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Abstract—Urban prediction tasks that aim to model the
complicated spatial and temporal patterns of urban indicators
(such as weather, vehicle charging demand, etc.) for accurate
prediction, have been increasingly important in constructing
smart cities and accelerating the urbanization process in the
modern era. However, most existing works of urban prediction
have only concentrated on spatial and temporal correlations, but
ignored the effect of distribution shift from spatial and temporal
perspectives; this could largely hinder the performance of urban
prediction tasks. In order to solve this problem, in this paper, we
propose a Shift-Aware Urban Prediction (SAUP) framework to
eliminate the inherent shift effect among spatial-temporal urban
time series data. Specifically, SAUP starts with a Shift Elimination
Module, built upon our proposed Spatial-Temporal Attention
Flows (STAF) composed of invertible attentions and coupling
layers of normalizing flows in order to transform the raw shifted
data into a unified distribution to remove the spatiotemporal shift.
After the shift effect is eliminated, the Correlation Processing
Module of SAUP further captures the core correlations to learn
spatiotemporal dependencies, in which topological correlations
and geographic correlations are jointly learned by GCN and
CNN based on pre-defined graphs and extracted POI informa-
tion. In addition, SAUP includes a model-agnostic Forecasting
Module, which can be employed as any forecasting architecture
to accomplish the predictions. To recover the raw distribution
information, the output of the Forecasting Module is further
taken for the inverse transformation of the Shift Elimination
Module to produce the final forecasts. We have conducted
extensive experiments in the SAUP framework, coupled with
six state-of-the-art spatiotemporal forecasting models on two
real-world datasets. Experimental results have demonstrated the
consistent improvements of SAUP over the baseline algorithms.

I. INTRODUCTION

The high-speed urbanization process in the modern era

brings great challenges to public administration due to the

rapidly growing urban construction demands [1]. Under such

a situation, urban prediction has become an appealing research

application recently [2]–[4], showing its great potential to

construct smart cities. [5]. As well-known as spatial-temporal

forecasting, urban prediction focuses on predicting the future

status (e.g., traffic flow, air quality, temperature, etc.) of the
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(a) Spatial distribution of air quality
stations

(b) PM10 index of three Stations

(c) PM2.5 index of three Stations

Fig. 1. An illustration of data distribution collected from three stations. These
series share correlated patterns but also have the spatial-temporal shift.

urban area based on the historical status, which is universally

conducted in city service systems (e.g., transportation system,

weather forecasting system, etc). Nevertheless, on account of

the intricate intra-dependencies (i.e., correlations within one

single node in different time periods) and inter-dependencies

(i.e., correlations among numerous time series from different

nodes) of urban spatial-temporal series, urban predication can

be an extremely challenging task [6].

Previously, the prevailing methods of urban prediction are to

take advantage of statistical methods such as Auto-Regressive

Integrated Moving Average (ARIMA) [7] and Vector Auto-

Regression (VAR) [8]. These methods, however, are only fit

for simple linear temporal relations and would fail to make

precise predictions for more complicated spatial-temporal de-

pendencies due to the uncertain and dynamic urban environ-

ment [6]. With the development of deep learning techniques,

researchers turn to construct deep neural network architectures

to discover the hidden correlation shared by urban big data

[9]–[14]. To model the non-euclidean structure of the graph

and capture the spatial correlation, they generally utilize GCN-

based model [3], [6], [15]. As for the purpose of modeling

temporal dependencies, they employ recurrent neural networks

or temporal convolution modules as their tools [10], [16], [17].

Though existing works concentrated on modeling compli-

cated spatial and temporal dependencies [18], they ignore
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the ubiquitous shift effect among urban data. To illustrate it,

we randomly choose three air quality stations in Beijing and

plot the 360h-records of PM2.5 and PM10 in Figure 1 (all

of the missing values are filled by linear interpolation). The

figure demonstrates an appealing fact that there is still much

difference though diverse stations and different time periods

share some similar patterns. To describe these two kinds of

differences in spatial and temporal domains, we introduce the

item, ”shift” effect and classify the shift into two types by

their causes, i.e., spatial shift effect and temporal shift effect.

Investigating the cause and influence of shift effects can be

essential for further research. First, the temporal shift effect is

important in urban prediction. Most urban prediction models

assume the temporal patterns of historical values and future

values are stationary; however, this assumption is not realistic,

as the joint distribution of real-world time series data is always

shifted, leading to the ”temporal shift” effect [19], [20] which

interferes urban prediction models to generate the prediction.

Hence, it is essential to mitigate the temporal shift effect to

enhance the capture of dependencies. Furthermore, the spatial

shift effect is also important. To elaborate on the spatial shift,

we take the air quality stations of Beijing (see Figure 1) as

an example. Although there is a strong correlation among

different stations, we can also find out that different series also

indicate evident dissimilarity. It is not strenuous to see that

different series have time lags and different mean as well as

variance. Concretely, due to the diverse geographic locations,

different stations have dissimilar distributions which greatly

impedes the spatial-temporal forecasting models to capture

spatial correlation. In this paper, we use the term ”spatial shift”

effect to describe this dissimilarity between nodes in general.

Therefore, eliminating spatial effects can be advantageous

for the improvement of accuracy. If we do not eliminate

the shift effect before capturing the correlation, it is highly

possible that forecasting models focus more on heterogeneous

information rather than capturing similar patterns and making

a biased prediction. To this end, we propose a Shift Aware

Urban Prediction (SAUP) framework, which is composed of

the Shift Elimination Module to eliminate the shift effect, the

Correlation Processing Module to capture the spatio-temporal

correlation, and the Forecasting Module to accomplish the

prediction task.

