
Unlocking the Power of Diffusion Models in Sequential
Recommendation: A Simple and Effective Approach

Jialei Chen
MIC Lab,

College of Computer Science and
Technology,

Jilin University
Changchun, China

chenjl21@mails.jlu.edu.cn

Yuanbo Xu∗
MIC Lab,

College of Computer Science and
Technology,

Jilin University
Changchun, China
yuanbox@jlu.edu.cn

Yiheng Jiang
MIC Lab,

College of Computer Science and
Technology,

Jilin University
Changchun, China

jiangyh22@mails.jlu.edu.cn

Abstract
In this paper, we focus on the often-overlooked issue of embedding
collapse in existing diffusion-based sequential recommendation
models and propose ADRec, an innovative framework designed
to mitigate this problem. Diverging from previous diffusion-based
methods, ADRec applies an independent noise process to each
token and performs diffusion across the entire target sequence
during training. ADRec captures token interdependency through
auto-regression while modeling per-token distributions through
token-level diffusion. This dual approach enables the model to ef-
fectively capture both sequence dynamics and item representations,
overcoming the limitations of existing methods. To further mitigate
embedding collapse, we propose a three-stage training strategy:
(1) pre-training the embedding weights, (2) aligning these weights
with the ADRec backbone, and (3) fine-tuning the model. During
inference, ADRec applies the denoising process only to the last to-
ken, ensuring that the meaningful patterns in historical interactions
are preserved. Our comprehensive empirical evaluation across six
datasets underscores the effectiveness of ADRec in enhancing both
the accuracy and efficiency of diffusion-based sequential recom-
mendation systems.

CCS Concepts
• Information systems→ Recommender systems.

Keywords
Diffusion Model; Sequential recommendation
ACM Reference Format:
Jialei Chen, Yuanbo Xu, and Yiheng Jiang. 2025. Unlocking the Power of
DiffusionModels in Sequential Recommendation: A Simple and Effective Ap-
proach. In Proceedings of the 31st ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining V.2 (KDD ’25), August 3–7, 2025, Toronto, ON, Canada.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3711896.3737172
∗corresponding author
†The ADRec code is available at https://github.com/Nemo-1024/ADRec.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’25, Toronto, ON, Canada
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1454-2/2025/08
https://doi.org/10.1145/3711896.3737172

KDD Availability Link:
The source code of this paper has been made publicly available at https:
//doi.org/10.5281/zenodo.15470542.

1 Introduction
Sequential recommendation (SR) has long been a cornerstone of
modern recommendation systems. Its primary objective is to ana-
lyze historical interaction records between users and the system to
predict the next item a user is likely to engage with. [19, 26]. Various
sequence models, such as Recurrent Neural Networks (RNNs) and
Transformers [25], have been widely adopted in SR. Transformer-
based methods, which leverage the powerful self-attention mecha-
nism [25], including SASRec [12] and BERT4Rec [22], have emerged
as some of the most effective models for SR. Despite these advance-
ments, sequential recommendation still faces significant challenges,
such as weak representation spaces [17, 28, 30].

Diffusion models [10, 21] may be regarded as a distinctive form
of self-supervised learning due to their inherent diffusion process
[2, 6, 17, 29]. They have exhibited notable capabilities in representa-
tion learning, which could prove invaluable in accurately capturing
the distribution of item representations within recommendation
systems. Nevertheless, their efficacy within recommendation sys-
tems has been comparatively disappointing in recent years, failing
to yield the anticipated advancements. This elicits a critical inquiry:
Are diffusion models fundamentally ill-suited for recommendation
systems, or do they encounter intrinsic limitations in this domain?

We hypothesize that the issue arises from embedding col-
lapse in diffusion-based methods. As shown in Figure 1, the
Transformer-based SASRec+ [13] forms a structured yet narrow
and fragile representation space, which lacks robustness—a limita-
tion shared by other traditional recommendation models. Diffusion-
based methods like DiffuRec [16] and DreamRec [30] yield represen-
tation spaces that are not only narrow but also resemble isotropic
Gaussian distributions, indicating a severe collapse. This resem-
blance is particularly concerning, as randomly initialized embed-
dings also follow such distributions, suggesting that these models
fail to learn meaningful representations beyond their initial state.

To tackle the embedding collapse, we first summarize the archi-
tectural design and training strategies of existing methods in Table
1 and point out several potential flaws that could impact the use of
diffusion models in sequential recommendation:
• Only performing denoising learning on the last item is
insufficient. Existing methods, including DiffuRec, DimeRec
[15], and DreamRec, focus on diffusion and compute loss only

https://orcid.org/0009-0003-9861-7788
https://orcid.org/0000-0001-8370-5011
https://orcid.org/0000-0001-6737-0389
https://doi.org/10.1145/3711896.3737172
https://doi.org/10.1145/3711896.3737172
https://doi.org/10.5281/zenodo.15470542
https://doi.org/10.5281/zenodo.15470542


KDD ’25, August 3–7, 2025, Toronto, ON, Canada Jialei Chen, Yuanbo Xu, & Yiheng Jiang

Normal Distribution DreamRec

HR@20: 0.76 NDCG@20: 0.28

(a
) 

B
ab

y

DiffuRec

HR@20: 5.38 NDCG@20: 2.56

SASRec+

HR@20: 5.53 NDCG@20: 2.52

ADRec (ours)

HR@20: 7.15 NDCG@20: 3.15

HR@20: 0.68 NDCG@20: 0.27

(b
) 

B
ea

u
ty

HR@20: 13.91 NDCG@20: 7.33 HR@20: 15.20 NDCG@20: 7.65 HR@20: 16.82 NDCG@20: 8.32

Figure 1: T-SNE results of the learned item embeddings of ADRec and other baselines on the Baby and Beauty dataset. If
the contour shape closely resembles isotropic Gaussian noise (as seen in DreamRec and DiffuRec) or if the representation
space is narrow (as observed in DreamRec, DiffuRec, and SASRec+, which requires a large magnification factor), it suggests a
weak embedding space. In contrast, ADRec maintains a structured embedding space and expands it compared to SASRec+,
significantly enhancing item separability. Additional visualization results can be found in Appendix Figure 10.∗

for the final target item instead of for the entire one-position
offset target sequence. As a result, only a limited number of
items are subjected to diffusion, significantly complicating the
process of learning item distributions and contributing to embed-
ding collapse. From an auto-regressive perspective, they miss the
chance to implement per-token teacher forcing, which restricts
the effectiveness of sequence modeling.

• Inappropriate training loss impacts the effectiveness of dif-
fusion models. Some works, like DreamRec, use only denoising
loss (Mean Squared Error, MSE) as the training objective. This
method does not align with the recommendation task and often
produces suboptimal results. DiffuRec [16] retains recommenda-
tion loss (Cross-Entropy, CE) as the training objective but does
not incorporate denoising loss, which limits the ability to exploit
the potential of diffusion models fully.

• End-to-end training leads to Embedding collapse. In the
original application scenarios of diffusion models, input features
(from images, audio, etc.) are fixed, meaningful, and distinguish-
able from one another. Item embeddings initialized from scratch
are random and lack significance [7], which creates a risk of
embedding collapse, where all embedding weights converge to
the same value to make the denoising learning easier. This col-
lapse can cause the denoising loss to become zero during training,
leading to poor performance during the inference phase.

• The sequence-level diffusion process causes a mismatch
during the inference phase. It affects the model’s inference

∗Embeddings are normalized before T-SNE to ensure that the scale of the visualization
results is comparable. "10×" indicates that the visualization results have been magni-
fied tenfold. In this context, "Normal Distribution" serves as a baseline, representing
randomly initialized embedding weights.

by introducing noise throughout the entire sequence, which can
corrupt the historical sequence during inference. This, in turn,
impacts the quality of the target item prediction during inference.

To tackle these challenges, we introduceADRec (Auto-regressive
Diffusion Recommendation model), a novel approach that merges
a token-level diffusion process with causal attention for denoising.
Unlike earlier diffusion-based methods, ADRec applies indepen-
dent noise levels to each token within the entire one-position offset
target sequence. This method guarantees that every token in the
sequence undergoes diffusion, enabling the model to better learn
item distributions while maintaining the per-token teacher-forcing
feature of auto-regression. By capturing item dependencies through
auto-regression and concurrently learning the distribution of each
item via diffusion, ADRec can more effectively model both sequence
dynamics and item representations.

