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Abstract—With the boosting of neural networks, recommendationmethods become significantly improved by their powerful ability of

prediction and inference. Existing neural-network based recommender systems (NN-RSs) usually first employmatrix embedding (ME) as

a pre-process to learn users’ and items’ representations (latent vectors), then input these representations to a specificmodified neural

network framework tomake accurate Top-k recommendations. Obviously, the performance ofME has a significant effect onRSmodels.

However, most NN-RSs focus on accuracy by building representations from the direct user-item interactions (e.g., user-item ratingmatrix),

while ignoring the underlying relatedness between users and items (e.g., userswho rate the same ratings for the same items should be

embedded into similar representations), which is an ideological disadvantage. On the other hand,MEmodels directly employ inner products

as a default loss functionmetric that cannot project users and items into a proper latent space, which is amethodological disadvantage. In

this paper, we propose a supervised collaborative representation learningmodel -MagneticMetric Learning (MML) - tomapusers and items

into a unified latent vector space, enhancing the representation learning for NN-RSs. First, MML utilizes dual triplets tomodel not only the

observed relationships between users and items, but also the underlying relationships between users aswell as items to overcome the

ideological disadvantage. Specifically, amodifiedmetric-based dual loss function is proposed inMML to gather similar entities and disperse

the dissimilar ones.WithMML,we can easily compare all the relationships (user to user, item to item, user to item) according to theweighted

metric, which overcomes themethodological disadvantage.We conduct extensive experiments on four real-world datasetswith large item

space. The results demonstrate that MML can learn a proper unified latent space for representations from the user-itemmatrix with high

accuracy and effectiveness, and lead to a performance gain over the state-of-the-art RSmodels by an average of 17 percent.

Index Terms—Latent vectors, collaborative representation learning, metric learning, recommender systems

Ç

1 INTRODUCTION

IN recent years, popular online commercial websites such
as Netflix, Amazon, Yelp, and Taobao provide a wide

spectrum of recommendation services to help the customers
filter their preferences out of enormous product space [1].
However, the performance of traditional recommendation
models, such as collaborative filtering (CF) [2], matrix fac-
torization (MF) [3] is highly restricted by the large scale of
product space. With the development of neural networks
and computation theory, the technology of recommender
systems has been taken to the next stage [4]. To tackle large
scale products for recommendations, most neural-network-
based recommender systems first extract latent vectors of
users and items from a user-itemmatrix. This extraction pro-
cedure is called matrix embedding (ME) [5], which is a criti-
cal factor in getting accurate recommendations, especially

for learning meaningful, measurable latent vectors. With
these latent vectors, some traditional recommendation mod-
els are enhanced for real-world applications, such as CF to
NCF [6], MF to NeuMF [7]. Some novel NN-based recom-
mendation models are also proposed, such as GERL [8],
NeuO [9] andHERec [10].

However, most researches assume that these latent vec-
tors learned by existing ME models are insufficient and
biased [4], without taking the interpretability into consider-
ation [4], [11]. In other words, traditional ME only utilizes
the relationships between users and items, while ignoring
that the collaborative relationships between users and users,
items and items, which is an ideological disadvantage. More-
over, most existing works directly utilize inner products to
measure the relationships between users and items. This
simple metric may cause chaos when computing similari-
ties, which is a methodological disadvantage.

To make the above two disadvantages clear, we give a rec-
ommendation scenario in Fig. 1, where we employ basic
matrix factorization as ME model and user-based collabora-
tive filtering (UBCF [12]) as recommendation model. In this
example, Uðu1; u2; u3Þ and Iði1; i2; i3Þ represent users and
items, respectively.R is a user-item ratingmatrix with ratings
rij. P and Q are built with 3-dimensional embedding results
(pi for user i, qj for user j), extracted frommatrixRwith exist-
ing ME models, such as SVD or other matrix factorization
methods. To pick a proper item recommended to u2, we
employ a popular recommendation model (user-based CF,
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UBCF)with users’ latent vectors. User-basedCF calculates the
similarities among u1; u2; u3 to pick the Top-1 user neighbor
for u2. Then it recommends items that this Top-1 user has con-
sumed to u2.

As a result in Fig. 1, in ideology (note that UBCF model
uses inner products to calculate latent vectors while the simi-
larity between latent vectors is measured by euclidean dis-
tance [11]). Intuitively, UBCF should pick u3 as u2’s Top-1
neighbor because ðp1; p2ÞE ¼ ffiffiffiffiffi

12
p

> ðp3; p2ÞE ¼ ffiffiffi
5

p
. But in

fact, when considering the underlying relationship (between
u1 and u2) hidden inmatrixR, it is obvious that u1 should be a
better choice (u1 and u2 share the same preference of i1 and i3
according to their explicit feedbacks r11, r13, r21 and r23).
Hence, choosing u3 as u2’s neighbor is an inaccurate decision
caused by the ideological disadvantage, which is partly men-
tioned in [13], [14].

In methodology, directly choosing inner products as the
metric may cause a dilemma, especially for CF models. In
general, CF models employ euclidean distance between
latent vectors as the similarity to find the nearest neighbor
[4], where the latent vectors are learned by using inner
products in traditional ME models [15]. To ensure the met-
ric-satisfying non-negativity in latent space, the latent vec-
tor calculation should obey the triangle inequality (the sum
length of any two sides must be greater than or equal to the
remaining side, and the reason why embeddings should
obey this is detailed introduced in [6], [11]). However, the
relationships measured by inner products may violate the
triangle inequality. For example, as shown in Fig. 1, if ME
models use inner products � to learn latent vectors for i1; u2
and u3 as q1; p2 and p3, then, p2 � q1 þ p3 � q1 < p2 � p3,
which violates the triangle inequality. If we conduct calcula-
tions in a latent space with a metric that violates the triangle
inequality, it may lead to uncertainty and inaccuracy of
computing, and finally, result in a biased recommendation.
Therefore, only applying inner products in ME models is
not a suitable choice when learning latent vectors for recom-
mendations. This methodological disadvantage damages the
performance of recommendation models tremendously. For
recommender systems, it’s still a challenge to learn a proper
latent space, where all kinds of relationships (users/items/
user-item) can be measured by a unified style of the metric.

To relieve the limitation of inner products, metric learning
has been proved to be useful in the multimedia area [13],
[16], [17]. The core of metric learning is to learn a proper met-
ric for the measurement between latent vectors. However,
metric learning is only designed to measure user-item rela-
tionships in recommender systems [13], [14], which cannot
simultaneously tackle the ideological and methodological dis-
advantage (as shown in Fig. 2). To this end, we propose a
supervised collaborative representation learning model for

matrix embedding:MagneticMetric Learning (MML), which
utilizes the dual triplets to represent the different types of
relationships (user-user, item-item, user-item) with a uni-
form latent space in a uniform framework. MML can learn
not only the explicit relationships but also the latent relation-
ships, which overcomes the ideological disadvantages.
Meanwhile, the relationships between users and items are
directly measured by weighted metric distance, which over-
comes themethodological disadvantage.

The contributions of this paper are summarized as
follows:

� We first argue that existing matrix embedding meth-
ods for neural-network-based recommendationmod-
els are not sufficient and unbiased. Then we explore
the ideological and methodological disadvantages of
traditional ME models and propose a representation
learningmodel for matrix embedding:Magnetic Met-
ric Learning, to overcome the above disadvantages.

� For the ideological disadvantage, we utilize dual trip-
lets to model explicit and latent collaborative relation-
ships among users and items in a uniform latent space.
For the methodological disadvantage, a modifiedmet-
ric-based dual loss function is proposed to learn
weightedmetric and latent vectors at the same time.

� The experimental results on four real-world datasets
demonstrate that MML can learn a proper unified
latent space from the user-item matrix, and improve
the accuracy of the state-of-the-art models.

The paper is organized as follows. We provide prelimi-
naries in Section 2. Then we elaborate on the proposed
method MML, including theory, regularization, and train-
ing process in Section 3. We report the experimental results
in Section 4. Lastly, we review related work in Section 5 and
conclude this paper in Section 6.

2 PRELIMINARIES

2.1 Basic Definitions

In recommender systems, U denotes a set of m users U ¼
fu1; u2 . . .umg, and I denotes a set of n items I ¼ fi1; i2 . . . ing.

Fig. 1. An example to illustrate the disadvantages of traditional ME
models.

Fig. 2. Comparison between traditional metric learning and our proposed
model MML. Traditional ML (upper part) only focuses on user-item rela-
tionships (rectangle to triangle), while MML (bottom part) also takes the
underlying user-user (rectangle to rectangle), item-item (triangle to trian-
gle) relationships into consideration.
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A user-item rating matrix, whose entries are rui, is built as R.
For items with ratings, we set rui as the rating, while for items
without ratings, rui ¼ 0. If rui ¼ 0, we treat ðu; iÞ as a negative
pair, otherwise a positive pair.