Our main question is how can we eliminate the shift

effect including spatial shift and temporal shift effect. Since

the spatial shift effect represents the dissimilarity between

nodes and the temporal shift effect means the dissimilarity

of different time points, we can regard their data distributions

as heterogeneous distributions. Thus an intuitive method to

remove shift effects is to transform them into one unified

distribution which is favorable for forecasting model before

capturing their dependencies. To this end, we propose Spatial-

Temporal Attention Flow (STAF) as our Shift Elimination

Module for the distribution learning to eliminate the spatial-

temporal shift effect, enlightened by the remarkable distri-

bution transformation ability of normalizing flows [21]. In

addition, we notice flow-based models are invertible neural

networks [22], which not only can transform distributions

but also can recover shift information. We make use of this

advantage and make our elimination process also reversible,

in order to make the forecasting conducted in the transformed

stationary space and then distribution information recovered

by the inverse transformation of STAF. STAF is built upon the

coupling layers [23], [24] widely used in many normalizing

flows [24]. Also, the shift always exists consistently and has a

long-term effect, we need to include a structure to capture

the global relationship of the shift effect. Since we need

to inverse the output back to the original distribution, this

structure should also be invertible. Thus we apply invertible

attention [25] in our STAF to enhance the distribution learning,

which is totally invertible, easy to implement, and performs

well to capture the long-term relationship [25].

Our another question is how to capture spatial temporal

correlation in urban prediction while the shift effect exists.

Existing works always disregard the influence of the shift

effect and directly capture spatial correlations [3], [14], [15].

However, it is hard for these models to capture the real

correlation among the series due to the existence of the shift

effect. As a result, we aim to first eliminate the shift effect and

then capture spatial temporal dependencies in our Correlation

Processing Module, in order to accurately model the patterns

of the spatial-temporal urban series. Specifically, to better

capture spatial temporal dependencies in the transformed space

of STAF, we consider and fuse two kinds of correlations,

namely topological correlation and geographic correlation to

conduct dependency learning. For the topological correlation,

we employ a Graph Convolutional Network (GCN) to achieve

the desired effect to model the graph structure data [26],

which models the complex dependencies with the pre-defined

adjacency matrix. For the geographic correlation, we con-

sider Point of interest (POI) information in grid-level and

utilize Convolutional Neural Network (CNN) to learn the

embeddings, which plays a crucial role in spatial-temporal

forecasting [27]. The major contributions of this work can be

briefly summarized as:
• We introduce the shift effect to measure the dissimilarity

between different nodes and different time periods, and

we propose the Shift-Aware Urban Prediction (SAUP)

framework to convert the original data into a stationary

space for prediction and capture topological correlation

and geographic correlation.

• We design an invertible Spatial-Temporal Attention Flows

(STAF) built upon coupling layers and invertible attention

to eliminate both temporal and spatial shifts of urban data.

• We construct a Correlation Processing Module to capture

topological correlation and geographic correlation among

spatial-temporal series and fuse them together after the

shift effect is removed.

• We conduct several experiments on two real-world

datasets with six state-of-the-art forecasting models as

baselines. Extensive empirical results indicate that our

proposed framework can consistently improve the pre-

diction performance over the baseline algorithms.
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II. PRELIMINARIES

A. Problem Definition
In this paper, we concentrate on solving the multi-step

urban prediction problem. Given a certain urban prediction

task (e.g., traffic prediction [6], weather prediction [28])

that contains multiple correlated time series represented

as {X(1:N)
1 ,X

(1:N)
2 , · · · ,X(1:N)

t , · · · }, we let X
(1:N)
t =

{x(1:N),1
t ,x

(1:N),2
t , · · · ,x(1:N),D

t } ∈ R
N×D as the recording

of N sources of D dimensions of urban information (e.g.

vehicle speed, weather, and charging demand) at time-step t.
Our target is to make predictions of the future values of the

correlated series based on the observed historical values. We

formulate the problem as finding a mapping function Fθ to

forecast the next τ time-steps spatial-temporal data based on

the past T steps historical data (T is defined as the length

look-back window):

X
(1:N)
t+1 ,X

(1:N)
t+2 , ...,X

(1:N)
t+τ = Fθ(X

(1:N)
t ,X

(1:N)
t−1 , ...,X

(1:N)
t−T+1)

(1)

where θ is denoted as all the learnable parameters in the model.

For the purpose of investigating the spatial correlation

between diverse urban series, we introduce topological and

geographic knowledge as parts of the model input. The

urban forecasting task can be further formulated on graph

G = (V, E ,A) as topological information, where V denotes

the set of nodes in a traffic graph, and |V| = N , E represents

the set of edges between nodes, and A ∈ R
N×N is the adjacent

matrix of the graph. If vi, vj ∈ V and (vi, vj) ∈ E , Aij = 1,

otherwise Aij = 0. In addition, we would like to include the

POI as geographic information. We denote P ∈ R
C×N , where

N is the number of nodes and C is the number of categories

of POI. Thus, the problem can be further adjusted as:

X
(1:N)
t+1 ,X

(1:N)
t+2 , ...,X

(1:N)
t+τ =

Fθ(X
(1:N)
t ,X

(1:N)
t−1 , ...,X

(1:N)
t−T+1;G;P)

(2)

We define X
(1:N)
t−T :t = {X(1:N)

t−T+1,X
(1:N)
t−T+2, ...,X

(1:N)
t−1 } as the

lookback window for brevity in the following sections of this

paper, accordingly we write X
(1:N)
t:t+τ as future values needing

to predict.

III. METHODOLOGY

In this section, we first introduce the architecture of our

general framework, i.e. the Shift-Aware Urban Prediction

framework (SAUP). Next, we delineate three modules of our

framework which collaborate to model the complex spatial-

temporal patterns in Section III-A, the Shift Elimination

Module in Section III-B, the Correlation Processing Module

in Section III-C, the Forecasting Module and the inverse

transformation of STAF in Section III-D.

A. Framework Overview
Figure 2 shows the structure of our proposed Shift-Aware

Urban Prediction framework, including (1) To eliminate the

shift effect, we design Shift Elimination Module with Spatial-

Temporal Attention Flows (STAF) to transfer the original

distribution into a hidden stationary distribution which is favor-

able for the following modules to model the complex spatial-

temporal relationship. (2) After eliminating the shift effect, we

utilize a Correlation Processing Module to extract the hidden

patterns of the pre-defined graph and POI information in order

to capture the correlation among spatial-temporal data. (3)

And we use the forecasting module that is suitable for any

spatial-temporal forecasting models to make a prediction. (4)

Ultimately, we devise the inverse transformation of the Shift

Elimination Module to inverse the output of the forecasting

module back to the original space and obtain the final results,

so the shift information can be recovered.