To further mitigate embedding collapse, we introduce a three-
stage training strategy. In the first stage, we pre-train the embedding
weights using a causal attention module that helps ensure the em-
bedding space is structured before full parameter training begins.
During this stage, the model is similar to SASRec+ and employs
CE loss. In the second stage, we warm up the backbone of ADRec
to align its parameters with the pre-trained embedding weights,
freezing the embedding weights during this phase. Finally, in the
third stage, we conduct full-parameter training of ADRec. The last
two stages employ a combination of CE and MSE to align the rec-
ommendation task while fully utilizing the distribution modeling
capabilities of the diffusion process to optimize the embedding
weights, ultimately creating a robust and structured embedding
space (see last column in Figure 1).



Unlocking the Power of Diffusion Models in Sequential Recommendation: A Simple and Effective Approach KDD ’25, August 3–7, 2025, Toronto, ON, Canada

During the inference phase, the token-level diffusion process
applies denoising iterations solely to the last target while assigning
the diffusion time steps for the other positions to zero. The inde-
pendent noise process prevents the introduction of unreasonable
noise into historical interactions, enabling ADRec to concentrate
on meaningful patterns within the sequence.

To this end, ADRec overcomes all the previously mentioned
limitations. We empirically demonstrate its effectiveness across
six datasets of varying scales. The experimental results show that
ADRec significantly outperforms mainstream baselines, achieving
improvements of 15.45% and 13.02% on HR@20 and NDCG@20,
respectively. Despite employing a three-stage training framework,
ADRec reduces the training time by an average of 70.98% compared
with the best diffusion baseline.

2 Background
We have previously discussed several SR methods, and because of
space limitations, we have included the Related Works in Appen-
dix Section A. Before presenting our model, we briefly introduce
the standard diffusion model and sequential recommendation as
foundational knowledge.

2.1 Diffusion Models
Diffusion models [10, 21] have gained popularity as generative
modeling techniques in various domains. They can be seen as a
specific method of self-supervised learning that utilizes a diffusion
process to enhance representation learning.

Forward Process In this paper, we denote the diffusion process
with the subscript 𝑡 to indicate diffusion time steps. For each token
𝑥 , we define a forward diffusion process that progressively adds
Gaussian noise to the data over a series of time steps. This process
is modeled as a Markov chain, where the data at each step 𝑘 is
incrementally noised.

𝑞 (𝑥𝑡 | 𝑥𝑡−1) = N
(√︁

1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡 𝐼
)

(1)

where N is the normal distribution, and 𝛽𝑡 is the variance of the
noise added at each step controlled by a schedule {𝛽𝑘 ∈ (0, 1)}𝐾

𝑘=1.
The process continues until the data is converted into pure noise at
𝑥𝑇 . With 𝛼𝑡 =

∏
𝑡
′ ≤𝑡 (1 − 𝛽𝑡 ′ ), we can analytically write the result

of the forward process given an original data:

𝑞(𝑥𝑡 | 𝑥0) = N(𝑥𝑡 ;
√
𝛼𝑡𝑥0, (1 − 𝛼𝑡 )𝐼 )

𝑖 .𝑒 . 𝑥𝑡 =
√
𝛼𝑡𝑥

0 +
√︁
(1 − 𝛼𝑡 )𝜖, 𝜖 ∼ N(0, 𝐼 )

(2)

𝛼𝑡 is the noise schedule employed for the forward process. In origi-
nal DDPM [10], 𝑡 is randomly sampled from a uniform distribution
U[0, 1] and a function maps 𝑡 to 𝛼𝑡 ∈ [0, 1].

Reverse Process The reverse process is also a Markov chain
and attempts to recreate the original data from the noise with a
denoising model 𝑝𝜃 (𝑥𝑡−1 | 𝑥𝑡 ):

𝑝𝜃 (𝑥𝑡−1 | 𝑥𝑡 ) = N
(
𝑥𝑡−1; 𝝁𝜃 (𝑥𝑡 , 𝑡) , 𝛾𝑡 𝐼

)
(3)

where the mean 𝝁𝜃 is modeled with a neural network, and one
can set the covariance to the identity scaled by a fixed constant
depending on 𝑡 . The 𝝁𝜃 can be formulated by either using the noise

𝜖 or the target 𝑥0:

𝜇𝜃 =
1√︁

1 − 𝛽𝑡
𝑥𝑡 −

𝛽𝑡√︁
(1 − 𝛽𝑡 ) (1 − 𝛼𝑡 )

𝜖 (4)

=

√︁
1 − 𝛽𝑡 (1 − 𝛼𝑡 ))

1 − 𝛼𝑡 )
𝑥𝑡 +

√︁
𝛼𝑡−1)𝛽𝑡
1 − 𝛼𝑡

𝑥0 (5)

In Equation (4), the model learns to predict the noise 𝜖; while in
Equation (5), the model learns to predict the original data 𝑥0. We
use the latter formulation. Thus, a denoising model 𝑓𝜃 (𝑥𝑡 , 𝑡) can be
trained to predict the original data 𝑥𝑡 that is available at timestamp
𝑡 . Efficient training of DMs is possible by optimizing the simplified
MSE loss instead of the original variational lower bound (VLB) as

Lsimple = E𝑡,𝑥0,𝜖

[

𝑥0 − 𝑓𝜃 (𝑥𝑡 , 𝑡)


2

2

]
(6)

2.2 Sequential Recommendation
Given an interaction sequence 𝑆 = [𝑖0, 𝑖1, . . . , 𝑖𝐿−1, 𝑖𝐿], where 𝑖𝑘
denotes the 𝑘-th interacted item and 𝐿 indicates the maximum
sequence length in the training set, the aim of SR is to produce a
ranked list of items as predicted candidates for the next item the
user is likely to interact. There are generally two auto-regressive
training strategies for sequential recommendation models.

The first strategy, referred to as one-step prediction, leaves one
item out, using i𝑡𝑔𝑡 = 𝑖𝐿 as the target sequence. The model learns
the mapping 𝑔𝜃 (𝑖0:𝐿−1) = 𝑖𝐿 , where the model predicts the next
item in the sequence. The second strategy, called per-step prediction,
shifts the sequence by one position, using i𝑡𝑔𝑡 = 𝑖1:𝐿 as the target
sequence. This strategy employs per-token teacher forcing, where
the model predicts each item in the sequence based on the previous
item: 𝑔𝜃 (𝑖𝑘 ) = 𝑖𝑘+1 for 0 ≤ 𝑘 < 𝐿. Both strategies share the same
inference process.

3 Methodology
3.1 Auto-regressive strategy
In the previous section, we examined several auto-regressive train-
ing strategies that are essential for model architecture, as they
directly affect the tensor shape of the target sequence. Let the tar-
get embedding sequence be denoted as x. For one-step prediction,
x = 𝑒𝐿 ∈ R𝐵×1×𝐷 , and for per-step prediction, x = 𝑒1:𝐿 ∈ R𝐵×𝐿×𝐷 ,
where 𝐵 is the batch size, 𝐿 is the sequence length, and 𝐷 is the em-
bedding dimension. For simplicity, we ignore sequence padding in
this discussion. We adopt a per-token prediction strategy, ensuring
that each output token contributes to the loss calculation and thus
benefits from the improved sequence mining capabilities provided
by per-token teacher forcing.

Existing diffusion-based SR algorithms typically employ one-step
prediction, where denoising learning is only applied to the final
target item, 𝑒𝐿 [3, 15, 16, 28, 30]. This approach has two main limi-
tations. First, one-step prediction undermines the model’s capacity
to capture correlations between tokens, as it loses the per-token
teacher forcing. Second, the available samples for diffusion learning
become excessively sparse. For example, in the MovieLens-100K
(ML-100K) dataset, there are a total of 1,008 items but only 938 se-
quences, which means that only 938 samples are utilized for denois-
ing learning in one-step prediction. From an individual standpoint,



KDD ’25, August 3–7, 2025, Toronto, ON, Canada Jialei Chen, Yuanbo Xu, & Yiheng Jiang

Table 1: A comparison of the architectural design and training strategies between ADRec and prior works.

Diffusion Modelling Loss Computation Train Objective Denoising Model Noise Process Embed.Pre-train Embed.Collapse

DiffRec[27] (SIGIR ’23) full sequence per token MSE MLP sequence-level % !

DreamRec[30] (NeurIPS ’23) only last token only last token MSE MLP sequence-level % !

DiffuRec[16] (TOIS ’23) only last token only last token CE Causal Attention sequence level % !

DimeRec[15] (WSDM ’24) only last token only last token CE + MSE MLP sequence-level " !–

ADRec (ours) per token per token CE + MSE Causal Attention token-level " $

Causal Attention Add noise 

Auto-regressive Diffusion

Transformer Block x2

Transformer Block x2

Embedding Layer

Time series

Noised Seq.