Definition 1: Matrix Embedding. Given a matrix R 2 Rm�n ,
the matrix embedding (ME) model is to depose the matrix
into two low-dimension k spaces, which are also called
latent vector spaces P 2 Rm�k, Q 2 Rn�k. Especially, in rec-
ommender systems, R is the user-item rating matrix. pi 2 P
is the latent vector for user i, while qj 2 Q is for item j. Note
that in real-world scenarios, the scale of users and items is
huge, which means that m;n � k. Existing ME models usu-
ally utilize some matrix factorization methods, such as
pureSVD [17] and NMF [17] to learn latent vectors. How-
ever, these models directly employ inner products in their
loss function, which may lead to inaccurate and biased
embedding results. Our proposed model aims to solve this
problem, which is demonstrated in detail in Section 3.

Definition 2: Metric Learning. Given two different latent
vectors p; q 2 R1�k, the metric learning (ML) model is to
learn a proper weighted metric matrixW 2 Rk�k to measure
the relationships between p and q [18]. The different weights
in W stand for the importance of each element in latent vec-
tors. Specifically, in recommender systems, the distance
between pi and qj can be treated as the measurement
between user i and item j, as well as the user i’s preference
for item j. Existing metric learning models usually focus on
the explicit feedbacks and models’ optimizations in recom-
mender systems, such as CML [13] and IML [19]. However,
these models usually ignore the underlying relationships
hidden in the user-item matrix R, which is a restriction to
the ML models’ performance.

Definition 3: Neural-Network-Based Recommendation Models.
A typical neural-network-based recommendation model is
a two-stage framework: the basic input is the user-item rat-
ing matrix R, and some other side information, including
text, videos, and images. The first stage is named represen-
tation learning. In this stage, the inputs are mapped into
latent vectors, including user latent vectors P , item latent
vectors Q, and side information latent vectors SI, which
extracts the latent features hidden in the multi-modal infor-
mation. In the second stage for the recommendation, the
latent vectors are feed into a modified neural network,
which outputs the predicted ratings r̂ui. Finally, according
to the ranking of r̂ui, the model gives a Top-k recommen-
dation list. A general framework is shown in Fig. 3. Some
popular recommendation models are based on this frame-
work with different embedding models and neural net-
works, including Neural CF [6], NeuO [9]. However, most
models use inner products as default, where we argue it is
not always stable.

Note that some existing models integrate and implement
joint learning framework. However, we argue there are
some disadvantages: 1) overfitting. If we co-train the two
stages, we have only one loss function on the recommedation
stage, which may lead to the potential overfitting problem in
representation learning stage [20]. 2) flexibility. The users’
and items’ latent representations learned by first stage could
be combinedwith different recommendationmodel, or other
models (such as user profiling, slanderous user detection),
which is flexible for different application scenarios.

2.2 Matrix Embedding With Inner Products

Given a user-item matrix R, matrix embedding models with
inner products usually minimize this loss function LIP to
learn latent vectors P and Q:

LIP ¼
XP;Q

u2U;i2I
ðrui � pu � qiÞ2 þ penðP;QÞ; (1)

where penðP;QÞ is a penalty term to avoid overfitting. Then
we can use these latent vectors to make recommendations:
1) for user-based collaborative filtering [21], we need to find
the nearest k-neighbor for target user t with the following
function:

Nk min
u2U

pu; ptj jEuc
� �

: (2)

Then some common items in these neighbors can be
recommeded to the target user. 2) for neural network based
models, we input the latent vectors and make recommeda-
tions as shown in Fig. 3.

2.3 Matrix Embedding With Metric Learning

Given a user-item matrix R, matrix embedding models with
metric learning usually minimize this loss function LML:

LML¼
XP;Q

u2U;i;j2I
ðLpull

rui 6¼0

ðpu; qiÞ� Lpush

ruj¼0
ðpu; qjÞÞþpenðP;QÞ: (3)

Note that there are two loss functions in traditional metric
learning: Lpull and Lpush. The core idea for metric learning is
to gather the user-item pair with explicit feedbacks and dis-
perse the pair without them. So Lpull is employed to calculate
theweighted distance between user u and item i, where rui 6¼
0. By minimizing Lpull, LML tries to pull the user and item
together. Meanwhile, by minimizing �Lpush, LML tries to push
away the user and item where rui ¼ 0. Specifically, in the
training process of metric learning, the model can learn not
only the latent vectors P;Q, but also the weighted metric
matrixW . The important notations are shown in Table 1.

3 MAGNETIC METRIC LEARNING (MML) MODEL

Magnetic Metric Learning model (MML) employs a uni-
fied style of metric learned through embedding and recom-
mendation, and learns a unified latent space for users and
items, which overcomes the methodological disadvantage.

Fig. 3. A typical two-stage neural network based recommendation
model. Note that in this paper we focus on the matrix embedding part of
this framework.
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Meanwhile, MML considers both explicit and latent relation-
ships andmakes a direct embedding to overcome the ideolog-
ical disadvantage (shown in Fig. 2).

Specifically, MML treats users and items as the same enti-
ties in a unified latent space, where all the relationships
between users and items can be represented by their distance
(in MML, it is measured by learned metric W ). Moreover,
MML can learn users’ and items’ latent vectors in a uniform
framework with a uniform metric across all the procedures
(embedding and recommendation) and overcome the limita-
tion of inner products. MML does not need to distinguish
latent user space and latent item space. All the users and
items are embedded into the same dimension latent space. In
this way, we could more easily optimize MML’s loss func-
tion and calculate its gradient compared with other NN-
based embeddingmodels, such as autoencoder.

3.1 Learning Metric: Foundation of MML

We define a k-dimensional uniformed latent space E, where
ei 2 E stands for an extracted latent vector for a user or an
item, i stands for an entity which can be either a user or an
item. First, we define the function F for calculating the rela-
tionships between entities a; b as the following euclidean
function:

FEða; bÞ ¼ ea � ebk k2
Euc
: (4)

While in MML, we use a learned metric W 2 Rk�k as a
substitute for euclidean, as shown in Eq. (5):

F �ða; bÞ ¼ ea � ebk k2W� : (5)

Note that we consider learning different weighted matrix
W � for measuring user-user (WU ), item-item (WI) and user-
item (WUI) relationships, which is an improvement over

other metric learning models, such as CML [13], IML [19]
and CRML [22]. With these learned metrics, all the relation-
ships can be measure as follows:

ea � ebk k2W�¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðea � ebÞTW �ðea � ebÞ

q
: (6)

To ensure that the W � we learned is a metric-satisfying
non-negative metric and obeys the triangle inequality, we
need to requireW � to be positive semi-definite. Note that set-
ting W �=I gives euclidean distance. And if we set W � to be
diagonal, it corresponds to learning a metric in which differ-
ent axes are given different weights upon euclidean distance.
Generally, W � parameterizes a family of Mahalanobis dis-
tance over Rk�k [22], [23]. With different restrictions to W �,
we can tune our proposed model MML for different applica-
tion scenarios.

3.2 Explicit Relationships Formulation

MML is designed to gather similar entities and disperse the
dissimilar ones with learned metrics. In recommender sys-
tems, we treat the feedback rui 2 R as the indicator of
explicit relationships. If rui 6¼ 0, we define that there is an
explicit relationship between user u and item i. To consider
this for enhancing matrix embedding process, we sample
the dual triplets < a; b; c > and < c; d; a > , where a; b 2
U , c; d 2 I, and rac 6¼ 0; rbc ¼ 0; rad ¼ 0. To ensure the struc-
tural consistency, we can learn that a; c should be embedded
closer than b; c and a; d. Meanwhile, according to a; b’s dif-
ferent preferences on c, it is obvious that they should not be
embedded closely. The same deduction is applied on (b; c),
(c; d) and (a; d). In this way, MML maximizes the effect of
metric learning with a modified enhanced metric-based dual
loss function (EMDL):

L1
MML ¼X

a;b2U ;c2I
ta;b;cjmr1þFUIðea; ecÞ�FUðea; ebÞ�FUIðeb; ecÞjþ;

(7)

L2
MML ¼X

a2U ;c;d2I
ta;c;djmr2þFUIðea; ecÞ�FIðec; edÞ�FUIðea; edÞjþ;

(8)

where notation jJ jþ satisfies that: jJ jþ ¼ maxðJ ; 0Þ. t is a
ranking weight calculated as suggested in [13]. And
mr1;mr2 > 0 is the safety margin size. With this dual loss
function, (a; c) is embedding closer than (a; d), (b; c) withmet-
ric WUI . (a; b) and (c; d) are embedded far with metric WU

andWI . Finally, we get the EMDL loss function of MML for
explicit relationships:

LEX
MML ¼ �L1

MML þ ð1� �ÞL2
MML; (9)

where � is the balance weight between users and items. By
minimizing EMDL, we can not only pull the user-item pair
together with explicit relationships (rac 6¼ 0) and push away
the user-item pairs with no feedback (rbc; rad ¼ 0), but also
push away the user-user pair (a; b) and item-item pair (c; d),
as shown in the lower part in Fig. 2.