B. Shift Elimination Module
Shift exists ubiquitously among urban spatial-temporal se-

ries due to the dynamic urban environment. However, most

recent works only have demonstrated that spatial-temporal

correlation plays a crucial role in urban prediction task [18]

and they ignore the effect of shift which is also essential in

spatial-temporal forecasting. Inspired by [19], our core thought

to deal with the shift effect can be split into three steps.

First of all, we remove the non-stationary shift effect of the

series. Then we utilize the series without the shift effect to

forecast. So that the non-stationary effect can be excluded

from the forecasting process. At last, we recover the shift

information. To maintain the accuracy and completeness of

the information, the process of removing the shift effect has

to be totally invertible, i.e., the recovering process has to be

the inverse transformation of the removing process. Moreover,

as mentioned in the previous section, if we transform the series

into a unified distribution, the shift effect can be eliminated.

So, in order to eliminate the shift effect, we propose a totally

invertible Spatial-Temporal Attention Flows (STAF) as Shift

Elimination Module by utilizing invertible attention [25] as

well as coupling layers [24] to implement. Such a solution

is built upon the Normalizing flows which is famous for its

remarkable ability of distribution transformation.

Coupling Layers To eliminate the effect of shift, we have

to consider the nature of the shift effect. As mentioned in

the previous section, the spatial shift occurs because different

nodes share different distributions due to their geographic

location, and the temporal shift occurs since time frames have

heterogeneous distributions So if we want to eliminate the

effect of shift, we need to transfer the original distributions to

unified distributions which are stationary and beneficial for the

backbones to capture complex patterns among spatial-temporal

data. Due to the marvelous ability of Normalizing flows for

distribution transformation, we utilize two coupling layers, i.e.

Spatial Coupling Layers and Temporal Coupling Layers, to

eliminate the shift effect of spatial and temporal dimensions.

Usually, designing tractable transformation is not simple and

the inverse x = f−1(z) is hard to evaluate too. To tackle these

problems and to increase the expression of the transformation,

we utilize the bijection function proposed by Real NVP [24]

which is called the affine coupling layer. First of all, we use

Spatial Coupling Layers to eliminate the spatial shift effect.

162

Authorized licensed use limited to: JILIN UNIVERSITY. Downloaded on February 27,2024 at 07:57:31 UTC from IEEE Xplore.  Restrictions apply. 



�������	�
����������	��
��������	

�������	�
����������	��
�
����	

����������

���������

��������

������������

�����

	��������

������������

�����


���������	
���� �
����

���� � ���!����!������!��� "	
�����#"!����

�

���� !��� ����	! $"���! ���!����!���

�

�

���� � ���!����!���

���!��
�	����"!���


����!
���� !�

���!��� "	
�����#"!����

��!���!
����!

�

$"���! ���!����!���

���!��
�	����"!���


����!
���� !�

���� !��� ����	!

��!���!
����!

����������

��"��

�����

���������

���

���������

��	��������


�����

����	���� ���������
���	�

�������	
��
�����

�������

�������������������
����	

������
����	

���

������"!���

Fig. 2. The framework overview of Spatial-Aware Urban Predication (SAUP).

The input of Spatial Coupling Layers is X̃
(1:N)
t−T :t ∈ R

T×N×D,

it has an input space of X , and nc < N which can be an

arbitrary partition, but in this work, we set nc = �D
2 �. The

output Z
(1:N)
t−T :t can be calculated as following:

Z
(1:nc)
t−T :t = X̃

(1:nc)
t−T :t

Z
(nc:N)
t−T :t = X̃

(nc:N)
t−T :t � exp(s(X̃

(1:nc)
t−T :t )) + t(X̃

(1:nc)
t−T :t )

(3)

Where Z
(1:N)
t−T :t ∈ R

T×N×D and Z
(1:N)
t−T :t has a hidden space,

we denote it as Z .

Then We employ Temporal Coupling Layers to eliminate the

temporal shift effect. Utilizing the input Z
(1:N)
t−T :t ∈ R

T×N×D

and set tc = �T
2 �, the output Z̃

(1:N)
t−T :t ∈ R

T×N×D and Z̃
(1:N)
t−T :t ∈

R
T×N×D can be formulated as:

Z̃
(1:N)
t−T :tc

= Z
(1:N)
t−T :tc

Z̃
(1:N)
tc:t = Z

(1:N)
tc:t � exp(s(Z

(1:N)
t−T :tc

)) + t(Z
(1:N)
t−T :tc

)
(4)

Where Z̃
(1:N)
t−T :t ∈ R

T×N×D, and the hidden output space of as

Z̃
(1:N)
t−T :t is denoted as Z ′.

Invertible Attention Typically, the sensors can cover a vast

geographical space and the time periods of the spatial-temporal

series are extensive. This can be a challenge for the Shift Elim-

ination Module to cover global shift information. So a non-

local structure better captures long-distance dependencies and

thus can be a remedy for this problem. From this perspective,

we consider self-attention [29] as a useful tool since it is an

efficient mechanism to capture non-local dependencies. In this

work, we use Non-local Neural Networks proposed by [30].

We denote the input as X
(1:N)
t−T :t ∈ R

T×N×D. So we can write

the attention as:

X̃
(1:N)
ti =

1

N(X
(1:N)
t−T :t)

∑
∀j r(X

(1:N)
ti ,X

(1:N)
tj )F (X

(1:N)
tj )

(5)

where X̃
(1:N)
t−T :t = {X̃(1:N)

t−T+1, X̃
(1:N)
t−T+2, ..., X̃

(1:N)
t−1 } is output

and X̃
(1:N)
t−T :t ∈ R

T×N×D, ti, tj are denoted as all possible

positions’ index of T dimension, F (·) is the projection function

of the input x to map it to the feature space which is also

called feature map, r(·) is the response function and N(·) is

a normalizing factor. We denote response map as R(X
(1:N)
t−T :t)

which is the set of r(X
(1:N)
ti ,X

(1:N)
tj ) for all possible pairs of

ti, tj after normalizing.

