.12 11.1%
RMSE 33.04 28.81 26.04 25.48 22.70 22.59 20.32 10.1%

4

40% MAE 10.88 10.67 8.50 8.27 7.02 7.10 7.01 0.1%
RMSE 29.38 28.81 22.86 20.99 20.56 19.21 19.19 0.1%

60% MAE 12.31 12.07 9.50 9.85 8.05 7.99 7.56 5.4%
RMSE 33.24 32.59 25.45 23.73 21.95 21.83 19.95 8.6%

80% MAE 13.92 13.66 10.55 11.41 9.35 9.29 7.85 15.5%
RMSE 37.58 36.88 28.14 27.19 25.00 24.81 20.33 18.1%

5.3 Performance Comparison

As Table 2 shows, we can observe that most methods degrade as missing data in-
creases. Simple baselines (Mean, HA) perform poorly, unable to model complex
spatio-temporal dynamics. Sophisticated methods like UrbanFM and UrbanPy,
while better, still falter, potentially lacking inherent mechanisms for large miss-
ing blocks without specific completion modules or retraining. Models considering
spatio-temporal correlations or advanced architectures (e.g., UrbanSTC, MT-
CSR) handle missing data better than simpler methods. MT-CSR, designed
for the same joint task, is a strong competitor but consistently outperformed
by CrossFM, especially as scarcity increases. This suggests CrossFM’s adap-
tive cross-city completion strategy offers benefits over MT-CSR’s auxiliary com-
pletion under severe scarcity. UrbanSTC is also competitive but surpassed by
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CrossFM, indicating CrossFM’s targeted cross-city knowledge transfer provides
an edge beyond capturing local spatio-temporal patterns alone.

Amidst these trends, CrossFM consistently achieves the best performance
across all evaluated scenarios. More importantly, while baseline accuracy de-
clines sharply with increasing data scarcity, CrossFM demonstrates significantly
greater robustness via a much more gradual performance decrease. For instance,
comparing results at 80% versus 40% missing data, the increase for CrossFM is
considerably less pronounced than for most baseline methods.

CrossFM’s robustness stems from its unique design. The key is the AdaCMP
module, which mitigates data scarcity by adaptively borrowing information from
a source city based on POI similarity. Furthermore, the joint end-to-end training
of the completion (CrossCMP) and super-resolution (ReSRNet) modules creates
a powerful synergy, enhancing overall accuracy and outperforming less integrated
approaches.

5.4 Ablation Study

(a) mr=40%, N=2 (b) mr=60%, N=2 (c) mr=80%, N=2

(d) mr=40%, N=4 (e) mr=60%, N=4 (f) mr=80%, N=4

Fig. 3: Ablation study of CrossFM on BJTaxi. ’mr’ means ’missing rate’

We compare the full CrossFM model against variants where specific com-
ponents are ablated: CrossFM-noSpa. This variant removes the local Spatio-
temporal completion module. CrossFM-noAda. Removing the Adaptive Cross-
City completion. CrossFM-noTA This variant removes Time Alignment. Cros-
sFM-noJoi. This variant uses separate training instead of joint optimization.
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The performance under different missing rates (mr) and scale factor (N) is il-
lustrated in Fig. 3. The results consistently demonstrate that CrossFM achieves
the best performance across all variants, indicating that all ablated components
contribute positively to the final performance. Among the variants, CrossFM-
noAda results in the most significant performance degradation, yielding the high-
est MAE in all depicted cases. Conversely, CrossFM-noJoi shows the smallest
performance drop compared to the full model, suggesting that while joint end-
to-end optimization provides benefits, the core components function effectively
even when trained sequentially. The CrossFM-noTA and CrossFM-noSpa also
led to performance decreases, further confirming their positive contributions to
the framework. These findings collectively underscore the effectiveness of each
component.

5.5 Parameter Analysis

(a) Parameter λ, N=2 (b) Parameter λ, N=2 (c) Parameter θ, N=2

(d) Parameter λ, N=4 (e) Parameter λ, N=4 (f) Parameter θ, N=4

Fig. 4: Parameter study of CrossFM on BJTaxi. Missing rate = 60%

We analyze the impact of the completion loss weight λ in the final objec-
tive function (Equation 18) and the POI similarity threshold θ used within the
AdaCMP module (described in Section 4). Experiments were conducted under a
60% missing rate setting, and the results are summarized in Fig. 4. For the loss
weights, we varied λ within the range 0.0001, 0.001, 0.01, 0.1 and µ in the range
0.001,0.01,0.1. As observed, performance initially improves as λ increases from
very low values, but degrades slightly when λ is set equal to µ (0.1), suggest-
ing a slight emphasis on the super-resolution task yields better overall results.
For the POI similarity threshold θ, we tested values in 0.2, 0.4, 0.6, 0.8, 1.0.
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The results indicate that performance suffers when the threshold is too low (po-
tentially accepting less relevant intra-city matches) or too high (under-utilizing
intra-city information or forcing reliance on cross-city data, with θ = 1.0 per-
forming worst). Based on these empirical results, we determined the optimal
settings for our experiments to be λ = 0.01 alongside µ = 0.1 and θ = 0.6, which
achieved the best performance.

5.6 Visualization

Input, 32×32 UrbanPy, 64×64 UrbanSTC, 64×64

MT-CSR, 64×64 CrossFM, 64×64 Ground truth, 64×64

Fig. 5: Visualization of the urban flows inference with different methods on the
BJTaxi. The cell regions in white color denote that the urban flow data are
unavailable

To further intuitively demonstrate the model performance, we visualize the
fine-grained urban flow inference results generated by different methods along-
side the ground truth. Fig. 5 compares visualized heat maps (BJTaxi dataset,
32x32 input to 64x64 output, 40% missing rate) from CrossFM against base-
lines UrbanPy, UrbanSTC, and MT-CSR, alongside the ground truth. Visual
inspection reveals that while baselines capture general patterns, UrbanPy lacks
sharpness, UrbanSTC misses fine-grained hotspots, and MT-CSR shows minor
inaccuracies, particularly in completed regions. In contrast, CrossFM generates
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maps visually closest to the ground truth, accurately reconstructing both sharp
details and high-flow hotspots. This visual superiority confirms CrossFM’s effec-
tiveness in generating high-fidelity fine-grained urban flow maps.

6 Conclusion

We proposed CrossFM, a framework leveraging cross-city dynamics to infer fine-
grained urban flow from sparse observations. CrossFM integrates a POI-guided
cross-city completion network (CrossCMP) and a recurrent super-resolution net-
work (ReSRNet) via end-to-end training. Experiments show CrossFM outper-
forms state-of-the-art methods. While our current temporal alignment is simple,
future work will focus on developing more sophisticated techniques to further
improve inference accuracy in complex urban environments.
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