TABLE 1
Notation List

Notation Description

U user set with u in recommender systems

I item set with i in recommender systems

R rating matrix R 2 Rm�n with rating rui
R;E notations for latent spaces

m;n number of users/items

rui u’s rating on item i

P k-dimension user latent vector set P 2 Rm�k

Q k-dimension item latent vector set Q 2 Rn�k

pu; qi k-dimension latent vectors for u and i

e uniformed latent vector (a user or an item)

W metric matrixW 2 Rk�k with w

WU;WI;WUI W for users, items and user-item

ea; ebj jEuc euclidean distance between ea; eb
ea; ebj jW metric distance between ea; eb withW

LEX
MML explicit relationship loss function

SU; SI user/item similar-pair buffer sets

mr learning margin for metric learning

LLA
MML latent relationship loss function

a; �; u;v hyper parameters
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3.3 Latent Relationships Formulation

Different from explicit relationships between users and
items which are indicated by rui 2 R, latent relationships
always occur between users and users, items and items,
which can not be directly observed. So many existing matrix
embedding models only consider explicit relationships
while ignoring the latent ones. However, the latent relation-
ships should be an important factor in matrix embedding
because they also reflect the users’ preferences and items’
features, as the example we have given in Introduction. In
order to utilize the latent relationships, we first extract the
user pairs and item pairs according to the following rules:

� Users who rate the same items should be embedded
closer in latent vector space, and vice versa.

� Items rated by the same users should be embedded
closer in latent vector space, and vice versa.

With the rules above, we first build two similar-pair
buffer sets: SU and SI , which contain user pairs and item
pairs, respectively. We treat user pair in SU as the same cate-
gory, so do the item pair in SI . A user-user or item-item pair
ða; bÞ is assigned to similar-pair buffer sets according to the
following restriction:

ða; bÞ 2 Sð�Þ; if jlistðaÞ\listðbÞj
jlistðaÞ[listðbÞj > u;

ða; bÞ =2 Sð�Þ; else;

(
(10)

where listðaÞ means the list of items that user a has rated, or
the users who have rated item a, and Sð�Þ is either SU or SI .
u is a control threshold to decide the partition of same pref-
erence that the users or the items share. So the loss function
of latent relationships is as follows:

LLA
MML ¼

X
a;f2Sð�Þ

X
a;g =2 Sð�Þ

ta;f;gjmr3 þ F ðea; efÞ � F ðea; egÞjþ:

(11)

In Eq. (11), f is the similar entity of a, while g is not. F
could be either FU or FI in one formulation. mr3 is the
safety margin size. With this formulation, the user pair or
item pair (a; f) in S are embedded closer than (a; g) not in S.
The matrix embedding is more enhanced by considering
the latent relationships for both users and items.

3.4 Magnetic Metric Learning Formulation

Finally, we combine explicit relationship loss LEX
MML and

latent relationship loss LLA
MML linearly with a combination

weight a:

LMML ¼ aLEX
MML þ ð1� aÞLLA

MML: (12)

Note that in LEX
MML and LLA

MML, all the +F functions are the
realizations ofLpull in Eq.(2), whichmeans pulling the similar
entities together in learned metric space. While the -F func-
tionsmeanLpush, which pushes the dissimilar entities away.

3.5 Regularization and Optimization

We add two regularizations to make MML efficient and
feasible.

To avoid overfitting and biased parameters, we bound all
the embedding results eð�Þ (users’ and items’ latent vectors)
in a unit sphere: jjeð�Þjj2 < 1, to ensure the robustness of our
model.

Moreover, we utilize a covariance regularization pro-
posed by [24] to restrict the embedding results. First, we cal-
culate a k� kmatrix E for an O size of k-dimension vector e:

Eij ¼ 1

O

X
o

ðeoi � hiÞðeoj � hjÞ; (13)

where o denotes the index in O, i; j is an index pair in a
range of k. hi ¼ 1

O

P
o e

o
i . Then we define penalty loss LP :

LP ¼ 1

O
ð Ek kf � diagðEÞk k22Þ;

Subjectto jjeð�Þjj2 < 1;

(14)

where Ek kf is F-norm of E, diagðEÞ is a diagonal matrix.
Moreover, to optimize the model, we first define the user-

user weighted metric matrix WU and item-item weighted
metric matrix WI to be symmetric because the relation-
ships among users or items are undirected. With this
restriction, we can save up the running time when calcu-
lating gradients.

To add personality into our model, we employ adaptive
margins in MML (Fig. 4). Specially, there are three different
margins in our model: mr1, mr2 and mr3. Inspired by [14],
we prefer to use adaptive margin to reduce the variations,
which utilizesmru,mri andmrl to replace the origin margin
mr1, mr2 and mr3, respectively for different categories of
relationships. Note that the less items the users have rated,
the larger margin should be applied to avoid overfitting.
Thus, the adaptive margins could be achieved by minimiz-
ing the following loss function LR:

LR ¼ �
 

1

m

X
u

mru þ 1

n

X
u

mri þ 1

mþ n

X
u

mrl

!
;

Subjectto mru 2 ð0; 1�;mri 2 ð0; 1�;mrl 2 ð0; 1�;
(15)

wherem;n are the size of U , I.

3.6 Training Process

In summary, our complete loss function of MML is shown
as follows:

Fig. 4. Effect of applying adaptive margins in MML.

5130 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: JILIN UNIVERSITY. Downloaded on March 06,2024 at 12:06:16 UTC from IEEE Xplore.  Restrictions apply. 



Minimize
eð�Þ

ðLMML þ vPLP þ vRLRÞ;

Subject to jjeð�Þjj2 < 1;

mru 2 ð0; 1�;
mri 2 ð0; 1�;
mrl 2 ð0; 1�;

(16)

where vP, vR are the hyperparameters for controlling LP

and LR.
We minimize this constrained objective function above

with Mini-Batch Stochastic Gradient Descent (SGD) and
control the learning rating using AdaGrad. We keep the
negative pair that maximizes the distance with the target
user-item pair (maxF ðeð�Þtar; e

ð�Þ
ne Þ) when we sample negative

pairs. Our training process is shown as Algorithm 1.

Algorithm 1.MML Training process

Input:User set U ; item set I; user-item rating matrix R; margins
mru,mri, andmrl; hyperparameters a; �; u, and v

Output: User / Item latent vector set EU / EI , metric matrix
WU;WI;WUI .

1: Select a batch Bwith N positive user-item pairs.
2: for all B 2 U; I do
3: for all user-item positive pair (a; c) do
4: Sample 2 negative user-item (a; d), (b; c) pairs to build

two triplets.
5: Calculate LEX

MML with Eq. (9).
6: For a, sample 1 similar user f and 1 dissimilar

user g with Eq. (10). Also sample a similar item and a
dissimilar item for c.

7: Calculate LLA
MML with Eq. (11).

8: Calculate LMMA across batch B.
9: while not converge do
10: Calculate gradients.
11: Update pu and qi with AdaGrad on Eq. (16).
12: UpdateWU ,WI andWUI with AdaGrad on Eq. (16).
13: Updatemru,mri andmrl with AdaGrad on Eq.(16).
14: return User / Item latent vector set EU / EI ; metric matrix

WU;WI;WUI .

3.7 Comparison With Collaborative Metric Learning

We compare our proposed model with a representative
model, Collaborative Metric Learning (CML) [13] in detail.
MML borrows the idea of metric learning, which is similar
to CML. However, our model has essential differences com-
pared with CML (shown in Fig. 5):

First, CML utilizes only the user-item pair to build the
objective function, which focuses on the explicit relationships
in the user-item matrix. As shown in Fig. 5, CML pulls the
items i1; i2 to the user u and pushes away item i3. However,
note that there are latent relationships hidden in the user-
item matrix. So the items in the same similar-pair set (i2; i3)
should be embedded closer, while i1; i2 should be embedded
with a longer distance. MML considers this situation, using
Push and Pull for both explicit and latent relationships, to
achievemore accurate and unbiased embedding results.

Second, as shown in the right part of Fig. 5, MML can
learn a direct and visible embedding result because of the
latent relationship formulation LLA

MML. In LLA
MML, MML con-

siders the relationships between same categories (users or

items). So MML is able to gather the entities of the same cat-
egory closer than CML, which is also a great improvement
on explainability.

Moreover, CML directly employs euclidean distance to
measure the relationships between different users and
items, ignoring the importance variety of different vectors.
While MML is able to learn a more accurate metric W for
users, items, and user-item respectively, which fine-grained
measures the relationships. CML utilizes the fixed margin
for all entities, while MML considers the different criteria
for different users and items, and employs the adaptive
margins to add personality to our model.

Finally, the objective function of MML with a uniform
format (LEX

MML; L
LA
MML) does not distinguish users and items

like CML, which is more feasible and effective. MML
employs two regularizations to relieve overfitting situa-
tions, especially when the dataset is sparse and unbalanced.

4 EVALUATION

In this section, we first describe the experimental settings,
including datasets, baselines, parameter setting, and imple-
mentation details. Subsequently, we conduct extensive
experiments to answer the following research questions:

RQ1: How is the effectiveness of MML? Can it provide a
competitive performance compared with baselines on the
matrix embedding task at a proper running time? RQ2: How
do the hyperparameters affect the performance of MML?
Which are the optimal values? RQ3: How does the proposed
model benefit the neural-network-based recommendation
models with Top-K recommendation? RQ4: How do the
learnedmetric benefit thematrix embedding and recommen-
dations? What is the effectiveness of regularization to avoid
overfitting? RQ5: What is the embedding performance of
MML on million-scale dataset? What is the comparison
betweenMML and other SOTAMEmodels?