Unlike recurrent and convolutional operations, non-local

attention can ignore the spatial-temporal distance and better

capture the long-range correlation among spatial-temporal

series. The response function of Embedded Gaussian Attention

can be defined as: r(X
(1:N)
ti ,X

(1:N)
tj ) = exp(θ(X

(1:N)
ti )T ×

φ(X
(1:N)
tj )) where θ(X

(1:N)
ti ) = WθX

(1:N)
ti and φ(X

(1:N)
tj ) =

Wφ(X
(1:N)
tj ) are the two embedding. And the normalizing

factor N(X
(1:N)
t−T :t) is N(X

(1:N)
t−T :t) =

∑
∀j r(X

(1:N)
ti ,X

(1:N)
tj ).

As mentioned previously, our solution to eliminate shift is to

remove the non-stationary shift effects first and recover them

after forecasting by the inverse transformation of the Shift

Elimination Module. Hence, to ensure the recovering process

preserves all the accurate shift information, the structure of

the Shift Elimination Module should be invertible. As part of

the Shift Elimination Module, the non-local attention should

be also invertible. However, most of the attention mechanism

is not invertible since their transformation process is not

bijective. So we introduce the invertible attention proposed

by [25] to solve this problem. They prove that attention can

be invertible by restricting the response map, feature mapping

F , and utilizing a Lipschitz-constrained convolution at the

last step of residual branch. We will discuss the details of

constraints in the Theoretical Analysis parts later.

Theoretical Analysis We are going to discuss the theoretical

analysis of our Spatial-Temporal Attention Flows here. Start-

ing from the basic mechanism of invertible attention, we will

introduce how it can be invertible.

First of all, we introduce the Inversed Residual Structure.

Given an input x
(n),d
t−T :t ∈ R

T , we define the residual struc-

ture as: H(x
(n),d
t−T :t) = x

(n),d
t−T :t + G(x

(n),d
t−T :t) For the propose

of making H(x
(n),d
t−T :t) invertible, we need to constrain the
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Algorithm 1 Inverse of Residual Block

Input: Output from residual layer z
(n),d
t−T :t, residual block G,

number of iterations n
1: Initial: x

(n),d,0
t−T :t ← z

(n),d
t−T :t

2: for i = 0, 1, ..., n do
3: x

(n),d,i+1
t−T :t ← z

(n),d
t−T :t −G(x

(n),d,i
t−T :t )

4: end for
5: return x

(n),d,n+1
t−T :t

Lipschitz constant L of G [31]. Here we give the Lemma

1 to demonstrate one sufficient condition for the Lipschitz

constrain.

Lemma 1 : Given the input x
(n),d
t−T :t ∈ R

T , H(x
(n),d
t−T :t) is

invertible if L(G) = c where c ∈ (0, 1), and L(G) is defined

as:

L(G) = sup
x
(n),d
t1

�=x
(n),d
t2

||G(x
(n),d
t1 )−G(x

(n),d
t2 )||

||x(n),d
t1 − x

(n),d
t2 ||

(6)

The inverse of H can be computed by algorithm 1 which

utilizes numeric estimation. Since attention mechanism can

be regarded as a residual structure, same logic of Lemma 1

can be applied to design the invertible attention for our Shift-

Elimination Module.

Next, we will introduce invertible Convolution. Since atten-

tion utilize Convolution to obtain feature map and response

map, to make the whole network invertible, it is obligatory

to the the Convolution invetible as well. We can represent the

Convolution as g(x
(n),d
t−T :t) = Wx

(n),d
t−T :t, where W is the weight

matrix. We can compute the largest singular value σ(W ) and

apply Lipschitz constant constraint by:

W =

{ cW
σ(W ) if cW

σ(W ) < 1

W else
(7)

Since attention mechanism can be regarded as a matrix

multiplication between a response map and a feature map,

applying Lipschitz constraint can be equivalent to find the

Lipschitz bounds of the multiplication. [25] proposed the

theorem as:

Theorem 1 : Let X be a normed vector space and let Rm×n

represents the set of m×n vector space over the real number

R. Let F : X → R
m×n, and R : X → R

m×m. Define

A : X → R
m×n by A(x) = R(x)F (x) where x ∈ X . The

following properties are further assumed:

1.F is is Lipschitz-continuous with L1-Lipschitz constant

cF .

2.R is is Lipschitz-continuous with L1-Lipschitz constant

cR.

3.||R(x)||1 ≤ μR for each x ∈ X
4.||F (x)||1 ≤ μF for each x ∈ X .

Then A has a L1-Lipschitz constant μRcF + cRμF .

Due to the fact that the L1 norm and L2 norm are within

constant bounds of each other as well as the sufficient and

necessary condition of a function is L1 Lipschitz continuous

is that it is also L2 Lipschitz continuous, this theorem can

be extended to L2 norm. We are not going to discuss the

detailed proofs which can be seen in [25]. Another Lipshictz-

constrained convolution can be added at the end of residual

branch with the L2 Lipschitz constant L(A) = k(μRcF +
cRμF ), where k is the constant bound. The attention block

can be set as:

f(x
(n),d
t−T :t) = x

(n),d
t−T :t +WAA(x

(n),d
t−T :t) (8)

where WA is the weight. By further setting Lipschitz constant

as c
k(μRcF+cRμF ) , where c ∈ (0, 1), the residual branch

satisfies: L(WLA(x
(n),d
t−T :t))L(WLx

(n),d
t−T :t)L(A(x

(n),d
t−T :t)) = c

As a result, the residual branch satisfies Lemma 1, the whole

attention block is invertible and f(x
(n),d
t−T :t) can be inversed by

Algorithm 1.