Loss Loss Loss Loss Loss

Time Series

N
oi

se

Noise as Masking

Figure 2: Method overview. The left diagram illustrates that time series and diffusion processes are two orthogonal directions of
evolution, with noise acting as a soft mask to measure uncertainty. ADRec applies independent diffusion processes to individual
items, with the noise level of the items in the current target sequence highlighted in green box.†

this sparsity inhibits the effective learning of item distributions.
From a broader perspective, it fails to sufficiently represent the
entire embedding space, resulting in embedding collapse.

DiffuRec attempts to tackle this issue by partitioning the original
target sequence into subsequences based on temporal order, giving
each item in the sequence the chance to model the distribution.
However, this strategy considerably increases both the number of
sequences and the training time required. Essentially, it is similar
to performing per-step prediction but without utilizing the paral-
lelization capabilities of the self-attention mechanism, resulting in
significantly longer training times.

3.2 ADRec Architecture
This section provides a detailed description of ADRec’s architec-
tural design. ADRec employs a multi-layer Transformer encoder
at its backbone, which has demonstrated strong performance and
versatility in modeling sequential dependencies. The architecture
consists of two key components: the causal attention module and
the auto-regressive diffusion module, each built using two Trans-
former encoder layers to maximize generality and to simplify the
design (right in Figure 2). ADRec models the interdependence of to-
kens by auto-regression, jointly with the per-token distribution by
token-level diffusion.

3.2.1 Causal Attention Module. As illustrated in Figure 2, we de-
fine an embedding sequence e ∈ R𝐵×𝐿×𝐷 , where 𝐵 represents the
batch size and 𝐷 denotes the hidden size, as the semantic encoding

†The movie posters in Figure 2 are for illustrative purposes only; during actual training,
ADRec only utilizes user interaction data, like movie ID.

of the intrinsic latent aspects captured by the interacted sequence
i ∈ R𝐿 . The primary role of causal attention module (CAM), param-
eterized as CAM𝜙 (·), is to extract historical sequence information
c ∈ R𝐵×𝐿×𝐷 that has not yet been corrupted by noise and use it
as conditional guidance for the Auto-regressive Diffusion Module
(ADM) during denoising learning.

c = CAM𝜙 (e) (7)

Notably, we do not incorporate positional encoding. Experimental
results (Appendix Table 8) indicate that including positional encod-
ing leads to a slight decrease in performance, as further discussed
in Appendix Section D.

3.2.2 Feature Aggregation. Before introducing the auto-regressive
diffusion module, it is essential to define an appropriate feature
aggregation method for the conditional guidance c ∈ R𝐵×𝐿×𝐷 , the
noised target sequence x𝑡 ∈ R𝐵×𝐿×𝐷 , and the current diffusion
time step t ∈ R𝐵×𝐿 .

We first scale the diffusion time step and encode it using an MLP
with a SiLU activation function:

temb = MLP
(

1000 · t
𝑇

)
(8)

Next, we aggregate the various components like DiffuRec [16] and
denote the result as z:

z = c + 𝜆 ⊙ (x𝑡 + temb) (9)

where 𝜆 is a coefficient, and we set 𝜆 = 1𝑒−3, which was the optimal
setting in DiffuRec. We also experimented with replacing linear ag-
gregation with cross-attention, but the results were unsatisfactory
(see Figure 5 in Experiments).



Unlocking the Power of Diffusion Models in Sequential Recommendation: A Simple and Effective Approach KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Causal Attention

Embedding Layer

Stage 1: Emb. Pretraining

Auto-regressive Diffusion

Causal Attention

Embedding Layer

Stage 2: Backbone Warm up

Auto-regressive Diffusion

Causal Attention

Embedding Layer

Stage 3: Joint training

Embedding Layer

Inference Phase:
 Clean Emb. as Guidance

Auto-regressive Diffusion

Causal Attention

Figure 3: The three-stage training strategy and the inference strategy of ADRec.

3.2.3 Auto-regressive Diffusion Module. At this point, we intro-
duce the auto-regressive diffusion module(ADM), parametrized as
ADM𝜃 (·). The ADM module consists of a two-layer Transformer
encoder, which also serves as the denoising model for the diffusion
process.

x̂ = ADM𝜃 (z) (10)
where x̂ is the reconstructed target sequence.

Token-independent Diffusion ProcessWe propose a token-
independent diffusion process, which independently applies the
noise process to each token. We can present the diffusion time steps
as: t ∈ R𝐵×𝐿 . This approach fundamentally differs from classic
sequence-level diffusion models, which use a uniform noise process
across all tokens in a sequence (t ∈ R𝐵 ). We denote the token-level
diffusion process as:

𝑥𝑖𝑡𝑖 =

√︃
𝛼𝑖𝑡𝑖

𝑥𝑖0 +
√︃
(1 − 𝛼𝑖𝑡𝑖

)𝜖, 𝜖 ∼ N(0, 𝐼 ) (11)

where 1 ≤ 𝑖 ≤ 𝐿 and 0 ≤ 𝑡 ≤ 𝑇 , with 𝑇 representing the maximum
diffusion step. For different indices 𝑖1 and 𝑖2, the noise process can
vary (𝑡𝑖1 ≠ 𝑡𝑖2 ). We denote the noisy sequence as x𝑡 for convenience.

Chen et al. [1] demonstrated that the token-independent diffu-
sion process optimizes a re-weighting of an Evidence Lower Bound
(ELBO) on the expected log-likelihoods ln 𝑝𝜃 ((x𝑖𝑡𝑖 )1≤𝑖≤𝐿), where
the expectation is averaged over noise levels 𝑡1:𝐿 ∼ [𝑇 ]𝐿 . The
advantage of the token-level diffusion process stems from the cross-
perspective between the diffusion process and masked generative
models [14] views noise as a soft mask, interpreting the entire dif-
fusion process as a sequence of soft masking operations (as shown
on the left in Figure 2). Consequently, even if a few prior tokens
are corrupted significantly, the model can still effectively learn
to sample from the correct conditional distribution, capturing the
distribution of all possible subsequences in the training set. This
approach offers potential benefits in terms of model robustness and
debiased learning. Furthermore, the token-independent diffusion
process provides unique advantages during the inference phase,
which we explore in Section 3.5.

3.3 Training Objective
In Section 3.1, we adopted the per-step prediction auto-regressive
strategy, which necessitates computing the training loss for each
output target token. To this end, we use both the recommenda-
tion loss (Cross-Entropy, CE, L𝑐𝑒 (·)) and the denoising loss (Mean
Squared Error, MSE, L𝑚𝑠𝑒 (·)) as joint training objectives, which is
beneficial for both the recommendation task and embedding distri-
bution modeling. For the recommendation loss, we keep it simple
by using full-item CE loss without negative sampling.

We first compute the similarity score s ∈ R𝐵×𝐿×𝑁 , where 𝑁 is
the total number of items in the dataset, by taking the inner product
of the reconstructed embedding x̂ and the transpose of the entire
item embedding E ∈ R𝑁×𝐷 , as follows:

s = Softmax(x̂ ⊙ E⊤) (12)

Next, we calculate the total loss L as:

L = L𝑐𝑒 (s, i𝑡𝑔𝑡 ) + L𝑚𝑠𝑒 (x̂, x) (13)

Some works, such as DreamRec, have explored using only the
denoising loss as the training objective [18, 30]. However, these
approaches often fail to achieve satisfactory results because denois-
ing loss does not directly align with the recommendation task. On
the other hand, approaches like DiffuRec have addressed this by
retaining recommendation loss as the primary training objective
while omitting the denoising loss. However, such a strategy signif-
icantly constrains the potential of diffusion models in sequential
recommendation.

3.4 Training Strategy
Section 1 mentioned the severe embedding representation collapse
issue. Here, we present a three-stage training strategy to mitigate
this problem effectively (see Figure 3).

In the first stage, we pre-train the embedding layer using the
causal attention module, with the training objective being cross-
entropy loss. Our goal is to obtain a semantically rich and structured
embedding space. In the second stage, we conduct a 5-epoch warm-
up on the backbone of ADRec, freezing the embedding weights. The
causal attention module is trained from scratch. The goal is to align
the denoising model with the embedding space. Without this align-
ment, early-stage gradient updates could degrade the pre-trained
embedding. Finally, we conduct full-parameter training, leveraging
the powerful representation learning capabilities of the diffusion
model to optimize the embedding weights further. Experimental
results demonstrate that our training method effectively expands
the representational capacity of the embedding space and increases
the distinction between items. We did not observe any signs of
representation collapse in ADRec.