4.1 Experimental Settings

4.1.1 Datasets

We conduct experiments on datasets from Amazon.com1

(we use Amazon as the abbreviation of the Sports and Out-
doors dataset in Amazon in this paper) and Yelp for RecSys.2

Fig. 5. Comparison between CML and MML. The red dashed line shows
the effect of Pull and Push. The purple dashed line shows the effect of
consideration of latent relationships.

1. https://jmcauley.ucsd.edu/data/amazon
2. https://www.kaggle.com/c/yelp-recsys-2013
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Moreover, we collect two datasets from Taobao3 and Jing-
dong4 as supplementary to validate our method [9], [25]. All
the datasets contain ratings ranging from 1 to 5. We divide
the datasets: 60 percent as the training set, 20 percent as the
test set and 20 percent as the validation set with 5-cross-vali-
dation, and treat ratings less than 3 as negative samples for
recommendations [9], [18]. Table 2 summarizes the details of
datasets.

4.1.2 Baselines

To evaluate our proposed model on matrix embedding task,
we compare MML with five representative metric learning
models, including:

WRMF [26], [27] This implicit MF model utilizes an addi-
tional case weight to model unobserved interactions.
WRMF can also be treated as a basic matrix factorization
embedding model on the user-item matrix with inner prod-
ucts. CML [13] This representative CF model borrows the
idea of metric learning to learn a latent space for users and
items. Moreover, it is claimed that CML can outperform
most state-of-the-art CF models with the metric-based loss
function. IML [19] This efficient model applies metric learn-
ing to unbalanced data for clustering. IML’s contribution is
that it splits data into subsets and accelerates the process.
CRML [22] This is a metric learning model for collaborative
recommendations with co-occurrence embedding regulari-
zation. It considers the optimization problem as a multi-
task learning problem which includes optimizing a primary
task of metric learning and two auxiliary tasks of represen-
tation learning. SML [14] This is a metric learning model
that symmetrically introduces a positive item-centric metric
which maintains closer distance from positive items to users
and pushes the negative items away from the positive items
at the same time with an adaptive margin. We show the
relationship measurement and loss function comparison
with baselines in Table 3.

We combine MML with nine different recommendation
models to make a top-k recommendation, including two
basic recommendation models, and four neural-network-
based recommendation models :

UBCF and IBCF [12] compute the similarity (Cosine or
euclidean) between users (UBCF) or items (IBCF), and find
the target’s k-nearest neighbors to make Top-K recommen-
dations. NCF [6] is a state-of-the-art neural-network-based
recommendation model which directly combines the latent
vectors as the input of the model. As his work claims, NCF
can cover some state-of-the-art CF models. 2IPS [20] is a typ-
ical two-stage off-policy policy gradient method. The

proposed method explicitly takes into account the ranking
model when training the candidate generation model,
which helps improve the performance of the whole system.
NAIS [28] is an attention network, which is capable of dis-
tinguishing which historical items in a user profile are more
important for a prediction. KTUP [29] jointly learns the
model of recommendation and knowledge graph comple-
tion. It accounts for various preferences in translating a user
to an item, and then jointly trains it with a KG completion
model by combining several transfer schemes. HERec [10] is
a heterogeneous network embedding based approach for
heterogeneous information network (HIN) based recom-
mendation. To embed HINs, it designs a meta-path based
random walk strategy to generate meaningful node sequen-
ces for network embedding. NGCF [30] exploits the user-
item graph structure by propagating embeddings on it. This
leads to the expressive modeling of high-order connectivity
in user-item graph, effectively injecting the collaborative
signal into the embedding process in an explicit manner.
GraphRec [31] provides a principled approach to jointly cap-
ture interactions and opinions in the user-item graph, which
coherently models two graphs and heterogeneous strengths.

Some RS baselines are two-stage recommendation mod-
els which contain the matrix embedding parts. In this paper,
we use ME baselines (WRMF/IML/CRML/SML/MML) to
substitute these matrix embedding parts in RS models for
testing.

4.1.3 Parameter Setting and Implementation Details

The implementation of the comparison methods are from
the public codes that the authors provided in their papers
or open source project. For MML, we set default margins
mru ¼ mri ¼ mrl ¼ 0:02. All latent vectors in dimension k =
32, with random initialization (uniform distributions mean:
0.2, viariance: 0.04). The batch size B is 512. We tune the
learning rate 0.01, 0.02, 0.05. Without special explanations,
we set balance weight � ¼ 0:5, similarity threshold u ¼ 0:3,
v ¼ 0:03 and a ¼ 0:7. All these parameters are determined
through cross-validation.

4.2 Matrix Embedding Validation (RQ1)

In this section, we need to validate whether the models can
gather the same items and disperse the different ones.
Along with this line, we employ spherical k-means on
embedding results, with K = 10 and 20 clusters. We use
Normalized Mutual Information (NMI) as the protocols:

NMIðL;CÞ ¼ CorðL;CÞ
½HðLÞ þHðCÞ�=2 ; (17)

where L is the set of labels of items and C is the set of clus-
ters. CorðL;CÞ denotes the sum of mutual information
between any label l in any cluster c. HðLÞ and HðCÞ denote
the entropy for labels and clusters respectively. This metric
evaluates the purity of clustering results from an informa-
tion-theoretic perspective.

From the NMI evaluation results in Tables 4 and 5, we
can see that MML outperforms all the baselines for all clus-
tering value K in all four datasets. This result shows two
advantages of MML: First, five models with metric learning
are much better than traditional model WRMF, which

TABLE 2
The Datasets’ Characteristics

Dataset Amazon Yelp Taobao Jingdong

#user 30,759 45,980 10,121 8,031
#item 16,515 11,537 9,892 3,025
#rating 285,644 229,900 49,053 25,152
#item labels 36 24 17 12
Sparsity 0.051% 0.043% 0.049% 0.12%

3. https://www.taobao.com
4. https://re.jd.com/
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means that metric-based models are more proper for matrix
embedding than inner products. Second, MML tackles both
explicit and latent relationships and learns a weighed metric
matrix, which leads to a more stable performance than
CML, IML, CRML, and SML. Note that in Jingdong with 20
clusters, CRML, SML, and MML’s performance are very
close. But in Amazon and Yelp, MML outperforms both the
state-of-the-art baselines. This indicates the advantage of
MML in tackling sparse data.

Besides, we exploit the effect of latent vector space
dimension k (4, 8, 16, 32, and 64) on NMI (Fig. 6). We notice
that almost all ME models’ performance is better with high-
dimension latent vector space, and MML achieves the best
results. High-dimensional data space has a strong represen-
tative ability to catch more hidden knowledge of users and
items, which can enhance the performance of matrix
embedding. Hence, the performance increases fast from 4 to
16. However, note that the increase becomes slower from 16
to 64, which shows the bottleneck of the dimension profit.
Note that WRMF achieves the worst performance among
baselines, which indicates that in the high dimension latent
space, using metric learning is better than inner products in
the matrix embedding task.

At last, we also compare the computing time among five
metric learning models (Table 6). CML takes the shortest

time each epoch and IML takes the longest. CML’s loss
function is simple to calculate, so it achieves the best run-
ning time. While IML utilizes an iteration metric learning,
which means in one epoch, IML learns metric repeatedly on
different subsets. Note that two state-of-the-art models,
CRML and SML use more time than our proposed model
MML. SML combines two different styles of the loss func-
tion with two regularizations and three sub loss functions,
which adds computation complexity. CRML and MML uti-
lize the same formulation of loss function for explicit and
latent relationship embedding, which is easy to compute
derivation and speeds up the model’s optimization.

4.3 Exploring Effect of Hyperparameters (RQ2)

In this section, we explore the effect of hyperparameters in
MML. MML introduces four additional hyperparameters
a; �; u, and v. a 2 ð0; 1Þ controls the learning of explicit and
latent relationships. � 2 ð0; 1Þ controls the learning of EMDL.

TABLE 4
Normalized Mutual Information With 10 Clusters

Model Amazon Yelp Taobao Jingdong

WRMF 0.3214 0.3013 0.4215 0.4317
CML 0.5310 0.5010 0.5870 0.5711
IML 0.5613 0.5522 0.5830 0.6001
CRML 0.5673 0.5444 0.6030 0.6111
SML 0.5723 0.5602 0.5933 0.6092
MML 0.5831� 0.5621� 0.6321� 0.6134�

TABLE 5
Normalized Mutual Information With 20 Clusters

Model Amazon Yelp Taobao Jingdong

WRMF 0.2943 0.3001 0.3255 0.3321
CML 0.4732 0.4638 0.5533 0.5612
IML 0.4831 0.4765 0.5545 0.5532
CRML 0.5023 0.5122 0.5732 0.6001
SML 0.5313 0.5232 0.5644 0.6011
MML 0.5433� 0.5564� 0.6003� 0.6112�

Fig. 6. Dimension effect on NMI with 10 clusters.