Next, we will discuss the coupling layers of Spatial-

Temporal Attention Flows which is built upon Normalizing

Flows. Normalizing Flows are a set of mappings denoted as

f : X → Z such that a simple distribution pZ(z) on the space

Z ∈ R
N (Normally, pZ(z) is defined as isotropic Gaussian

distribution or uniformly distribution, but in this work, we do

not use a pre-defined distribution) can be transformed from

the densities pX (x) on the input space X ∈ R
N . The density

pX (x) can be expressed as: pX (x) = pZ(z)
∣∣∣det(∂f(x)

∂x

)∣∣∣
where

∂f(x)
∂x is the Jacobian matrix of f at x.

Since mappings f consists of a sequence of bijections

functions (i.e. f = f1 ◦ f2 ◦ ... ◦ fn), the inverse function

x = f−1(z) can be easily calculated. So the relationship

between x and z can be further expressed as: x f1↔ h1
f2↔

h2...
fn↔ z So the log-likelihood of x can be written as

log pX (x) = log pZ(z) +
∑n

i=1 log
∣∣∣det( ∂hi

∂hi−1

)∣∣∣where we

define h0 := x and hn := z.

We can always transform any input densities into not

only isotropic Gaussian distribution or uniform distribution

but also any densities which are favorable for the training

of models. As a result, unlike the normal training strategy

of Normalizing Flows, i.e. calculating the log-likelihood of

pX (x), we train these two flows by minimizing the loss of the

whole framework which we will discuss later. In addition, we

also give up using the Jacobian matrix since we don’t need to

utilize the log-likelihood as the loss function.

C. Correlation Processing Module
After the shift effect is removed and the space is recovered

to stationary space, we also aim to capture correlation. Since

there are no non-stationary factors existing, the process of

capturing correlation can be easier to pursue. Specifically,

we intend to capture the correlation of the pre-defined graph

as graph embedding as well as the correlation of POI as

map embedding. Recent researches have demonstrated that

Graph Convolutional Network (GCN) has a great advantage

to model complicated graph patterns [32]. Thus, to capture

the dependencies of pre-defined adjacency matrix, we utilize

a GCN with Chebyshev polynomial expansion to model the

complex spatial correlation. POI scattered in the map is also

essential for the urban prediction task. To embed it, we divide
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cities into 10000 grids, each grid contains four categories of

POI. We use a Convolutional layer to scan the most relevant

grids. And ultimately, we include two learnable parameters

to represent the weights of graph embedding and the map

embedding for the feature fusion process.

Graph Embedding for Topological Correlation In this

work, the network of the city(e.g., traffic network, air quality

station network) is a graph structure, and we can view the

features of each node(e.g., PM2.5 index) are the signal of

the network. To utilize the entire topological properties of the

urban network, we employ Graph Convolutional Network to

directly process the signals. We generally represent a graph by

its Laplacian matrix L which is defined as L = D−A. Also we

define its normalized form as L = In −D− 1
2WD− 1

2 , where

In is the identity matrix, D ∈ R
N×N is the diagonal degree

matrix with Dii =
∑

∀j Wij . Λ ∈ R
N×N is the diagonal

matrix of eigenvalues of L.

We denote the input as z̃
(1:N),d
t ∈ R

N and z̃
(1:N),d
t ∈ Z̃

(1:N)
t−T :t

which is the output of Shift Elimination Module. Then we refer

to graph convolution operator as the notation ∗G by using U
as the graph Fourier basis:

Θ∗G (z̃
(1:N),d
t ) = Θ(L)z̃

(1:N),d
t

= UΘ(Λ)UT z̃
(1:N),d
t

(9)

where the kernel is Θ, Λ ∈ R
N×N is the diagonal matrix

of eigen- values of L, and U ∈ R
N×N is the matrix of

eigenvectors of the normalized graph Laplacian L.We use the

1st order approximation of graph Laplacian [33] to simplified

(we assumed the maximum value of λ is 2) and denote θ0,

θ1 are learnable parameters of the kernel. For the stability, we

replace θ0 and θ1 by θ = θ0 = −θ1 and normalize W and D
as W̃ = W + I − n and D̃ =

∑
j W̃ij :

Θ∗G (z̃
(1:N),d
t ) ≈ θ0z̃

(1:N),d
t − θ1(D

− 1
2WD− 1

2 )z̃
(1:N),d
t

= θ(In +D− 1
2WD− 1

2 )z̃
(1:N),d
t

= θ(D̃− 1
2 W̃ D̃− 1

2 )z̃
(1:N),d
t

(10)

By 1st order approximation of graph Laplacian, the structure

can be efficient.

Ultimately, we can derive the general form of Graph Con-

volutions:

h
(1:N),dj

t =
D∑
i=1

Θi,j(L)z̃
(1:N),di

t , 1 ≤ j ≤ K (11)

where z̃
(1:N),di

t ∈ R
N and h

(1:N),dj

t ∈ R
N are the input

and output of the Graph Convolutions, D and F are the size

of the input and output feature maps, and a and b are the

positional index. L is the normalized graph Laplacian of the

input adjacent matrix of the graph A.

Map Embedding for Semantic Correlation For the M ∗M
grids of the cities, each grid contains C categories of POI

information and each node is corresponded to one grid. Due

to the remarkable ability to model Euclidean Structure Data,

CNN has the advantage of modeling the POI data. Similar to

the operation of pictures, we employ a simple Convolutional

layer to scan the POI of F nearest grid of the node(including

the grid where the node is in) which is the most relevant POI

information and we can get a map embedding. So the POI

information P ∈ R
C×N is transfer to P ′ ∈ R

C×N×F . We

can formulate it as: H̆
(1:N)
t−T :t = conv2d(P ′) where H̆

(1:N)
t−T :t ∈

R
T×N×F .