3.5 Inference Strategy
Existing methods typically employ classical sequence-level diffu-
sion processes, introducing unnecessary noise to the historical
sequence during the inference phase. The goal of the denoising
model is to reconstruct the clean embedding. Therefore, during the
inference phase, noise should only be applied to the last position,
while the embeddings at other positions remain clean. However,



KDD ’25, August 3–7, 2025, Toronto, ON, Canada Jialei Chen, Yuanbo Xu, & Yiheng Jiang

Table 2: Main results (%) on six datasets. The best results are in boldface, and the second-best are underlined. Improv. is the
relative improvement of the best method against the second-best one.

Dataset Metric GRU4Rec BERT4Rec LightSANs FEARec SASRec+ EulerFormer CORE SVAE DreamRec DiffuRec ADRec Improv.

Baby HR@20 5.4576 4.0009 4.0658 3.5786 5.5268 5.7906 2.7472 2.7439 0.7648 5.382 7.1524 23.52%
NDCG@20 2.2568 1.6198 1.499 1.513 2.5197 2.4982 0.9427 1.0086 0.2777 2.5649 3.1455 22.64%

Beauty HR@20 12.6462 9.8723 9.5874 9.7294 15.2038 14.7346 7.5635 3.9204 0.6815 13.9102 16.8246 10.66%
NDCG@20 5.6347 3.9216 4.5894 4.3869 7.6509 7.5428 2.6558 1.4985 0.2728 7.3326 8.3214 8.76%

ML-100K HR@20 18.6858 10.1833 14.1129 9.6959 18.4538 19.3524 11.8659 8.1504 3.4395 16.0688 22.0699 14.04%
NDCG@20 7.1357 3.7504 5.0443 3.5048 7.1034 7.6313 4.0904 3.2905 1.3339 6.555 9.0028 17.97%

Sports HR@20 6.0511 4.255 4.4246 3.9261 6.4059 6.4759 2.8127 2.0019 0.7432 6.2174 8.1639 26.07%
NDCG@20 2.6069 1.7844 1.8463 1.6689 3.344 3.2259 0.9802 0.8447 0.2148 3.2067 3.6389 8.82%

Toys HR@20 5.6216 4.9423 4.3054 6.2075 10.7082 10.912 6.1481 1.5031 0.4755 9.859 12.0924 10.82%
NDCG@20 2.5605 1.9627 1.8942 3.3492 6.0517 6.2564 2.217 0.6266 0.1731 5.8508 6.7982 8.66%

Yelp HR@20 6.3762 4.0681 3.7219 3.005 6.6894 6.435 2.3459 1.9238 0.7681 6.7315 7.2433 7.60%
NDCG@20 2.5408 1.5224 1.4837 1.0783 2.5277 2.4252 0.8788 0.7804 0.2477 2.5951 2.8875 11.27%

for the one-step prediction strategy (shown in Appendix Figure
8), during inference, the noised target x𝑡 ∈ R𝐵×1×𝐷 is broadcast
across the sequence length dimension to align with the conditional
guidance c ∈ R𝐵×𝐿×𝐷 , inadvertently introducing noise into the his-
torical sequence and degrading the model’s inference performance.
The situation remains problematic for the per-step prediction strat-
egy. The sequence-level diffusion process requires the noise process
to remain consistent (shown in the middle of Appendix Figure 8).
The uniform noise process t = [𝑡, 𝑡, . . . , 𝑡, 𝑡] is applied to all target
tokens (x1:𝐿) from the maximum diffusion step 𝑇 down to zero.

A common compromise is to decouple the sequence modeling
from the diffusion process. Specifically, a sequence model is first em-
ployed to capture the correlations among historical items, and the
resulting representations are then passed into a diffusion module,
where a non-sequence model, such as an MLP, acts as the denoising
model [15, 30]. However, relying solely on an MLP for denoising
eliminates the opportunity to leverage shared attention mecha-
nisms between the historical sequence and the denoising target.
Such mechanisms could provide better guidance for denoising by
dynamically directing attention based on historical interactions.

The token-level diffusion process in ADRec provides substantial
advantages during the inference phase. Specifically, it allows us to
apply pure noise only to the last token position while setting the
noise schedule for the other positions to zero (as shown on the right
in Figure 3 and Appendix Figure 8). This approach ensures that,
during inference, ADRec can perform diffusion iterations on the
target item while still receiving guidance from the clean historical
sequence at each time step via attention. The time steps during the
inference phase are represented as follows:

t = [0, 0, . . . , 0,𝑇 ]

x𝑡 = [𝑥1
0 , 𝑥

2
0 , . . . , 𝑥

𝐿−1
0 , 𝑥𝐿𝑡 ]

(14)

4 Experiments
4.1 Experimental Settings
4.1.1 Datasets. We evaluate the effectiveness of ADRec using six
commonly used and publicly available datasets: Baby, Beauty,
Sports, Toys, ML-100K, and Yelp. We follow the common pre-
processing steps outlined in [12, 16] to ensure a minimum of 5

Table 3: Training complexity comparison. 𝐿 is the sequence
length and 𝑑 is the hidden size.

Model GRU4Rec SASRec+ DreamRec DiffuRec ADRec

Complexity O(𝐿𝑑2) O(𝐿𝑑2 + 𝑑𝐿2) O(𝐿𝑑2 + 𝑑𝐿2) O(𝐿𝑑2 + 𝑑𝐿2) O(𝐿𝑑2 + 𝑑𝐿2)

interactions associated with each user and item. Statistics of the
preprocessed datasets are summarized in Appendix Table 7.

4.1.2 Baselines. To comprehensively demonstrate the effective-
ness of ADRec, we select target models from various categories, as
follows:

• RNN-based: GRU4Rec (ICLR ’16) [9].
• Transformer-based: BERT4Rec [22] (CIKM ’19); LightSANs
[5] (SIGIR ’21); FEARec [4] (SIGIR ’23); SASRec+ [13] (RecSys
’23); EulerFormer [23] (SIGIR ’24).

• Embedding-enhancement: CORE [11] (SIGIR 22 short).
• VAE-based: SVAE [20] (WSDM ’19).
• Diffusion-based: DreamRec [30] (NeurIPS ’23); DiffuRec [16]
(TOIS ’23).

4.1.3 Evaluation Protocol. Similar to the setup in most existing
works, we partition the users into training, validation, and test sets
in a ratio of 8:1:1.We evaluate all methods using twowidely adopted
metrics: Hit Rate (HR) and Normalized Discounted Cumulative
Gain (NDCG). HR reflects the model’s retrieval ability, while NDCG
indicates its ranking performance. In all experiments, we report the
results as percentages.

4.1.4 Implementation Details. We set the maximum number of
training epochs to 500, with a validation interval of 5 epochs. Early
stopping is applied if the evaluation metric does not improve on the
validation set for four consecutive epochs. The training batch size
is fixed at 512; the Adam optimizer has a learning rate of 1 × 10−3

and a cosine annealing schedule. The embedding size and hidden
size are set to 128, and the maximum sequence length is set to 50
for all datasets. We use cross-entropy loss for all items without
negative sampling as the recommendation loss for all baselines. For
diffusion-based baselines, we use the truncated linear schedule for



Unlocking the Power of Diffusion Models in Sequential Recommendation: A Simple and Effective Approach KDD ’25, August 3–7, 2025, Toronto, ON, Canada

-79.8% -75.5% -93.4% -73.3% -45.6% -58.3%

Figure 4: Comparison of training time between ADRec and
other methods. "-xx%" indicates the reduction in training
time for ADRec compared to DiffuRec.

the noise process, with 32 diffusion steps, following [16]. Experi-
mental results show that ADRec is not sensitive to the number of
diffusion steps (see Appendix Figure 9). We evaluated each method
over five independent runs and reported the average results.

4.2 Overall Performance
In this section, we evaluate the performance of ADRec by compar-
ing it against ten baseline models across six datasets. The results
are presented in Table 2.

ADRec consistently outperforms all baselines, demonstrating its
superior performance. Specifically, compared to the best-performing
baselines, ADRec achieves average improvements of 15.45% on
HR@20 and 13.02% on NDCG@20. These significant improvements
underscore the effectiveness of ADRec in capturing three critical
aspects: maintaining a structured embedding space without col-
lapse, modeling token interdependency through auto-regression,
and jointly modeling per-token distributions through diffusion.

Notably, compared to SASRec+, which closely resembles the
pre-training stage of ADRec (stage 1 in Figure 3), the superiority
of ADRec lies in its distribution modeling capability enabled by
the diffusion model. In contrast, DreamRec and DiffuRec suffer
from embedding collapse due to inadequate architecture design and
training strategies, with performance often falling below that of
SASRec+.