TABLE 6
Running Time for Training Process (Time Unit)

Time/Epoch Amazon Yelp Taobao Jingdong

CML 103� 124� 68� 74�
IML 349 402 156 147
CRML 112 133 79 89
SML 113 150 88 93
MML 110 130 75 83
Ours vs Best +7 +6 +7 +9

TABLE 3
Relationship Measurement and Loss Function Comparison With Baselines

Models Relationship measurement Loss Function

WRMF F ðu; iÞ ¼ puq
T
i

P
u;i ðrui � puq

T
i Þ2 þ �ðPu puk k2Þ þ �ðPi qik k2Þ

CML F ðu; iÞ ¼ pu � qik k2Euc
P

u;i;i� F ðu; iÞ � F ðu; i�Þ þmj jþ
IML F ðu; iÞ ¼ pu � qik k2Euc

P
u;i;i� F ðu; iÞ � F ðu; i�Þ þmj jþ

CRML F ðu; iÞ ¼ pu � qik k2Euc
P

u;i;i� Lðpu; qiÞ þ Lðpu; buiÞ þ Lðqi; buiÞ
SML F ðu; iÞ ¼ pu � qik k2Euc

P
u;i;i� F ðu; iÞ � F ðu; i�Þ þmuj jþ þ F ðu; iÞ � F ði; i�Þ þmij jþ

� �þ �LAM

MML F ðu; iÞ ¼ pu � qik k2W LMML þ vPLP þ vRLR (Eq. (16))

� is the hyperparameter, (u; i) means a positive pair rui 6¼ 0, (u; i�) means a negative pair rui ¼ 0, bui is a learned sharing parameter.
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u 2 ð0; 1Þ restricts the similar-pair set building in latent rela-
tionships formulation. v controls the regularizations, which
we discuss in the following sections (RQ4). Here we show
how the three hyperparameters impact the performance and
also shed light on how to set them. We only show the results
on Amazon and Taobao due to the limitation of space. We
use Hitting Ratio (HR) on Top-10 and Top-50 to explore the
hyperparameters.We vary one parameterwhile fixing others
as experimental settings.

As shown in Fig. 7, the optimal value of a is around 0.7
for both two datasets. And we also observe that the perfor-
mance improves before a reaches 0.7, then it decreases
sharply. Thus the too large value of a will ruin the learning
process of metric learning. So we set a to 0.7.

As shown in Fig. 8, the optimal value of � is around 0.5
for both two datasets. When �=0.5. it treats the users and
items as the same category, which satisfies the assumption
of our model (to map users and items into a unified latent
space). So we set � to 0.5.

As shown in Fig. 9, the optimal value of u is around 0.3
for both two datasets. Note that When u is too small, MML
behaves minor improvements, which shows there are
redundant pairs in similar-pair sets, which hurts the perfor-
mance. Moreover, if u is too large, the performance drops
dramatically. So we set u to 0.3.

4.4 Recommendation Validation (RQ3)

In this section, we validate the quality of embedding on rec-
ommendations. We treat six ME models as matrix embed-
ding models, combining with nine popular recommendation
models to make a Top-k recommendation. Hitting Ratio
(HR) and Recall are employed to evaluate the recommenda-
tions. All the results, including our proposed model and
baselines, achieve the best performance while keeping all
hyperparameters at their optimal settings. The results on
four datasets are shown in Table 7. Note that KTUP, HERec,
and GraphRec are knowledge-graph based recommendation
models, and the Amazon data does not provide the KGs.

In all datasets, our proposed model MML outperforms all
the ME baselines with three recommendation models, which
is a noticeable improvement. In detail, WRMF performs the
worst, especially when it combines with NCF, 2IPS, KTUP,

andHERec. Note thatWRMF is the only method that utilizes
the inner products as the measurement for relationships.
This result proves the effect of metric learning. When we
compare UBCF and IBCF with different metric based mod-
els, it is interesting that CML’s performance drops signifi-
cantly, even worse than WRMF. The reason is that CML
treats users as the center of embedding, which affects the
items’ embedding. Although IML also utilizes the idea of
CML, the computation iteration of IML can make compensa-
tion to some extent. However, in our proposed model, we
treat items and users as the same category to ensure accu-
racy. For NCF, because our models take more knowledge
(the latent relationships) into consideration than CML and
IML, it also improves an average of 20 percent over baselines.

Compared with two state-of-the-art models, CRML and
SML, we notice that the improvement is more obvious on
Amazon and Yelp than on Taobao and Jindong. Taking
deep insight, MML utilizes different relationships, includ-
ing explicit and latent ones. With these relationships, MML
can relieve the data-sparse issue. While SML only considers
user-item, item-time relationships. For CRML, it combines
two style loss functions, which we argue it damage the
embedding performance to some extent. For cooperating
with GNN based models (GraphRec), MML could reach the
best recommendation performance. At last, the most impor-
tant factor is that MML learns a weighted metric matrix W ,
and uses W to calculate the distance in recommender sys-
tems, which is a significant improvement.

Moreover, we explore the perfromance enhancement for
neural-network based recommendation models (basic MLP
[32], NCF, 2IPS, KTUP, and HERec) using MML as a prepro-
cessing for Top-10 and Top-50 recommendation.We conduct
experiments on Yelp and Taobao. The results are shown in
Fig. 10:

Note that with MML as a preprocessing for neural-net-
work-based recommendation models, HR performance is
enhanced over all baselines on both datasets. Specifically,
MLP is the basic neural-network-based model that directly
inputs latent vectors to predict ratings. The performance
gain over MLP indicates the accuracy of latent vectors MML
has learned. And for some of the state-of-the-art NN based
models, MML can improve the HR performance by average
15 percent on Yelp, 17 percent on Taobao.

4.5 Exploring the Effect of MML’s Component (RQ4)

In this section, we explore the effect of learned metric in our
proposed model. We separate MML with each component,
and rebuild the following models:

1) EUC-MML: Use FEða; bÞ ¼ ea � ebk k2
Euc

to replace F
in MML (compare euclidean with Learned metric).

Fig. 7. Performance of MMLwith respect to different values of a. Fig. 9. Performance of MMLwith respect to different values of u.

Fig. 8. Performance of MMLwith respect to different values of �.
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2) W-MML: Use one W to replace WU , WI and WUI in
MML (compare fixed metric matrix with multi-met-
ric matrix).

3) M-MML: Use one fix margin mr to replace mru, mri

and mrl (compare fixed margin with adaptive
margin).

4) NP-MML: Use LMML without restriction LP (vP=0).
5) NR-MML: Use LMML without restriction LR (vR=0).
We conduct experiments on four datasets with NMI with

10 clusters and HR@50. The effect of different component in
MML is shown in Table 8.

We notice that MML achieves the best performance (NMI
and HR) over all four datasets. Specifically, EUC-MML per-
forms worst than other models, which indicates that in
our proposed model, euclidean is not the proper metric for

matrix embedding tasks and recommendations. The sim-
ple euclidean metric may be not suitable for measuring the
distance in high-dimension latent space. So metric learn-
ing for matrix embedding is necessary for complex NN-
based recommendation models to tackle large scale sparse
data. According to the comparison between W-MML and
MML, it indicates that the metric between users, items,
and user-item should be learned respectively to achieve a
better result. It is obvious that the features of users and
items are different, so learning different W is reasonable.
The same explanation can be applied for the comparison
between M-MML and MML which indicates the advantage
of adaptive margins.

For NP-MML and NR-MML, we can ensure the effect of
regularization. Although the performance of MML is better

TABLE 7
Improvement of Recommendation Models With Different Matrix Embedding Models

� marks the best performance among baselines.
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than NP-MML and NR-MML with a small gap, both regu-
larization can enhance the model by avoiding overfitting.

To evaluate the effect for LP, LR to relieve the overfitting
situation, we run NP-MML, NR-MML and MML on Ama-
zon and Taobao to see the performance (NMI with 10 clus-
ters and HR@50) changing with different epochs. The
performance changing with epochs is shown in Fig. 11.

From the results, we can see that NR-MML achieves its
best NMI performance within 20 epochs, while NP-MML
and MML achieve their best within 30 epochs. Although the
best performance of these three models is in the same level,
we notice that NR-MML’s HR decreases rapidly after 20
epochs, which is a significant overfitting phenomenon. LR

is to restrict the margins. When the epochs add up, a fixed
margin can not measure the detailed distance between
high-dimension latent vectors, which leads to the overfitting
situation. While LP is to restrict the latent vectors. Without
LP, our proposed model suffers the biased and de-centered
embedding results. So NR-MML’s performance can not be
improved after 20 epochs by these biased latent vectors.

Compared with both models, MML can restrict the
embedding results and tune the margins over epochs, with
two regularizations LR and LP. Note that MML’s perfor-
mance is stable without sharp fluctuation, which also indi-
cates robustness and effectiveness. Comprehensively, with
the consideration of accuracy, efficiency, and overfitting,
MML achieves a more stable and feasible performance than
all these rebuilt models.