Multi-Feature Fusion To combine the information of POI

and graph, we take the traffic speed as example. Traffic speed

at some of the districts may rely more heavily on the nearby

distracts rather than POI. An event such as the traffic jam

can always slow down the traffic speed of all the nearby

districts even the whole city. In contrast, POI may influence

amounts of other districts more heavily compared to events of

other districts. For instance, drivers need to slow down when

they are approaching schools. We utilize learnable parameters

WG and WC to reflect the weight of POI embedding and

graph embedding for the features fusion. And we denote the

output of GCN layers is H
(1:N)
t−T :t. The fusion process can be

formulated as:H̃
(1:N)
t−T :t = WG�H

(1:N)
t−T :t+WC�H̆

(1:N)
t−T :t, where

� is the Hadamard product, and H̃
(1:N)
t−T :t ∈ R

T×N×F

Then, a linear layer NN is applied to change the shape of

weighted embedding H̃
(1:N)
t−T :t : Ĥ

(1:N)
t−T :t = NN(H̃

(1:N)
t−T :t) where

Ĥ
(1:N)
t−T :t ∈ R

T×N×D and H̃
(1:N)
t−T :t ∈ R

T×N×F .

With the fusion feature, we can combine the information

of both the graph and POI. This can significantly increase the

ability of the framework to capture the spatial dependencies

with more geographical information.

D. Forecasting Module
After eliminating the shift effect and capturing the corre-

lation, the weighted embedding can be integrated into any

spatial-temporal forecasting model which can be denoted as

Fθ. The original prediction function X̂
(1:N)
t:t+τ = Fθ(X

(1:N)
t−T :t)

can be replaced by the forecasting process which can be

formulated as: Ŷ
(1:N)
t:t+τ = Fθ(Ĥ

(1:N)
t−T :t). The output here does

not follow the original input space due to the shift-elimination

process. So we need to further transfer the output Ŷ
(1:N)
t:t+τ back

to original input space X , and then calculate the loss.

We will recover the shift information of the output Ŷ
(1:N)
t:t+τ

of the forecasting Module by the inverse transformation of

Spatial-Temporal Attention Flows with the assumption that

the input and output of this framework should belong the

same space denoted as X . We should notice that τ does not

necessarily equal to T , in contrast, the coupling layers require

the dimension of input and the dimensions of output should be

equal. So we concatenate the output Ŷ
(1:N)
t:t+τ and the vectors

with zero value to get a new vector denote as Ŷ
(1:N)
t:t+T . We use

this vector as the input of the inverse transformation of the

Shift Elimination Module and recover the shift information.

Since the inverse function of the affine coupling layer proposed

by RealNVP is easily to evaluate and the attention is invertible

as well, we can easily obtain the result X̂
(1:N)
t:t+T . Ultimately,

we split the output of the inverse process into two parts which

are X̂
(1:N)
t:t+τ and X̂

(1:N)
t+τ :t+T . X̂

(1:N)
t:t+τ is the final output of this

framework.
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TABLE I
OVERALL PERFORMANCE ON METR-LA DATASET.

METR-LA Horizon 3 Horizon 6 Horizon 9 Horizon 12

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

T-GCN 6.53 13.71 16.94% 7.48 15.07 20.25% 7.94 15.9 21.45% 8.27 16.44 21.97%
T-GCN + SAUP 5.45 12.8 11.59% 5.95 13.85 12.17% 6.20 14.52 12.78% 6.66 15.26 14.25%

ASTGCN 3.56 8.89 7.77% 4.45 11.42 9.30% 4.77 11.70 10.46% 5.73 13.01 13.01%
ASTGCN + SAUP 3.37 8.55 7.49% 4.24 10.48 9.17% 4.59 11.09 10.26% 5.35 12.83 11.68%

Transformer 5.43 12.63 10.59% 5.83 13.82 10.99% 5.98 13.81 11.53% 6.66 15.05 12.60%
Transformer + SAUP 4.20 10.06 8.98% 5.11 12.02 10.93% 5.56 13.03 11.24% 6.26 14.31 12.66%

Informer 5.64 13.02 12.10% 5.98 13.83 12.31% 6.46 14.38 13.42% 7.16 15.82 13.92%
Informer + SAUP 4.22 10.46 8.92% 5.19 12.48 10.71% 5.67 13.45 11.47% 6.34 14.84 12.55%

Dlinear 3.71 8.8 8.33% 4.71 10.77 10.45% 4.98 12.05 10.42% 5.85 13.06 12.97%
Dlinear + SAUP 3.36 8.36 7.68% 4.02 10.16 9.04% 4.72 11.60 10.78% 5.42 12.76 11.90%

N-BEATS 3.64 8.61 8.32% 4.48 10.51 9.96% 4.91 11.81 10.93% 5.72 13.28 12.65%
N-BEATS + SAUP 3.38 8.44 7.73% 4.21 10.21 9.47% 4.65 11.55 10.44% 5.39 12.68 11.74%

TABLE II
DATASET STATISTICS.

Datasets # Samples # Nodes Sample Rate Input Length Output Length

METR-LA 34272 207 5 min 12 12
Beijing 33642 35 1 hour 12 12

E. Optimization Strategy
As mentioned in previous subsection, normal training strat-

egy of Normalizing Flows is calculating the log-likelihood of

pX (x). However, in this work, we do not utilize Normalizing

Flows to estimate density, so it is unnecessary to calculate the

log-likelihood. Instead, we use Mean Absolute Error (MAE) as

our loss function, and our objective is to minimize the overall

loss L as follows:

L =
1

τ

t+τ∑
i=t

∣∣∣X(1:N)
i − X̂

(1:N)
i

∣∣∣ (12)

IV. EXPERIMENTS

This section presents the empirical results of our pro-

posed framework based on two real-world datasets. These

experiments intend to answer the following questions: Q1.
Does our framework (SAUP) improve the performance of

backbones at a convincing level? Q2. Is each component of

the model effective to SAUP? Q3. Is SAUP adequately robust?

Q4. Is SAUP sensitive to the hyperparameters of different

components? Q5. Can SAUP be trained efficiently?

A. Experimental Setup
In this subsection, we will give a brief summary of our

datasets, and introduce the metrics and backbones we utilize

in our experiments.

