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 a b s t r a c t

Offline reinforcement learning (RL) is a data-driven paradigm that learns policies from static datasets without 
real-time interacting with the environment. However, action data collected from real-world are often incom-
plete due to issues such as sensor failures or communication disruptions, which can significantly impair the 
performance of offline RL. We focus on the dimension-specific missing action data problem (DSMADP) and utilize 
such expensive yet incomplete action data to enhance offline RL. Inspired by the coordinated nature of joint 
movements in physical systems, we propose that intrinsic correlations exist across dimensions within each ac-
tion example—referred to as intra-example inter-dimension correlations. Based on this insight, we propose an 
effective MLP-based CORrelation-driven IMPutation model named CORIMP. It models the correlations by learn-
ing mappings from observed to missing action dimensions, which then guides the imputation of missing values 
using available data. Theoretically, we bound CORIMP’s imputation error and its downstream impact on offline 
RL performance. Experimental results on variants of missing D4RL datasets demonstrate the effectiveness of our 
method. Notably, with the TD3BC algorithm, the CORIMP-imputed dataset achieves 95.15% of the Halfcheetah-
medium-expert dataset performance (oracle). It provides an average improvement of 99.12% over zero-filled 
datasets with missing ratios from 0.1 to 0.9 across two dimensions.

1.  Introduction

As a trial-and-error paradigm, online reinforcement learning (RL) 
has flourished over the past few years in various simulated tasks (Feng 
& Tan, 2016; Mnih et al., 2015; Silver et al., 2016). However, in many 
real-world applications, deploying online RL is complex, and collecting 
interactions is often costly (Kim et al., 2022; Kiran et al., 2021; Singh 
et al., 2022; Wang et al., 2025). Offline RL, as a data-driven paradigm, 
shines a light on a promising direction for learning policies from static 
offline datasets without further interacting with the environment (Lange 
et al., 2012; Levine et al., 2020).

The data-driven nature of offline RL dictates the need for high-
fidelity offline datasets. Previous studies have mainly focused on sim-
ulated tasks, typically featuring stable environments that lack the 
widespread interferences common in the real world (Muratore et al., 
2019; Niu et al., 2022; Park et al., 2024). Data from real-world interac-
tions are naturally more representative, accurately reflecting complex 
scenarios (Zheng et al., 2024). Moreover, while acquiring such data is 
expensive, it is essential due to the unique insights it provides from 
challenging environments. Nevertheless, these datasets often suffer from 
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the incomplete data problem due to complex factors (Fatyanosa et al., 
2024). For instance, deep-sea AUV operations face sensor failures due 
to extreme pressures and mechanical impacts (Liu et al., 2025). These 
failures disrupt data collection, leading to incomplete datasets that de-
grade offline RL performance. In fact, missing data imputation is widely 
applied in practical engineering contexts like intelligent transportation 
(Fang et al., 2024; Xing et al., 2023; Zhou et al., 2025) and sensor net-
works (Fatyanosa et al., 2024; Ma et al., 2024; Xing et al., 2025), pro-
viding valuable insights for restoring incomplete RL datasets.

The integrity of real-world datasets is fundamentally constrained by 
the reliability asymmetry between perception and control subsystems. 
While state estimation typically relies on robust, high-bandwidth per-
ception streams (e.g., cameras), action data is recorded via separate 
actuator-side feedback or control uplinks. Unfortunately, these action 
recording channels are often vulnerable to network instability (e.g., 
packet loss) or mechanical faults, frequently causing action data to go 
missing while the environmental observation stream remains intact.

In the domain of offline RL, prior works most closely related to ours 
(Yang et al., 2024; Zheng et al., 2023) have investigated scenarios in-
volving imperfect action data. Crucially, they treat the action vector as 
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Fig. 1. Left: Illustration of DSMADP. Right: Normalized scores of TD3BC on 
the dataset with 70% missing data across two dimensions (zero-filled) and on 
the original D4RL Halfcheetah-medium-expert dataset (oracle). The scores are 
averaged over the final five evaluations, each with three seeds.

an atomic unit, relying on a coarse-grained assumption that anomalies 
uniformly affect all dimensions. However, this assumption overlooks the 
independent failure modes inherent in heterogeneous action recording 
channels.  To bridge the gap between idealized assumptions and real-
world failures, we delve into the granularity of individual dimensions. 
We specifically address the practical issue where specific action record-
ing channels are disrupted, leading to incomplete action dimensions in 
specific samples, as illustrated in Fig. 1. We formally define this issue as 
the Dimension-Specific Missing Action Data Problem (DSMADP). 