4.6 Million-Scale Embedding Validation (RQ5)

We conduct WRMF, ConvMF [33] (a SOTA model which
combines GCN with MF for recommendations, widely
employed as benchmarks), SML and our proposed MML on
a million-scale dataset (Amazon Beauty, with 6,403,006
users, 1,660,119 items, 14,771,988 ratings, with 2.3070 ratings
per user and 0.0001 percent sparsity) [34]. Note that this
work focuses on the embedding procedure, we only utilize
the models’ embedding results for validations. Specifically,
we use NMI with 20 clusters and running time unit as met-
rics, as shown in Table 9:

Note that ConMF performs better on NMI than MML
(2.12 percent). The reason is that ConvMF enriches the data-
set by convolution operations with CNN framework. How-
ever, limited by the scale of dataset, ConMF need more
running time (almost 100 percent) than metric learning-
based model (SML and MML) for computing parameters.
Considering the trade-off between effectiveness and accu-
racy, MML achieves a stable performance with acceptable
running time on million-scale datasets.

5 RELATED WORKS

5.1 Matrix Embedding (ME)

Matrix Embedding (ME) is usually employed as a pre-pro-
cedure for recommender systems, which projects the user-
item matrix into latent spaces for users and items [35], [36].

Fig. 10. Performance gain with MML for neural-network based recom-
mendation models.

TABLE 8
Effect of Each Component in MML (Including Learned Metric, Adaptive Margin and Regularizations) on NMI and HR Performance

Fig. 11. Overfitting analysis on NMI and HR.
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In general, recommender systems without neural networks
always use matrix factorization with inner products to get
the users’ and items’ latent representations in a learned
latent vector space [4], [11]. There are some popular matrix
factorization based matrix embedding models, such as
WRMF [26] and SVD [17]. Matrix factorization with inner
products works well with some small datasets like Movie-
lens [37]. However, because of some limitations that we
introduced above, inner products weaken the performance
of recommender systems (collaborative filtering models,
user or item-based models) in many aspects.

Recently, as a powerful tool of deep learning, the neural
network has been widely applied in recommender systems
[5], [38]. The ability of neural networks enhances the recom-
mender system to the next level. As a preprocessing for rec-
ommender systems, traditional matrix embedding models
can be enhanced by neural networks. [7] develops the neural
network framework for MF, and proposes a neural-network
based MF model. However, because of weak interpretability
[39] and the strong fitting ability for neural networks, most
researchers focus on the neural networks’ framework rather
than the quality of the matrix embedding. Checking the
existing recommendation models [7], [17], [29], [39], [40],
they usually treat the embedding results as a default and
limit the explanation for matrix embedding in details, like
LightGCN [41]. While in this paper, we argue that as impor-
tant representative vectors for users and items, matrix
embedding models do affect the performance of recommen-
dations and should bemore focused.

5.2 Metric Learning (ML)

Metric learning (ML) is a research spot for image recogni-
tion, clustering, and recommendation system [16], [42], [43],
[44], [45], [46]. The key to metric learning is how to learn dif-
ferent metrics (such as euclidean distance or other distance
metrics) to represent the relationships between different
entities instead of inner products. Metric learning is usually
applied in the computer vision area, in which a deep trans-
fer metric learning method for cross-domain visual recogni-
tion was proposed [47]. For recommender systems, CML
[13] directly uses metric learning to embed the relationships
between users and items, as shown in the upper part of
Fig. 2. And IML [19] proposes a practical framework to
accelerate the embedding process.

Recently, some researchers combine metric learning with
other existing models to improve performance. Combined
with multi-task learning, CRML [22] is a metric learning
model proposed for collaborative recommendations with co-
occurrence embedding regularization. It considers the opti-
mization problem as a multi-task learning problem which
includes optimizing a primary task of metric learning and
two auxiliary tasks of representation learning. To combine
different styles of loss functions, SML [14] symmetrically
introduces a positive item centric metric which maintains a

closer distance from positive items to the user and pushes
the negative items away from the positive items at the same
time with an adaptive margin. Few researches focus on how
to utilize metric learning to embed matrix, which is an open
issue in the recommender system area.

5.3 Neural-Network Based Recommendation
Models (NN-RSs)

The combination of recommender systems and the neural
network is becoming a hot research trend [5], [8], [28], [43].
Researchers attempt to utilize the non-linear activation
functions in the neural network to measure the relationships
between users and reviews. [6] utilizes a Multilayer percep-
tron (MLP) to design a network NeuCF to tackle implicit
feedback recommendation problems. NeuCF is a rating-
based model that can cover basic MF and CF and also
achieve state-of-the-art performance. [14] combines semi-
supervised and neural networks, bridges them, and reinfor-
ces mutually.

To tackle the sparse data in real-world scenarios, most
existing neural-network based models use two-stage frame-
work: first, it employs the matrix embedding or other mod-
els to embed the data into vectors. Then they input these
vectors to achieve recommendations [6], [10], [20], [29], [48],
[49]. [20] proposes 2IPS, which is a two-stage off-policy pol-
icy gradient method. The proposed method explicitly takes
into account the ranking model when training the candidate
generation model, which helps improve the performance of
the whole system. KTUP [29] jointly learns the model of rec-
ommendation and knowledge graph completion by com-
bining several transfer schemes. It is an embedding-based
recommender model with matrix embeddings. HERec [10]
is a heterogeneous network embedding based approach for
heterogeneous information network (HIN) based recom-
mendation. It is a path-based recommender model with
matrix embeddings. Also some GNN based models [28],
[30], [31], [41], [50], [51], [52] are boosting recently, including
GraphRec [31], NGCN [30] and LRGCCF [51], which greatly
improve the recommender system.

5.4 Relations Among ME, ML and NN-Based RSs

NN-based RSs is an important branch of recommender sys-
tems, which utilizes the strong computing ability of neural
networks. According to the structure of NN, matrix embed-
ding should be employed to project the abundant informa-
tion in the user-item matrix into latent vectors. In this
paper, we argue that existing ME models are not sufficient,
and propose a representation learning model MML, which
utilizes the idea of metric learning to enhance the ME per-
formance, and benefit the NN-based RSs.

6 CONCLUSION

The quality of matrix embedding is an imperceptible but
important factor in achieving a good recommendation. In
this paper, we propose a matrix embedding model: Mag-
netic Metric Learning, which utilizes dual triplets to embed
users and items with a metric-based loss function. With this
model, we can achieve a unified embedding in a unified
latent vector space. Through the experimental results on
four datasets, our model is proved to be superior not only

TABLE 9
Million-Scale Performance (With Amazon Beauty Dataset)

Model WRMF ConvMF SML MML

NMI-20 0.0832 0.2026� 0.1813 0.1983
Time 19,331(�43) 21,334(�178) 11,864(�57) 10,333(�62)�
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when compared with state-of-the-art models on all evalua-
tion metrics, but also when trying to find a more stable
latent space with the consideration of accuracy, efficiency,
and overfitting. Our future work is to apply MML with
some context and side information about users and items,
to construct a more reasonable similar-pair set for latent
relationships.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundations of China under Grants 61772230, 61976102,
U19A2065, and 61972450, Natural Science Foundation of
China for Young Scholars 61702215 and 62002132, China
Postdoctoral Science Foundation 2020M681040 and Chang-
chun Science, and Technology Development Project No.
18DY005, and National Defense Science and Technology
Key Laboratory Fund Project No. 61421010418 and Science
Foundation of Jilin Province No. 20190201022JC and China
National Postdoctoral Program for Innovative Talents No.
BX20180140.

REFERENCES

[1] G. K. Patro, A. Biswas, N. Ganguly, K. P. Gummadi, and
A. Chakraborty, “FairRec: Two-sided fairness for personalized
recommendations in two-sided platforms,” in Proc. Web Conf.,
2020, pp. 1194–1204. [Online]. Available: https://doi.org/10.1145/
3366423.3380196

[2] W. Fan, Y. Ma, D. Yin, J. Wang, J. Tang, and Q. Li, “Deep social
collaborative filtering,” in Proc. 13th ACM Conf. Recommender
Syst., 2019, pp. 305–313. [Online]. Available: https://doi.org/
10.1145/3298689.3347011

[3] E. Bugliarello, S. Jain, and V. Rakesh, “Matrix completion in the
unit hypercube via structured matrix factorization,” in Proc. 28th
Int. Joint Conf. Artif. Intell., 2019, pp. 2038–2044. [Online]. Avail-
able: https://doi.org/10.24963/ijcai.2019/282

[4] F. Ricci, L. Rokach, and B. Shapira, “Recommender systems: Intro-
duction and challenges,” in Recommender Systems Handbook. Berlin,
Germany: Springer, 2015, pp. 1–34.

[5] S. Zhang, L. Yao, and A. Sun, “Deep learning based recommender
system: A survey and new perspectives,” 2017, arXiv: 1707.07435.

[6] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural
collaborative filtering,” in Proc. 26th Int. Conf. World Wide Web,
2017, pp. 173–182.