4.3 Complexity and Training Time Analysis.
The time complexity of ADRec is solely determined by its Trans-
former backbone, i.e., O(𝑛𝑑2 + 𝑛2𝑑), with the diffusion process
introducing no additional overhead during training, thus matching
the complexity of most baselines, as shown in Table 3. During infer-
ence, the time complexity of all diffusion-based methods becomes
O(𝑇 × (𝑛𝑑2 +𝑛2𝑑)), where𝑇 denotes the number of diffusion steps.

For training time, we report the actual GPU wall-clock time from
the start of training to early stopping. Stage 1 of ADRec has a dura-
tion similar to SASRec+. Stage 2 lasts for only 5 epochs, resulting
in a very short training time. Stage 3 requires approximately the
same amount of time as Stage 1. As a result, the overall training
time of ADRec is approximately twice that of SASRec+.

DiffuRec computes the loss only on the last token of each se-
quence, sacrificing the parallelism of the Transformer. To cover

Table 4: Results (%) of ablation experiments conducted for
ADRec on six datasets.

Dataset Metric ADRec w/o warm-up w/o pre-train w/o mse w/o CAM MLP

baby HR@20 7.1524 6.7507 4.5217 4.0439 7.0320 6.8216
NDCG@20 3.1455 2.9535 2.1488 1.9483 3.0853 2.8186

beauty HR@20 16.8246 15.7483 13.233 12.6733 16.0798 16.0738
NDCG@20 8.3214 8.1056 6.9819 6.7209 7.9479 8.0568

ml-100k HR@20 22.0699 21.0144 14.835 13.2913 18.9609 20.0558
NDCG@20 9.0028 8.3206 5.5249 5.3358 7.5569 7.8465

sports HR@20 8.1639 7.2156 5.9635 5.6443 8.0550 7.6604
NDCG@20 3.6389 3.7413 3.0097 2.9709 3.5146 3.1831

toys HR@20 12.0924 11.9226 9.3835 8.2456 12.0264 11.4461
NDCG@20 6.7982 6.6113 5.4178 4.8172 6.5298 6.1759

yelp HR@20 7.2433 6.9927 7.0224 5.6989 4.9116 6.9563
NDCG@20 2.8875 2.8597 2.7823 2.2123 1.9548 2.4569

all interactions, DiffuRec splits a sequence of length 𝑛 into 𝑛−1
subsequences, where each interaction serves as the last token of a
subsequence. This process expands the dataset size by a factor of
𝑛, leading to an approximate 𝑛-fold increase in training time per
epoch.

Despite using a three-stage training strategy, ADRec reduces
total training time by an average of 70.98% across the six datasets
compared to DiffuRec (see Figure 4).

4.4 Ablation Study
To evaluate the effectiveness of each design choice in ADRec, we
perform ablation studies with four variants:

- (Variant 1) w/o warm-up: ADRec without warmup stage (train-
ing stage 2).

- (Variant 2) w/o pre-train: ADRec trained in an end-to-end man-
ner without pre-training.

- (Variant 3) w/o MSE: End-to-end ADRec without the denoising
loss L𝑚𝑠𝑒 (x̂, x).

- (Variant 4) w/o CAM: ADRec removed CAM module.
- (Variant 5) MLP: ADRec with an MLP as the denoising model.

Table 4 presents the ablation results across six datasets. Com-
paring the original ADRec with Variant 1 reveals that aligning
pre-trained embeddings with the model backbone is crucial for per-
formance. The significant performance drop, compared to Variant
2, emphasizes the importance of the three-stage training strategy,
which provides a meaningful and structured embedding space to
the diffusion module and mitigates embedding collapse. In contrast
to Variant 3, we find that jointly optimizing the denoising loss and
recommendation loss is essential for effectively deploying the dif-
fusion model, leading to improved recommendation performance.
Without CAM, compared with Variant 4, ADM can still extract
historical interaction information through self-attention, but a per-
formance drop is observed, especially on ML-100K and Yelp. Finally,
when comparing with Variant 5, which employs an MLP for denois-
ing, we observe that even with the same MLP architecture used
in DreamRec, ADRec’s careful architectural design and training
strategy still ensure superior performance. In comparison, Dream-
Rec’s performance is nearly equivalent to random recommendation,
underscoring the effectiveness of our approach.



KDD ’25, August 3–7, 2025, Toronto, ON, Canada Jialei Chen, Yuanbo Xu, & Yiheng Jiang

Table 5: Comprehensive evaluation of embedding representations in the original embedding space.

Dataset Model Top 5 Singular Values Singular Value Variance ↑ Singular Value Entropy ↓ Covariance Matrix Entropy ↓ Isotropy Score ↓ KL Div. to Gaussian ↑

Baby

DreamRec [80.58, 80.09, 79.91, 79.02, 78.75] 35.29 4.85 4.83 0.51 0.96
DiffuRec [106.31, 90.62, 85.69, 81.53, 81.36] 66.94 4.85 4.82 0.13 1.83
SASRec+ [84.74, 79.90, 79.44, 78.92, 78.59] 38.89 4.85 4.84 0.24 1.09
ADRec [247.88, 164.00, 145.34, 138.33, 130.06] 1017.59 4.74 4.33 0.02 10.38

Beauty

DreamRec [89.70, 88.48, 88.32, 87.74, 87.62] 33.16 4.85 4.84 0.56 0.70
DiffuRec [129.98, 116.93, 113.33, 97.61, 97.35] 108.99 4.84 4.81 0.10 2.25
SASRec+ [128.70, 125.14, 106.41, 97.86, 94.20] 101.55 4.84 4.81 0.09 2.11
ADRec [177.19, 159.37, 145.52, 137.74, 126.75] 995.55 4.76 4.51 0.02 10.37

ML-100K

DreamRec [43.16, 42.64, 42.42, 41.83, 41.47] 33.56 4.84 4.78 0.23 4.41
DiffuRec [55.42, 49.44, 44.24, 42.55, 41.41] 38.75 4.83 4.77 0.04 5.15
SASRec+ [47.37, 42.03, 41.78, 41.60, 41.50] 39.33 4.83 4.78 0.11 4.60
ADRec [90.91, 82.50, 71.20, 63.54, 53.68] 122.57 4.80 4.55 0.04 10.43

Sports

DreamRec [122.18, 121.81, 121.40, 121.04, 120.88] 33.16 4.85 4.85 0.66 0.35
DiffuRec [220.33, 182.85, 172.72, 151.13, 137.70] 347.81 4.84 4.79 0.09 3.43
SASRec+ [133.91, 125.74, 122.40, 122.00, 120.98] 68.15 4.85 4.84 0.13 0.81
ADRec [415.16, 355.94, 317.40, 275.30, 257.72] 4333.00 4.65 3.97 0.01 10.37

Toys

DreamRec [109.57, 107.46, 106.19, 104.88, 103.48] 91.02 4.85 4.82 0.40 1.59
DiffuRec [139.38, 135.46, 117.65, 106.74, 105.77] 138.12 4.84 4.81 0.10 2.39
SASRec+ [103.28, 97.70, 96.78, 96.15, 95.16] 52.63 4.85 4.84 0.13 1.03
ADRec [182.03, 156.40, 148.03, 139.77, 137.68] 1243.76 4.75 4.51 0.01 10.37

Yelp

DreamRec [265.59, 265.08, 264.78, 264.31, 264.19] 32.51 4.85 4.85 0.84 0.06
DiffuRec [772.81, 690.32, 623.17, 587.23, 577.26] 13798.54 4.75 4.27 0.03 10.36
SASRec+ [843.78, 675.20, 636.04, 625.65, 568.57] 12385.48 4.77 4.30 0.03 10.36
ADRec [810.29, 781.18, 625.42, 566.81, 541.51] 18955.47 4.68 4.12 0.01 10.36

Table 6: Linear Probe accuracy of different models on ML-
100K. Each item is multi-class, with a total of 26 classes.

DreamRec DiffuRec SASRec+ ADRec

Precision 20% 35% 42% 44%
Recall 14% 30% 40% 46%
F1-score 16% 31% 40% 46%

4.5 Embedding Collapse
4.5.1 t-SNE Visualization. Recent studies [6] have highlighted that
diffusion models excel not only in continuous generation tasks but
also in representation learning. To illustrate that ADRec can learn a
more structured representation space, we visualize the embedding
weights of ADRec, DiffuRec, DreamRec, and SASRec+ (the latter
is also considered as ADRec in its pre-training stage) using T-SNE
[24], as shown in Figure 1 and Appendix Figure 10.