1) Data Description: We conduct experiments on two real-

world datasets indicated by Table II: (1) METR-LA [3]: This

traffic dataset includes statistics on traffic gathered from loop

detectors on county highways in Los Angeles. We employ the

speed of vehicles from Mar 1st, 2012 to Jun 30th, 2012 for

the experiment. (2) Beijing: This air quality dataset contains

several air quality indexes collected hourly in Beijing. We

choose the PM2.5 index ranging from December 6th, 2013

to November 24 2017 for the experiment.

(a) N-BEATS. (b) Transformer. (c) ASTGCN.
Fig. 3. Ablation study on the Beijing dataset.

2) Evaluation Metrics: We evaluate the performance

of the urban prediction task by three evaluation met-

rics. Let X
(1:N)
t ∈ R

N×D be the ground truth of all

nodes at time step t, and X̂
(1:N)
t ∈ R

N×D be the pre-

diction result. The metrics can be defined as follows:

Root Mean Square Error (RMSE) is given by RMSE =√
1
τ

∑t+τ
i=t

(
X

(1:N)
i − X̂

(1:N)
i

)2

; Mean Absolute Error (MAE)

is given by MAE = 1
τ

∑t+τ
i=t

∣∣∣X(1:N)
i − X̂

(1:N)
i

∣∣∣; Mean Ab-

solute Percentage Error (MAPE) is given by: MAPE =

1
τ

∑t+τ
i=t

∣∣∣∣X(1:N)
i −X̂

(1:N)
i

X
(1:N)
i

∣∣∣∣.
3) Backbones: We include the following widely used deep

learning models as our backbones:

(1) Transformer [29] is able to capture the correlation among

various sequential data by connecting the encoder and decoder

jointly with the attention mechanism.

(2) Informer [34] is a time-efficient attention-based model

that can model long sequential data.

(3) Dlinear [35] is a linear model that can model the trend

and seasonality patterns of data.

(4) N-BEATS [36] is a simple network consisting of fully

connected layers which can outperform in forecasting.

(5) ASTGCN [15] utilizes spatial and temporal attention for

improving the ability to capture correlation among dynamic

spatial-temporal series.

(6) T-GCN [14] can model spatial-temporal correlation with

the graph convolutional network as well as the gated recurrent

unit.

B. Overall Performance
The final outcome of the Shift-Aware Ubran Predication

framework with diverse backbones on all two datasets is

reported in Table I and Table III. In general, with the help
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TABLE III
OVERALL PERFORMANCE ON BEIJING DATASET.

Beijing Horizon 3 Horizon 6 Horizon 9 Horizon 12

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

T-GCN 16.33 30.43 52.51% 19.99 36.89 68.67% 22.64 41.06 89.82% 24.87 44.73 99.53%
T-GCN + SAUP 13.24 24.78 41.83% 17.48 32.67 58.97% 19.81 36.92 71.02% 21.88 40.28 79.77%

ASTGCN 11.51 24.11 37.83% 15.80 31.69 56.85% 19.89 38.52 78.34% 23.11 43.07 94.47%
ASTGCN + SAUP 11.24 22.53 37.42% 15.19 29.72 50.44% 19.43 36.31 71.92% 21.28 40.07 80.78%

Transformer 13.29 25.65 39.74% 17.28 32.21 57.73% 20.06 38.63 75.62% 26.82 47.19 103.14%
Transformer + SAUP 11.91 23.11 36.80% 16.40 31.37 55.52% 19.56 36.28 69.11% 22.55 41.79 80.28%

Informer 13.61 26.96 42.75% 17.84 34.37 59.49% 20.30 37.75 79.18% 25.82 45.62 101.33%
Informer + SAUP 11.86 22.71 36.20% 16.62 31.70 55.63% 19.26 35.76 79.18% 23.20 41.52 84.58%

Dlinear 14.57 28.14 50.57% 18.88 36.11 67.66% 21.58 39.99 90.19% 25.83 46.19 99.71%
Dlinear + SAUP 11.77 23.33 39.32% 16.44 31.76 57.22% 19.69 36.62 69.45% 23.22 41.51 87.05%

N-BEATS 12.77 24.62 39.05% 16.83 34.00 56.41% 19.87 38.29 76.23% 22.50 42.16 90.89%
N-BEATS + SAUP 11.84 23.49 39.26% 16.33 31.52 55.78% 19.65 36.26 69.80% 21.80 40.17 83.26%

(a) MAE. (b) RMSE. (c) MAPE.
Fig. 4. Robustness Check for Transformer on the Beijing dataset evaluated.

(a) MAE. (b) RMSE. (c) MAPE.
Fig. 5. Robustness Check for N-BEATS on the Beijing dataset evaluated.

of our proposed framework, all of the backbones have re-

markable improvement (at least 5%) in terms of all three

metrics on both datasets. Especially, with Horizon as 3 on

METR-LA dataset, our proposed framework remarkably im-

proves the performance (measured by MAE) of Informer by

25.18%(5.64⇒4.22) and ameliorates the performance (mea-

sured by MAE) of Transformer by 22.65%(5.43⇒4.2). In

addition, the performance of ASTGCN with Horizon as 6 on

the Beijing dataset is improved by 18.42% (18.62⇒15.19).

This result demonstrates empirically that eliminating ubiqui-

tous shift effect is essential for urban spatial-temporal predic-

tion. Our proposed Shift-Aware Urban Prediction framework

not only takes the shift effect into account and effectively

eliminates both of spatial shift effect and temporal shift effect,

but also captures the topological correlation and geographic

correlation by combining the information of graph embedding

and map embedding. However, our backbones can only capture

the correlation among spatial-temporal series, thus decreasing

the accuracy of their predictions.

C. Ablation Study
To evaluate the effectiveness of each component of our

proposed Shift-Aware Urban Prediction framework (SAUP),

we conduct the ablation study on the Beijing dataset. We

denote SAUP-A as the variant of SAUP without invertible

attention. SAUP-N is another variant of SAUP without cou-

pling layers. SAUP-G is the variant which removes GCN

(a) MAE. (b) RMSE. (c) MAPE.
Fig. 6. Robustness Check for ASTGCN on the Beijing dataset evaluated.

(a) Kernel Size of GCN layers. (b) Hidden Layers Size of Coupling
Layers.