[7] J. Fan and J. Wang, “A collective neurodynamic optimization
approach to nonnegative matrix factorization,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 28, no. 10, pp. 2344–2356, Oct. 2017. [Online].
Available: https://doi.org/10.1109/TNNLS.2016.2582381

[8] S. Ge, C. Wu, F. Wu, T. Qi, and Y. Huang, “Graph enhanced repre-
sentation learning for news recommendation,” in Proc. Web Conf.,
2020, pp. 2863–2869. [Online]. Available: https://doi.org/10.1145/
3366423.3380050

[9] Y. Xu et al., “NeuO: Exploiting the sentimental bias between rat-
ings and reviews with neural networks,” Neural Netw., vol. 111,
pp. 77–88, 2019. [Online]. Available: https://doi.org/10.1016/j.
neunet.2018.12.011

[10] C. Shi, B. Hu, W. X. Zhao, and P. S. Yu, “Heterogeneous informa-
tion network embedding for recommendation,” IEEE Trans.
Knowl. Data Eng., vol. 31, no. 2, pp. 357–370, Feb. 2019. [Online].
Available: https://doi.org/10.1109/TKDE.2018.2833443

[11] C. He, D. Parra, and K. Verbert, “Interactive recommender systems:
A survey of the state of the art and future research challenges and
opportunities,” Expert Syst. Appl., vol. 56, pp. 9–27, 2016.

[12] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for
implicit feedback datasets,” in Proc. 8th IEEE Int. Conf. Data Min-
ing, 2008, pp. 263–272.

[13] C.-K. Hsieh, L. Yang, Y. Cui, T.-Y. Lin, S. Belongie, and D. Estrin,
“Collaborative metric learning,” in Proc. 26th Int. Conf. World Wide
Web, 2017, pp. 193–201.

[14] M. Li, S. Zhang, F. Zhu, W. Qian, L. Zang, J. Han, and S. Hu,
“Symmetric metric learning with adaptive margin for recommen-
dation,” in Proc. 34th AAAI Conf. Artif. Intell., 32nd Innovative Appl.
Artif. Intell. Conf., 10th AAAI Symp. Educ. Adv. Artif. Intell., 2020,
pp. 4634–4641. [Online]. Available: https://aaai.org/ojs/index.
php/AAAI/article/view/5894

[15] A. Acharya, R. Goel, A. Metallinou, and I. S. Dhillon, “Online
embedding compression for text classification using low rank
matrix factorization,” in Proc. 33rd AAAI Conf. Artif. Intell., 31st
Innovative Appl. Artif. Intell. Conf., 9th AAAI Symp. Educ. Adv. Artif.
Intell., pp. 6196–6203. [Online]. Available: https://doi.org/
10.1609/aaai.v33i01.33016196

[16] D. Wang and X. Tan, “Robust distance metric learning via Bayesian
inference,” IEEE Trans. Image Process., vol. 27, no. 3, pp. 1542–1553,
Mar. 2018.

[17] A. N. Nikolakopoulos, V. Kalantzis, E. Gallopoulos, and
J. D. Garofalakis, “Eigenrec: Generalizing puresvd for effective and
efficient top-n recommendations,” Knowl. Inf. Syst., vol. 58, no. 1,
pp. 59–81, 2019. [Online]. Available: https://doi.org/10.1007/
s10115-018-1197-7

[18] M. Li et al., “Symmetric metric learning with adaptive margin for
recommendation,” in Proc. 34th AAAI Conf. Artif. Intell., 32nd Inno-
vative Appl. Artif. Intell. Conf., 10th AAAI Symp. Educ. Adv. Artif.
Intell., 2020, pp. 4634–4641. [Online]. Available: https://aaai.org/
ojs/index.php/AAAI/article/view/5894

[19] N. Wang, X. Zhao, Y. Jiang, and Y. Gao, “Iterative metric learning
for imbalance data classification,” in Proc. 27th Int. Joint Conf. Artif.
Intell., pp. 2805–2811. [Online]. Available: https://doi.org/
10.24963/ijcai.2018/389

[20] J. Ma et al., “Off-policy learning in two-stage recommender sys-
tems,” in Proc. Web Conf., 2020, pp. 463–473. [Online]. Available:
https://doi.org/10.1145/3366423.3380130

[21] Y. Koren and R. Bell, “Advances in collaborative filtering,” in Rec-
ommender Systems Handbook. Berlin, Germany: Springer, 2015,
pp. 77–118.

[22] H. Wu, Q. Zhou, R. Nie, and J. Cao, “Effective metric learning
with co-occurrence embedding for collaborative recommen-
dations,”Neural Netw., vol. 124, pp. 308–318, 2020. [Online]. Avail-
able: https://doi.org/10.1016/j.neunet.2020.01.021

[23] E. P. Xing, M. I. Jordan, S. J. Russell, and A. Y. Ng, “Distance met-
ric learning with application to clustering with side-information,”
in Proc. Int. Conf. Neural Inf. Process. Syst., 2003, pp. 521–528.

[24] M. Cogswell, F. Ahmed, R. B. Girshick, L. Zitnick, and D. Batra,
“Reducing overfitting in deep networks by decorrelating repre-
sentations,” in Proc. 4th Int. Conf. Learn. Representations, 2016.
[Online]. Available: http://arxiv.org/abs/1511.06068

[25] Y. Xu et al., “Neural serendipity recommendation: Exploring the bal-
ance between accuracy and novelty with sparse explicit feedback,”
ACM Trans. Knowl. Discov. Data, vol. 14, no. 4, pp. 50:1–50:25, 2020.
[Online]. Available: https://doi.org/10.1145/3396607

[26] Q. Gu, J. Zhou, and C. Ding, “Collaborative filtering: Weighted
nonnegative matrix factorization incorporating user and item
graphs,” in Proc. SIAM Int. Conf. Data Mining, 2010, pp. 199–210.

[27] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis, “Large-scale
matrix factorization with distributed stochastic gradient descent,”
in Proc. 17th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining,
2011, pp. 69–77.

[28] X. He, Z. He, J. Song, Z. Liu, Y. Jiang, and T. Chua, “NAIS: Neural
attentive item similarity model for recommendation,” IEEE Trans.
Knowl. Data Eng., vol. 30, no. 12, pp. 2354–2366, Dec. 2018.
[Online]. Available: https://doi.org/10.1109/TKDE.2018.2831682

[29] Y. Cao, X. Wang, X. He, Z. Hu, and T. Chua, “Unifying knowledge
graph learningand recommendation: Towards a better understanding
of user preferences,” in Proc. World Wide Web Conf., 2019, pp. 151–161.
[Online]. Available: https://doi.org/10.1145/3308558.3313705

[30] X. Wang, X. He, M. Wang, F. Feng, and T. Chua, “Neural graph
collaborative filtering,” in Proc. 42nd Int. ACM SIGIR Conf. Res.
Develop. Inf.. Retrieval, 2019, pp. 165–174. [Online]. Available:
https://doi.org/10.1145/3331184.3331267

[31] W. Fan et al. “Graph neural networks for social recommendation,”
in Proc. World Wide Web Conf., 2019, pp. 417–426. [Online]. Avail-
able: https://doi.org/10.1145/3308558.3313488

[32] L. Yang, E. Bagdasaryan, and H. Wen, “Modularizing deep neural
network-inspired recommendation algorithms,” in Proc. 12th
ACM Conf. Recommender Syst., 2018, pp. 533–534. [Online]. Avail-
able: https://doi.org/10.1145/3240323.3241618

5138 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: JILIN UNIVERSITY. Downloaded on March 06,2024 at 12:06:16 UTC from IEEE Xplore.  Restrictions apply. 

https://doi.org/10.1145/3366423.3380196
https://doi.org/10.1145/3366423.3380196
https://doi.org/10.1145/3298689.3347011
https://doi.org/10.1145/3298689.3347011
https://doi.org/10.24963/ijcai.2019/282
https://doi.org/10.1109/TNNLS.2016.2582381
https://doi.org/10.1145/3366423.3380050
https://doi.org/10.1145/3366423.3380050
https://doi.org/10.1016/j.neunet.2018.12.011
https://doi.org/10.1016/j.neunet.2018.12.011
https://doi.org/10.1109/TKDE.2018.2833443
https://aaai.org/ojs/index.php/AAAI/article/view/5894
https://aaai.org/ojs/index.php/AAAI/article/view/5894
https://doi.org/10.1609/aaai.v33i01.33016196
https://doi.org/10.1609/aaai.v33i01.33016196
https://doi.org/10.1007/s10115-018-1197-7
https://doi.org/10.1007/s10115-018-1197-7
https://aaai.org/ojs/index.php/AAAI/article/view/5894
https://aaai.org/ojs/index.php/AAAI/article/view/5894
https://doi.org/10.24963/ijcai.2018/389
https://doi.org/10.24963/ijcai.2018/389
https://doi.org/10.1145/3366423.3380130
https://doi.org/10.1016/j.neunet.2020.01.021
http://arxiv.org/abs/1511.06068
https://doi.org/10.1145/3396607
https://doi.org/10.1109/TKDE.2018.2831682
https://doi.org/10.1145/3308558.3313705
https://doi.org/10.1145/3331184.3331267
https://doi.org/10.1145/3308558.3313488
https://doi.org/10.1145/3240323.3241618


[33] D. H. Kim, C. Park, J. Oh, S. Lee, and H. Yu, “Convolutional matrix
factorization for document context-aware recommendation,” in
Proc. 10th ACMConf. Recommender Syst., 2016, pp. 233–240. [Online].
Available: https://doi.org/10.1145/2959100.2959165

[34] J. Han et al., “Adaptive deep modeling of users and items using
side information for recommendation,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 31, no. 3, pp. 737–748, Mar. 2020. [Online]. Avail-
able: https://doi.org/10.1109/TNNLS.2019.2909432

[35] M. Nilashi, O. Ibrahim, and K. Bagherifard, “A recommender sys-
tem based on collaborative filtering using ontology and
dimensionality reduction techniques,” Expert Syst. Appl., vol. 92,
pp. 507–520, 2018.