We begin by focusing on the shapes of the visualizations. The
embeddings of DiffuRec and DreamRec closely resemble isotropic
standard Gaussian noise, particularly in their contour shapes, which
indicate embedding collapse. While ADRec retains distinct struc-
tured features. More importantly, the scale of the representation
space expanded clearly in ADRec. As indicated by the scale label
in the top-left corner of the figure, ADRec effectively enlarges the
weak representation space in the pre-train stage (similar to SAS-
Rec+), making the embeddings more distinguishable.

4.5.2 Comprehensive Evaluation of Embedding Collapse in Original
Embedding Space. Beyond the t-SNE visualizations, we provide
additional quantitative analyses in the original embedding space,
as presented in Table 5:
- Top-5 singular values and singular value variance are much
higher in ADRec, indicating strong principal component dom-
inance and the ability to capture more discriminative features.
Other models (especially DreamRec) show flatter singular values,
implying weak feature directions.

- Singular value entropy, covariance entropy, and isotropy score are
lower for ADRec, demonstrating more directional (anisotropic)

Baby
Beauty

ML-100K
Sports Toys Yelp

0

5

10

15

20

HR@20

Baby
Beauty

ML-100K
Sports Toys Yelp

0

2

4

6

8

10
NDCG@20

SASRec+ XATTN = 1 = 0.1 = 0.01 = 0.001

Figure 5: Comparison of ADRec with linear integration using
different 𝜆 coefficients and cross-attention integration, with
SASRec+ as a baseline.

embeddings and better parameter efficiency. This highlights an-
other aspect of ADRec’s superior performance: ADRec does not
just have more information; it has information concentrated in
effective directions.

- Silhouette scores are also higher for ADRec, suggesting clearer
clustering among item embeddings.

All these metrics indicate that the characteristics of the original em-
bedding space for all DM based models align closely with the visual-
izations produced by t-SNE. DreamRec still resembles a Gaussian dis-
tribution, similar to randomly initialized embeddings, while ADRec
exhibits the most anisotropy.

4.5.3 Linear Probing. We also conduct a linear probing experi-
ment to further confirm the importance of the expanded and struc-
tured embedding space in ADRec. The experimental details are pro-
vided in Appendix Section C. From the results in Table 6, it is clear
that ADRec achieves the best performance across all three metrics,
whereas DiffuRec and DreamRec suffer from poor performance due
to embedding collapse. Compared to SASRec+, the expanded em-
bedding space of ADRec enhances the model’s ability to recognize
embeddings, thereby improving its overall performance.



Unlocking the Power of Diffusion Models in Sequential Recommendation: A Simple and Effective Approach KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Warm Up Full Parameter Training

Figure 6: Training loss curves on the Yelp dataset. “w. PCGrad”
denotes ADRec trained using the PCGrad framework. The
pre-training stage of ADRec is omitted for clarity.

4.6 Feature Aggregation Method
In this section, we explore various feature aggregation methods.
Specifically, as illustrated in Figure 5, we investigate the impact of
varying 𝜆 coefficients in the linear integration method, following
the approach used in DiffuRec. Our results indicate that ADRec
demonstrates considerable robustness to changes in 𝜆, with most
settings outperforming SASRec+. A moderate enhancement in the
efficacy of recommendations is noted as 𝜆 diminishes.

Notably, the training strategy of ADRec enhances the robustness
of the embedding space, enabling the sequence model to tolerate
greater noise introduced into the historical sequence without caus-
ing significant degradation of the embeddings. In contrast, DiffuRec
is highly sensitive to 𝜆, as highlighted in the original paper. For
example, when 𝜆 = 0.1, performance declines by up to 80% com-
pared to 𝜆 = 0.001, which worsens the collapse of DiffuRec’s weak
embedding space. Furthermore, we experimented with feature inte-
gration using cross-attention; however, this approach resulted in
decreased performance.

4.7 Joint Optimization Objective of ADRec
Diffusion-based recommendation models frequently encounter the
challenge of selecting the appropriate training objective.

Figure 6 illustrates the training loss curve on Yelp. We observe
that DiffuRec and DreamRec, which focus on a single objective,
experience degradation in the other objective, adversely affecting
overall recommendation performance. In contrast, for ADRec, we
notice that losses display a distinct step-wise pattern throughout
training. During the backbone warm-up stage, the convergence for
the recommendation loss (CE) and denoising loss indicates align-
ment between the backbone network and the pre-trained embed-
ding weights. In the full-parameter training phase, the recommen-
dation loss continues to decline, suggesting further optimization of
the embedding weights. Although the denoising loss shows a slight
upward trend, it remains minimal compared to DiffuRec.

Baby
Beauty

ML-100K
Sports Toys Yelp

0

5

10

15

20

HR@20

Baby
Beauty

ML-100K
Sports Toys Yelp

0

2

4

6

8

10
NDCG@20

ADRec w. PCGrad

Figure 7: Performance impact of introducing the PCGrad
framework on six datasets.

Li et al. [15] argues that a joint training objective of CE and
MSE may lead to potential gradient conflicts. To verify this, we
incorporate the PCGrad technique [31] into ADRec, which projects
conflicting gradients to maintain an acute angle between their
directions during optimization.

The joint optimization objective can be viewed as a trade-off
between the generation and classification tasks. After incorporating
the PCGrad framework, the degradation in denoising loss is notably
suppressed; however, the recommendation loss does not reach the
original ADRec level. And a slight degradation in recommendation
performance is observed in Figure 7. In contrast to prior approaches,
ADRec demonstrates only mild gradient conflict. While its opti-
mization leans toward the recommendation objective, it maintains
a meaningful level of denoising learning—unlike DiffuRec, which
effectively neglects it. This balanced trade-off plays a key role in
enhancing recommendation quality.

5 Conclusion
In this paper, we identify and address the embedding collapse prob-
lem in diffusion-based sequential recommendation models. We pro-
pose ADRec, a novel framework that integrates an auto-regressive
strategy with a token-level diffusion process. By decoupling em-
bedding optimization into semantic pretraining and subsequent
denoising, the proposed three-stage training strategy effectively
prevents embedding collapse that can occur when denoising is ap-
plied directly to randomly initialized embeddings. By tackling key
challenges such as weak representation spaces and embedding col-
lapse, ADRec significantly improves the model’s capacity to learn
meaningful item distributions and sequence dynamics.

While our results demonstrate significant advancements, there
remains considerable potential for further improvement in utilizing
diffusion models for recommendation systems. ADRec provides a
solid foundation for diffusion-based sequential recommendation
methods, with opportunities for future enhancements.

Acknowledgments
This work is supported by the Natural Science Foundation of China
No. 62472196, Jilin Science and Technology Research Project 202301
01067JC, National Key R&D Program of China under Grant No. 2021
ZD0112501 and 2021ZD0112502, National Natural Science Founda-
tion of China under Grant No. 62272193, National Key R&DProgram
of China under Grant Nos. 2022YFB3103700 and 2022YFB3103702.



KDD ’25, August 3–7, 2025, Toronto, ON, Canada Jialei Chen, Yuanbo Xu, & Yiheng Jiang

References
[1] Boyuan Chen, Diego Marti Monso, Yilun Du, Max Simchowitz, Russ Tedrake,

and Vincent Sitzmann. 2024. Diffusion Forcing: Next-token Prediction Meets
Full-Sequence Diffusion. doi:10.48550/arXiv.2407.01392 arXiv:2407.01392

[2] Xinlei Chen, Zhuang Liu, Saining Xie, and Kaiming He. 2024. Deconstruct-
ing denoising diffusion models for self-supervised learning. arXiv preprint
arXiv:2401.14404 (2024).

[3] Hanwen Du, Huanhuan Yuan, Zhen Huang, Pengpeng Zhao, and Xiao-
fang Zhou. 2023. Sequential Recommendation with Diffusion Models.
arXiv:2304.04541 [cs.IR] https://arxiv.org/abs/2304.04541

[4] Xinyu Du, Huanhuan Yuan, Pengpeng Zhao, Jianfeng Qu, Fuzhen Zhuang,
Guanfeng Liu, and Victor S. Sheng. 2023. Frequency Enhanced Hybrid At-
tention Network for Sequential Recommendation. arXiv:2304.09184 [cs.IR]
https://arxiv.org/abs/2304.09184

[5] Xinyan Fan, Zheng Liu, Jianxun Lian, Wayne Xin Zhao, Xing Xie, and Ji-Rong
Wen. 2021. Lighter and better: low-rank decomposed self-attention networks for
next-item recommendation. In Proceedings of the 44th international ACM SIGIR
conference on research and development in information retrieval. 1733–1737.