To our knowledge, we are the first to investigate the incomplete 
data problem at the dimension level in offline RL. We argue that these 
expensive yet incomplete data obtained from real-world environments 
are irreplaceable, as they encapsulate complex environmental dynamics. 
Simply discarding such partially corrupted samples is wasteful, as they 
retain decision-critical information essential for enhancing model per-
formance. Our insight lies in fully harnessing the intrinsic correlations 
within the data to recover these missing dimensions, thereby laying a 
solid foundation for robust offline policy learning.

In this work, we focus on DSMADP. Initially, we investigate how such 
incomplete data impacts the performance of offline RL. Specifically, we 
examine the situations where missing action data occurs respectively 
across two and three dimensions of the Halfcheetah-medium dataset, 
with missing rates ranging from 0.1 to 0.9. As illustrated in Fig. 2, it 
can be observed that: (1) given a constant number of missing dimen-
sions, performance significantly declines as the missing rate increases; 
(2) for a fixed missing rate, a more significant number of missing di-
mensions is associated with poorer performance. To alleviate the impact 
of such incomplete data, we propose a simple yet effective MLP-based 
correlation-driven imputation model named CORIMP. It draws inspira-
tion from the observation of an intriguing real-world phenomenon: there 
are complex interactions between the joints of moving objects, and they 
need to maintain specific relationships to stay balanced and achieve de-
sired goals. Based on this insight, for a given action example, CORIMP 
leverages available data from non-missing dimensions to impute values 
for missing dimensions based on captured inter-dimension correlations. 
Extensive experiments demonstrate that CORIMP competently addresses 
various incomplete data scenarios, effectively alleviating the impact of 
incomplete data on offline RL and achieving performance levels on par 
with or surpassing those from oracle datasets.

The contributions of this work are summarized as follows:

• We are the first to formulate and address the dimension-specific miss-
ing action data problem (DSMADP) in offline RL.

• We systematically analyze the sensitivity patterns of different tasks 
and types of datasets when exposed to DSMADP.

• We propose CORIMP, a simple yet effective MLP-based correlation-
driven imputation model that imputes missing action dimensions by 
learning their correlation with observed dimensions.

• We theoretically bound CORIMP’s imputation error and its down-
stream impact on offline RL performance.

Fig. 2. Performance of TD3BC on the variant D4RL Halfcheetah-medium 
datasets, with two (left) and three missing dimensions (right), where missing 
rates vary from 0.1 to 0.9. “Oracle” refers to the performance on the origi-
nal D4RL Halfcheetah-medium dataset; “Missing” refers to the performance on 
datasets with missing values filled with zeros; and “Imputed” refers to the per-
formance on those missing datasets after applying CORIMP.

• We demonstrate the effectiveness of CORIMP through extensive ex-
periments on variants of D4RL datasets.

2.  Related works

2.1.  Offline reinforcement learning

Offline RL aims to learn policies from pre-collected datasets with-
out interacting with the environment (Lange et al., 2012; Levine et al., 
2020). Existing work on offline RL can be generally categorized into 
model-based approaches (Chen et al., 2021; Janner et al., 2021; Ki-
dambi et al., 2021, 2020; Li et al., 2025; Rigter et al., 2022; Sun et al., 
2023; Uehara & Sun, 2021; Yu et al., 2021, 2020; Zhang et al., 2023; 
Zhu et al., 2025) and model-free approaches (An et al., 2021; Bai et al., 
2022; Cheng et al., 2022; Fujimoto & Gu, 2021; Fujimoto et al., 2019; 
Jin et al., 2021; Kostrikov et al., 2021; Kumar et al., 2020; Nair et al., 
2020; Xie et al., 2021; Zhou et al., 2021) approaches. The precondition 
for using them is that the dataset labels must be complete.