[36] S. Wang, J. Tang, Y. Wang, and H. Liu, “Exploring hierarchical
structures for recommender systems,” IEEE Trans. Knowl. Data
Eng., vol. 30, no. 6, pp. 1022–1035, Jun. 2018. [Online]. Available:
https://doi.org/10.1109/TKDE.2018.2789443

[37] F. M. Harper and J. A. Konstan, “The movielens datasets: History
and context,” ACM Trans. Interactive Intell. Syst., vol. 5, no. 4, 2016,
Art. no. 19.

[38] Y. Xu, Y. Yang, J. Han, E. Wang, F. Zhuang, and H. Xiong,
“Exploiting the sentimental bias between ratings and reviews for
enhancing recommendation,” in Proc. IEEE Int. Conf. Data Mining,
2018, pp. 1356–1361.

[39] N. Senthilkumaran and R. Rajesh, “Image segmentation-a survey
of soft computing approaches,” in Proc. Int. Conf. Adv. Recent Tech-
nol. Commun. Comput., 2009, pp. 844–846.

[40] S. Kabbur, X. Ning, and G. Karypis, “FISM: Factored item similar-
ity models for top-N recommender systems,” in Proc. 19th ACM
SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2013, pp. 659–667.
[Online]. Available: https://doi.org/10.1145/2487575.2487589

[41] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang,
“LightGCN: Simplifying and powering graph convolution net-
work for recommendation,” in Proc. 43rd Int. ACM SIGIR Conf.
Res. Develop. Inf. Retrieval, 2020, pp. 639–648. [Online]. Available:
https://doi.org/10.1145/3397271.3401063

[42] H. J. Ye, D. C. Zhan, and Y. Jiang, “Fast generalization rates for
distance metric learning,”Mach. Learn., vol. 108, pp. 267–295, 2019.

[43] J. Li, A. J. Ma, and P. C. Yuen, “Semi-supervised region metric
learning for person re-identification,” Int. J. Comput. Vis., vol. 126,
no. 8, pp. 855–874, 2018.

[44] X. Sui, E. L. Xu, X. Qian, and T. Liu, “Convex clustering with met-
ric learning,” Pattern Recognit., vol. 81, pp. 575–584, 2018.

[45] W. Zuo et al., “Distance metric learning via iterated support vector
machines,” IEEE Trans. Image Process., vol. 26, no. 10, pp. 4937–4950,
Oct. 2017.

[46] S. Chen, C. Gong, J. Yang, Y. Tai, L. Hui, and J. Li, “Data-adaptive
metric learning with scale alignment,” in Proc. AAAI Conf. Artif.
Intell., 2019, pp. 3347–3354.

[47] J. Hu, J. Lu, and Y. P. Tan, “Deep transfer metric learning,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 325–333.

[48] F. Yuan et al., “Future data helps training: Modeling future con-
texts for session-based recommendation,” in Proc. Web Conf.,
2020, pp. 303–313. [Online]. Available: https://doi.org/10.1145/
3366423.3380116

[49] C. Chen, M. Zhang, W. Ma, Y. Liu, and S. Ma, “Efficient non-sam-
pling factorization machines for optimal context-aware recom-
mendation,” in Proc. Web Conf., 2020, pp. 2400–2410. [Online].
Available: https://doi.org/10.1145/3366423.3380303

[50] S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan, “Session-
based recommendation with graph neural networks,” in Proc.
33rd AAAI Conf. Artif. Intell., 31st Innovative Appl. Artif. Intell.
Conf., 9th AAAI Symp. Educ. Adv. Artif. Intell., 2019, pp. 346–353.
[Online]. Available: https://doi.org/10.1609/aaai.v33i01.3301346

[51] L. Chen, L. Wu, R. Hong, K. Zhang, and M. Wang, “Revisiting
graph based collaborative filtering: A linear residual graph convo-
lutional network approach,” in Proc. 34th AAAI Conf. Artif. Intell.,
32nd Innovative Appl. Artif. Intell. Conf., 10th AAAI Symp. Educ.
Adv. Artif. Intell., 2020, pp. 27–34. [Online]. Available: https://
aaai.org/ojs/index.php/AAAI/article/view/5330

[52] J. Zhang, X. Shi, S. Zhao, and I. King, “STAR-GCN: Stacked and
reconstructed graph convolutional networks for recommender sys-
tems,” in Proc. 28th Int. Joint Conf. Artif. Intell., 2019, pp. 4264–4270.
[Online]. Available: https://doi.org/10.24963/ijcai.2019/592

Yuanbo Xu received the BE, ME, and PhD
degrees in computer science and technology from
Jilin University, Changchun, in 2012, 2015, and
2019, respectively. He is currently a postdoc with
the Department of Artificial Intelligence at Jilin Uni-
versity, Changchun. His research interests include
applications of data mining, recommender system,
and mobile computing. He has published some
research results on journals such as IEEE Trans-
actions on Multimedia, ACM Transactions on
Knowledge Discovery from Data, IEEE Transac-
tions on Neural Networks and Learning Systems
and conference as ICDM, SECON.

EnWang received the BE degree in software engi-
neering from Jilin University, Changchun, in 2011,
the ME and PhD degrees in computer science and
technology from Jilin University, Changchun, in
2013, and 2016, respectively. He is currently an
associate professor with the Department of Com-
puter Science and Technology at Jilin University,
Changchun. He is also a visiting scholar with the
Department of Computer and Information Scien-
ces at Temple University, in Philadelphia. His cur-
rent research interest include efficient utilization of

network resources, scheduling and drop strategy in terms of buffer-man-
agement, energy-efficient communication between human-carried devi-
ces, andmobile crowdsensing.

Yongjian Yang received the BE degree in
automatization from the Jilin University of Tech-
nology, Changchun, Jilin, China, in 1983, the ME
degree in computer communication from the Bei-
jing University of Post and Telecommunications,
Beijing, China, in 1991, and the PhD degree in
software and theory of computer from Jilin Uni-
versity, Changchun, Jilin, China, in 2005. He is
currently a professor and a PhD supervisor with
Jilin University, director of the Key lab under the
Ministry of Information Industry, standing director

of the Communication Academy, member of the Computer Science
Academy of Jilin Province. His research interests include theory and
software technology of network intelligence management, Key technol-
ogy research of wireless mobile communication and services. He partici-
pated 3 projects of NSFC, 863 and funded by National Education
Ministry for Doctoral Base Foundation. He has authored 12 projects of
NSFC, key projects of Ministry of Information Industry, Middle and Young
Science and Technology Developing Funds, Jilin provincial programs,
ShenZhen, ZhuHai, and Changchun.

Yi Chang (Senior Member, IEEE) is dean of the
School of Artificial Intelligence, Jilin University. His
research interests include information retrieval,
data mining, machine learning, natural language
processing, and artificial intelligence. He is an
associate editor of IEEE Transactions on Knowl-
edge and Data Engineering, and he served as
one of the conference general chairs for ACM
WSDM’2018 andACMSIGIR’2020. He isACMdis-
tinguished scientist.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

XU ETAL.: UNIFIED COLLABORATIVE REPRESENTATION LEARNING FOR NEURAL-NETWORK BASED RECOMMENDER SYSTEMS 5139

Authorized licensed use limited to: JILIN UNIVERSITY. Downloaded on March 06,2024 at 12:06:16 UTC from IEEE Xplore.  Restrictions apply. 

https://doi.org/10.1145/2959100.2959165
https://doi.org/10.1109/TNNLS.2019.2909432
https://doi.org/10.1109/TKDE.2018.2789443
https://doi.org/10.1145/2487575.2487589
https://doi.org/10.1145/3397271.3401063
https://doi.org/10.1145/3366423.3380116
https://doi.org/10.1145/3366423.3380116
https://doi.org/10.1145/3366423.3380303
https://doi.org/10.1609/aaai.v33i01.3301346
https://aaai.org/ojs/index.php/AAAI/article/view/5330
https://aaai.org/ojs/index.php/AAAI/article/view/5330
https://doi.org/10.24963/ijcai.2019/592


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