[6] Michael Fuest, PingchuanMa, Ming Gui, Johannes S. Fischer, Vincent Tao Hu, and
Bjorn Ommer. 2024. Diffusion Models and Representation Learning: A Survey.
arXiv:2407.00783 [cs.CV] https://arxiv.org/abs/2407.00783

[7] Zhujin Gao, Junliang Guo, Xu Tan, Yongxin Zhu, Fang Zhang, Jiang Bian, and
Linli Xu. 2024. Empowering Diffusion Models on the Embedding Space for Text
Generation. arXiv:2212.09412 [cs.CL] https://arxiv.org/abs/2212.09412

[8] Adi Haviv, Ori Ram, Ofir Press, Peter Izsak, and Omer Levy. 2022. Transformer
language models without positional encodings still learn positional information.
arXiv preprint arXiv:2203.16634 (2022).

[9] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2016. Session-based Recommendations with Recurrent Neural Networks.
arXiv:1511.06939 [cs.LG] https://arxiv.org/abs/1511.06939

[10] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising Diffusion Proba-
bilistic Models. In Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual.

[11] Yupeng Hou, Binbin Hu, Zhiqiang Zhang, and Wayne Xin Zhao. 2022. CORE:
Simple and Effective Session-based Recommendation within Consistent Repre-
sentation Space. In SIGIR.

[12] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In 2018 IEEE international conference on data mining (ICDM). IEEE,
197–206.

[13] Anton Klenitskiy and Alexey Vasilev. 2023. Turning Dross Into Gold Loss: is
BERT4Rec really better than SASRec?. In Proceedings of the 17th ACM Conference
on Recommender Systems. 1120–1125.

[14] Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. 2024.
Autoregressive Image Generation without Vector Quantization. NeurIPS 2024
(2024).

[15] Wuchao Li, Rui Huang, Haijun Zhao, Chi Liu, Kai Zheng, Qi Liu, Na Mou, Guorui
Zhou, Defu Lian, Yang Song, Wentian Bao, Enyun Yu, and Wenwu Ou. 2024.
DimeRec: A Unified Framework for Enhanced Sequential Recommendation via
Generative Diffusion Models. doi:10.48550/arXiv.2408.12153 arXiv:2408.12153

[16] Zihao Li, Aixin Sun, and Chenliang Li. 2023. DiffuRec: A Diffusion Model for
Sequential Recommendation. doi:10.48550/arXiv.2304.00686 arXiv:2304.00686

[17] Jianghao Lin, Jiaqi Liu, Jiachen Zhu, Yunjia Xi, Chengkai Liu, Yangtian Zhang,
Yong Yu, and Weinan Zhang. 2024. A Survey on Diffusion Models for Recom-
mender Systems. doi:10.48550/arXiv.2409.05033 arXiv:2409.05033 [cs]

[18] Yong Niu, Xing Xing, Zhichun Jia, Ruidi Liu, Mindong Xin, and Jianfu Cui. 2024.
Diffusion Recommendation with Implicit Sequence Influence. In Companion
Proceedings of the ACM Web Conference 2024 (Singapore, Singapore) (WWW
’24). Association for Computing Machinery, New York, NY, USA, 1719–1725.
doi:10.1145/3589335.3651951

[19] Liwei Pan, Weike Pan, Meiyan Wei, Hongzhi Yin, and Zhong Ming. 2024. A
Survey on Sequential Recommendation. arXiv:2412.12770 [cs.IR] https://arxiv.
org/abs/2412.12770

[20] Noveen Sachdeva, Giuseppe Manco, Ettore Ritacco, and Vikram Pudi. 2019. Se-
quential variational autoencoders for collaborative filtering. In Proceedings of the
twelfth ACM international conference on web search and data mining. 600–608.

[21] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano
Ermon, and Ben Poole. 2020. Score-based generative modeling through stochastic
differential equations. arXiv preprint arXiv:2011.13456 (2020).

[22] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential recommendation with bidirectional encoder rep-
resentations from transformer. In Proceedings of the 28th ACM international
conference on information and knowledge management. 1441–1450.

[23] Zhen Tian, Wayne Xin Zhao, Changwang Zhang, Xin Zhao, Zhongrui Ma, and Ji-
RongWen. 2024. EulerFormer: Sequential User Behavior Modeling with Complex
Vector Attention. arXiv:2403.17729 [cs.IR] https://arxiv.org/abs/2403.17729

[24] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, 11 (2008).

[25] A Vaswani. 2017. Attention is all you need. Advances in Neural Information
Processing Systems (2017).

[26] Shoujin Wang, Liang Hu, Yan Wang, Longbing Cao, Quan Z Sheng, and Mehmet
Orgun. 2019. Sequential recommender systems: challenges, progress and
prospects. In 28th International Joint Conference on Artificial Intelligence, IJCAI
2019. International Joint Conferences on Artificial Intelligence, 6332–6338.

[27] Wenjie Wang, Yiyan Xu, Fuli Feng, Xinyu Lin, Xiangnan He, and Tat-Seng
Chua. 2023. Diffusion Recommender Model. doi:10.48550/arXiv.2304.04971
arXiv:2304.04971

[28] Yu Wang, Zhiwei Liu, Liangwei Yang, and Philip S. Yu. 2023. Conditional De-
noising Diffusion for Sequential Recommendation. arXiv:2304.11433 [cs.LG]
https://arxiv.org/abs/2304.11433

[29] Weilai Xiang, Hongyu Yang, Di Huang, and Yunhong Wang. 2023. Denoising
Diffusion Autoencoders are Unified Self-supervised Learners. In Proceedings of
the IEEE/CVF International Conference on Computer Vision.

[30] Zhengyi Yang, Jiancan Wu, Zhicai Wang, Xiang Wang, Yancheng Yuan, and
Xiangnan He. 2023. Generate What You Prefer: Reshaping Sequential Recom-
mendation via Guided Diffusion. doi:10.48550/arXiv.2310.20453 arXiv:2310.20453

[31] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and
Chelsea Finn. 2020. Gradient surgery for multi-task learning. Advances in Neural
Information Processing Systems 33 (2020), 5824–5836.

A Related Works
A.1 Traditional Sequential Recommendation
Recent sequential recommendation (SR) advancements have lever-
aged powerful deep neural networks to capture item interdepen-
dencies. GRU4Rec [9] employs a gated recurrent unit (GRU) to
model the temporal dependencies within user sequences. SASRec
[12] adopts a multi-layer transformer architecture to efficiently
model sequence interactions. SASRec+ [13], an enhancement of
SASRec, replaces the original binary cross-entropy loss with cross-
entropy loss, significantly improving performance. BERT4Rec [22]
extends this approach by incorporating bidirectional transformer
layers and using a Cloze task to capture user sequence patterns
better. LightSANs [5] introduces a low-rank decomposition to the
self-attention mechanism, enhancing both the efficiency and effec-
tiveness of transformer-based SR models. EulerFormer [23] intro-
duces a unified theoretical framework to capture both semantic and
positional differences between items in a transformer, enhancing
the model’s expressive power in sequence modeling. These meth-
ods have demonstrated strong sequence modeling capabilities and
provide valuable insights for our work.

A.2 Diffusion Models for SR
In recent years, diffusion models have been increasingly applied to
sequential recommendation, aiming to improve the quality of the
embedding space. DiffRec [27] falls within the collaborative recom-
mendation domain, where it predicts whether a user will interact
with each item. DreamRec [30] employs a diffusionmodel to explore
the underlying distribution of target items, generating an oracle
next-item embedding that aligns with user preferences, eliminating
the need for negative sampling. DiffRIS [18] enhances behavior
sequence-based guidance representations by explicitly modeling
both long- and short-term user interests. However, DiffRec and
DreamRec rely solely on denoising loss, which does not align with
the recommendation task. DiffuRec [16], the most substantial open-
source baseline, performs denoising only on the final target item,
using cross-entropy loss. This approach limits the model’s capac-
ity to capture sequence dynamics and item distribution. DimeRec
[15] introduces joint training by applying both denoising loss and

https://doi.org/10.48550/arXiv.2407.01392
https://arxiv.org/abs/2407.01392
https://arxiv.org/abs/2304.04541
https://arxiv.org/abs/2304.04541
https://arxiv.org/abs/2304.09184
https://arxiv.org/abs/2304.09184
https://arxiv.org/abs/2407.00783
https://arxiv.org/abs/2407.00783
https://arxiv.org/abs/2212.09412
https://arxiv.org/abs/2212.09412
https://arxiv.org/abs/1511.06939
https://arxiv.org/abs/1511.06939
https://doi.org/10.48550/arXiv.2408.12153
https://arxiv.org/abs/2408.12153
https://doi.org/10.48550/arXiv.2304.00686
https://arxiv.org/abs/2304.00686
https://doi.org/10.48550/arXiv.2409.05033
https://arxiv.org/abs/2409.05033
https://doi.org/10.1145/3589335.3651951
https://arxiv.org/abs/2412.12770
https://arxiv.org/abs/2412.12770
https://arxiv.org/abs/2412.12770
https://arxiv.org/abs/2403.17729
https://arxiv.org/abs/2403.17729
https://doi.org/10.48550/arXiv.2304.04971
https://arxiv.org/abs/2304.04971
https://arxiv.org/abs/2304.11433
https://arxiv.org/abs/2304.11433
https://doi.org/10.48550/arXiv.2310.20453
https://arxiv.org/abs/2310.20453