Fig. 7. Parameters Sensitivity study of Nbeats on the Beijing dataset.

layers and SAUP-C is the variant which drops CNN layers.

Figure 3 demonstrates that removing different components

causes a degradation for diverse backbones, which indicates

all components of our proposed framework are effective in

eliminating shift effect as well as capturing correlation for

pre-defined graph and POI.

D. Robustness Check
We also conduct the robustness check for our approach.

By utilizing diverse subgroups of datasets, our framework is

applied to examine the variance of performance. Specifically,

The Beijing dataset is equally split into six time periods, and

we employ four backbones with our framework to make a

prediction for each time period on two horizons. Figure 6

shows the experiment results that the performance of our

framework fluctuates in the different time periods. From our

perspective, this phenomenon is related to the environmental

policy of government. Stricter environmental policies were

adopted in 2014, and gradually took effort in the following

years. Hence, the first three subgroups of the dataset suffer

from a serious temporal shift effect due to the instability of

policies at the early stage. And by the fourth time period, the

policy had become increasingly stable, allowing our frame-

work to function effectively and steadily. It indicates the fact
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(a) Memory Usage. (b) Average Training Time per
epoch.

Fig. 8. Training Efficiency study on the Beijing dataset where we record
memory usage and training time.

that although our framework can eliminate the shift effect,

unexpected incidents might also deteriorate the performance

of the framework.

E. Parameters Sensitivity
In this subsection, we analyze the sensitivity of the hidden

layer size of coupling layers and the kernel size of the GCN

layer. To control the variable, We fix the hidden layer size as

50 when we adjust the kernel size and set the kernel size as

2 when we adjust the hidden layer size. We use N-BEATS as

our backbone and conduct this study on the Beijing dataset.

Figure 7 shows the performance of our proposed framework

changes slightly with kernel size. In contrast, for the hidden

layer size, the MAE and RMSE decrease when the hidden

layer size changes from 25 to 50, but it gets larger when we

increase the size of hidden layers. The potential reason for

this trend is increasing the size of hidden layers in a certain

level can improve the performance of framework but when

size of hidden layers gets large enough, it provides additional

training challenges to impede the convergence of model. So

our framework is not sensitive to the kernel size of GCN layers

but sensitive to the change of size of hidden layers.

F. Training Efficiency
Figure 8 indicates the memory usage and average training

time for each epoch of the Beijing dataset. We can see that

the maximum memory usage is less than 2400MB, and the

maximum average training time for each epoch is less than

0.3min. It demonstrates that our framework is efficient to train

for diverse backbones and easy to duplicate in other devices.

V. RELATED WORK

Urban Prediction. For the purpose of providing urban con-

struction suggestions, Urban prediction employs urban data to

model complicated spatial-temporal patterns. There are several

tasks of Urban prediction, for instance, traffic prediction [2],

[12], [37], air quality prediction [38], vehicle charging de-

mand [39], [40].

Previous works have demonstrated theoretically and empir-

ically that modelling the correlation among spatial-temporal

urban data can be an efficient way to reveal the hidden patterns

among them. Some of them use GCN-based models to capture

spatial-temporal information, such as [6], and some of them

utilize statistical method, such as [41]. Their works contribute

a lot to promoting the understanding of humans towards urban

data. However, urban environment can be full of heterogeneous

and dynamic information, so the shift effect is ubiquitous

among urban data which will disturb the correlation-capturing

process. In this work, we design a Shift Aware Urban Pre-

diction (SAUP) framework to eliminate the shift effect. With

our developed SAUP framework, spatial-temporal data can be

converted to stationary space for the forecasting task, and then

recover the shift information ultimately.

In addition, previous researches focus on modelling depen-

dencies by either graph-based data [6] or grid-based data [27]

but they seldom consider POI information and graph structure

at the same time. In contrast, either semantic information

or graph structure information plays an essential role in the

urban prediction task. To tackle it, we utilize Correlation

Processing Module containing Graph Convolutional Network

(GCN) [33] and a Convolutional Neural Network (CNN) to

fuse the features of POI information and graph structure. As

a result, our forecasting module can better model the hidden

correlation among urban spatial-temporal data.

Normalizing Flows. Since the proposal of NICE [23] and Real

NVP [24], Normalizing Flows have never failed to fascinate

researchers due to their remarkable ability to transform dis-

tributions. Previously, researchers utilize Normalizing Flows

for the purpose of density estimation [22]and variational

inference [42]. Real NVP [24] proposes an affine coupling

layer to improve the estimation ability of flows. [21] designs

flows consisting of actnorm, invertible 1× 1 convolution and

affine coupling layer. Experiments empirically indicate that

Normalizing Flows can preform well in these tasks.

However, preceding studies do not employ Normalizing

Flows to obliterate non-stationary factors . In this work, we

construct Spatial Temporal Attention Flow (STAF) as tool to

eliminate the shift effect. Two coupling layers are used to

transfer the original distribution of input which contains shift

to a hidden distribution which is without shift and recover

the shift information after the Forecasting Module performs

the prediction task. With the help of Normalizing Flows, the

framework can capture the spatial-temporal correlation more

precisely in a stationary space.

VI. CONCLUSION

In this work, we propose Shift-Aware Urban Prediction

framework to solve the problem of intrinsic shift among

spatial-temporal data. First, we construct a Shift-Elimination

Module consisting of invertible attention and coupling lay-

ers to eliminate spatial and temporal shift effects. Then we

proposed the Correlation Processing Module to capture cor-

relation among urban data. Specifically, we utilize a Con-

volutional layer to embed the POI information of the map

and use a GCN layer to capture the hidden spatial pattern

behind the adjacency matrix. We combine these two pieces

of information together to achieve the goal of better feature

fusion. After, we use a model-agnostic Forecasting Module

for prediction. At last, we utilize the inverse transformation of

the Shift-Elimination Module to recover the shift information.

Extensive experiments on real-world datasets show that with

the proposed Shift-Aware Urban Prediction framework, the

performance of the backbone models can be improved.
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