Unlocking the Power of Diffusion Models in Sequential Recommendation: A Simple and Effective Approach KDD ’25, August 3–7, 2025, Toronto, ON, Canada

2 4 8 16 32 64
Diffusion steps

7.5

10.0

12.5

15.0

17.5

20.0

22.5

HR
@

20

2 4 8 16 32 64
Diffusion steps

3

4

5

6

7

8

ND
CG

@
20

Baby Beauty ML-100K Sports Toys Yelp

Figure 9: Recall@20 and NDCG@20 at different diffusion
steps

Broadcast
Training

Inference

+ + + +

T
+ + + +

t t t t

T T T

One-Step Prediction
Sequence-level Diffusion

Broadcast

Mismatch

t t t t
+ + + +

T T T T
+ + + +

Per-Step Prediction
Sequence-level Diffusion

Mismatch

t1 t2 t3 t4
+ + + +

0 0 0 T
+ + + +

Per-Step Prediction
Token-level Diffusion

tNoised token Pure noise TClean token 0

Figure 8: Diagrams of different auto-regressive strategies and
diffusion strategies.

Table 7: Statistics of datasets after preprocessing.

Baby Beauty ML-100K Sports Toys Yelp

Users 11761 10553 938 22686 11268 136346
Items 4731 6086 1008 12301 7309 64669
Interactions 92613 94119 54457 185779 95468 1857033
Avg. length 7.89 8.92 58.01 8.19 8.47 13.62
Sparsity 99.62% 99.74% 94.50% 99.63% 99.95% 99.98%

Table 8: The impact of positional encoding on ADRec perfor-
mance. "with PE" means ADRec with positional encoding.

Model Metric Baby Beauty ML-100K Sports Toys Yelp

ADRec HR@20 7.1524 16.8246 22.0699 8.1639 12.0924 7.2433
NDCG@20 3.1455 8.3214 9.0028 3.6389 6.7982 2.8875

with PE HR@20 7.0034 16.3726 21.0172 7.9949 11.5668 7.5212
NDCG@20 2.9843 7.8961 8.4448 3.2769 5.8444 3.1355

recommendation loss to the final output item and mitigates gra-
dient conflicts in the joint loss by introducing noise to the final
target item embedding using a complex geodesic random walk.
However, existing diffusion-based methods rarely address the issue
of embedding collapse.

B Adjusted preprocessing strategy for DiffuRec
DiffuRec originally adopted a subsequence splitting strategy that
may unfairly leverage more training data. For instance, given a
sequence of length 200 with a maximum truncation length of 50,
standard preprocessing keeps only the last 50 interactions. In con-
trast, DiffuRec splits all 200 interactions into training subsequences.
To ensure a fair comparison with other baselines, we revised its pre-
processing pipeline: sequences are first truncated to the maximum
length and only then split into subsequences.

C Linear Probe
To verify whether the model has formed a structured embedding
representation, we conducted a linear probing experiment on the
ML-100K dataset. We first load the trained embedding weights,
perform a batch normalization (BatchNorm1d) operation, and then
feed them into a linear classification head. During training, the
embedding weights are frozen. In the ML-100K dataset, each item
has 26 category attributes: [’Action’, ’Crime’, ’Film-Noir’, ’Musical’,
’Sci-Fi’, ’Adventure’, ’Animation’, ’Biography’, ’Comedy’, ’Documen-
tary’, ’Drama’, ’Family’, ’Fantasy’, ’Game-Show’, ’History’, ’Horror’,
’Music’, ’Mystery’, ’News’, ’Reality-TV’, ’Romance’, ’Short’, ’Sport’,
’Talk-Show’, ’Thriller’, ’War’, ’Western’]. We use a BCE loss func-
tion, with an Adam optimizer and a learning rate of 0.01, and train
for 20 epochs.

D Positional Encoding
We find that ADRec does not require positional encoding. Adding
positional encoding leads to a slight decrease in performance (Figure
8 in the Appendix). This is similar to the conclusion in [8], where it
was observed that in some tasks, causal attention allows the model
to approximate the absolute position of each token by inferring the
number of preceding tokens it can attend to. This is closely related
to the per-step prediction auto-regressive strategy we employ.

It becomes more complicated when introducing diffusion models.
Potential insights based on our understanding are as follows:
- The noisy input at each diffusion step may already be disrupted,
rendering the positional encoding information unstable or mean-
ingless.

- Forcing positional encoding may lead the Transformer to learn
“pseudo-patterns,” introducing additional bias and interfering
with the true denoising process.

- Positional encoding also acts as meaningless noise for the diffu-
sion model, deviating from the assumption that noise gradually
converges to a Gaussian distribution.

E Diffusion Steps
In Appendix Figure 9, we demonstrate that ADRec is not sensitive to
the diffusion time steps. This could be because the auto-regressive
and diffusion models jointly drive the recommendation results.
The discriminative power of the auto-regressive model over the
structured embedding space defines the lower bound of ADRec’s
performance, while a substantial embedding space relies on the
distribution modeling capabilities of the diffusion model.



KDD ’25, August 3–7, 2025, Toronto, ON, Canada Jialei Chen, Yuanbo Xu, & Yiheng Jiang
(c

) 
M

L-
1

0
0

K

HR@20: 3.44 NDCG@20: 1.33 HR@20: 16.07 NDCG@20: 6.56 HR@20: 18.45 NDCG@20: 7.10 HR@20: 22.07 NDCG@20: 9.00

(d
) 

S
p

or
ts

HR@20: 0.74 NDCG@20: 0.21 HR@20: 6.22 NDCG@20: 3.21 HR@20: 6.41 NDCG@20: 3.34 HR@20: 8.16 NDCG@20: 3.64

(e
) 

To
ys

HR@20: 0.48 NDCG@20: 0.17 HR@20: 9.86 NDCG@20: 5.85 HR@20: 10.71 NDCG@20: 6.05 HR@20: 12.09 NDCG@20: 6.80

Normal Distribution DreamRec

HR@20: 0.76 NDCG@20: 0.28

(a
) 

B
ab

y

DiffuRec

HR@20: 5.38 NDCG@20: 2.56

SASRec+

HR@20: 5.53 NDCG@20: 2.52

ADRec (ours)

HR@20: 7.15 NDCG@20: 3.15

HR@20: 0.68 NDCG@20: 0.27

(b
) 

B
ea

u
ty

HR@20: 13.91 NDCG@20: 7.33 HR@20: 15.20 NDCG@20: 7.65 HR@20: 16.82 NDCG@20: 8.32

(f
) 

Y
el

p

HR@20: 0.77 NDCG@20: 0.25 HR@20: 6.73 NDCG@20: 2.60 HR@20: 6.69 NDCG@20: 2.53 HR@20: 7.24 NDCG@20: 2.89

Figure 10: t-SNE results on six datasets.


	Abstract
	1 Introduction
	2 Background
	2.1 Diffusion Models
	2.2 Sequential Recommendation

	3 Methodology
	3.1 Auto-regressive strategy
	3.2 ADRec Architecture
	3.3 Training Objective
	3.4 Training Strategy
	3.5 Inference Strategy

	4 Experiments
	4.1 Experimental Settings
	4.2 Overall Performance
	4.3 Complexity and Training Time Analysis.
	4.4 Ablation Study
	4.5 Embedding Collapse
	4.6 Feature Aggregation Method
	4.7 Joint Optimization Objective of ADRec

	5 Conclusion
	Acknowledgments
	References
	A Related Works
	A.1 Traditional Sequential Recommendation
	A.2 Diffusion Models for SR

	B Adjusted preprocessing strategy for DiffuRec
	C Linear Probe
	D Positional Encoding
	E Diffusion Steps