2.2.  Imitation learning from observations

The problem setting of imitation learning (IL) from observations 
(ILFO) is that we do not have access to the full set of actions. FAIL (Sun 
et al., 2019) learns a sequence of time-dependent policies by minimizing 
an integral probability metric between the observation distributions of 
the expert policy and the learner. LAPO (Schmidt & Jiang, 2024) trains 
an inverse dynamics model (IDM) and a forward dynamics model (FDM) 
jointly to recover latent action information. Distinct from our work, IL-
related works typically assume that trajectories are generated by expert 
policies, which isn’t applicable in conventional offline RL. Moreover, it 
is essential to note that we are not concerned with entire action labels 
being missing, but rather with specific dimensions of the action labels 
having missing data.

2.3.  Data imputation

Data imputation (Schafer & Graham, 2002) addresses missing data to 
complete datasets for downstream tasks. Traditional methods like mean 
imputation (Rubin, 1976) and regression imputation (Troyanskaya 
et al., 2001) may fail to capture complex data relationships. Machine 
learning techniques, such as k-nearest neighbors (k-NN) (Cover & Hart, 
1967) and decision trees (Quinlan, 1986), enhance performance but can 
be computationally intensive and struggle with high-dimensional data. 
Deep learning approaches, including autoencoders (Hinton & Salakhut-
dinov, 2006) and GANs (Goodfellow et al., 2014), offer improved han-
dling of high-dimensional data at the cost of increased computational re-
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sources. Neural network-based regression models (Bishop, 1995; Rumel-
hart et al., 1986) effectively capture intricate data dependencies. In the 
relevant research, different approaches have been proposed in various 
application domains. For maritime sensor data, Fatyanosa et al. (2024) 
proposed a meta-learning framework that automatically recommends 
optimal imputation methods by extracting dataset characteristics. For 
traffic data, Fang et al. (2024) introduced a Multi-domain Generative 
Adversarial Transfer Learning Network (MDTGAN), which leverages 
transferable spatiotemporal patterns across urban networks to impute 
missing values under constrained local samples. Moreover, researchers 
have employed diverse strategies to address data sparsity such as repre-
sentation learning (Xu et al., 2021) and generative models (Wang et al., 
2022) for matrix-based imputation, and attention mechanisms for pre-
dicting missing points in sequential trajectories (Jiang et al., 2023). De-
spite substantial research, handling incomplete data in offline RL re-
mains relatively unexplored. We introduce CORIMP, a novel MLP-based 
correlation-driven imputation model specifically designed to address the 
impact of DSMADP on offline RL.

3.  Preliminaries

3.1.  Dimension-specific missing action data

In the offline RL setting, we are provided with a fixed dataset  =
{(𝐬𝑖, 𝐚𝑖, 𝑟𝑖, 𝐬𝑖+1)}𝑁𝑖=1 collected by an unknown behavior policy 𝜋𝛽 , where 
i indexes a transition (sample) in the dataset and 𝑁 is the dataset size. 
Here, 𝐬𝑖 is the state, 𝐚𝑖 is the action, 𝑟𝑖 is the reward, and 𝐬𝑖+1 is the next 
state at each index 𝑖. The agent can only learn a policy 𝜋(𝐚|𝐬) from this 
dataset without further interaction. The dataset’s quality plays a crucial 
role in ensuring the performance of the learned policy.

We consider datasets where action data is partially missing across 
certain dimensions. Specifically, such a dataset is defined as:
missing = {(𝐬𝑖, 𝐚̃𝑖, 𝑟𝑖, 𝐬𝑖+1)}𝑁𝑖=1, (1)

where 𝐚̃𝑖 represents the action data at index 𝑖, with potential missing 
values in some dimensions.

Assume the action 𝐚𝑖 is a vector in ℝ𝐶 , where 𝐶 denotes the number 
of dimensions in the action space. Then the action data at index 𝑖 can 
be denoted as:
𝐚̃𝑖 = (𝑎̃𝑖1, 𝑎̃𝑖2,… , 𝑎̃𝑖𝐶 ), (2)

where each 𝑎̃𝑖𝑗 corresponds to the 𝑗th dimension of the action ̃𝐚𝑖 at index 
𝑖, for 𝑗 ∈ {1, 2,… , 𝐶}.

To distinguish between missing and available values, we use an in-
dicator variable 𝑚𝑖𝑗 . Specifically, 𝑚𝑖𝑗 = 0 indicates that the entry 𝑎̃𝑖𝑗 is 
missing, and 𝑚𝑖𝑗 = 1 indicates that the entry is available and valid.

Let 𝑖 ⊆ {1, 2,… , 𝐶} be the set of indices corresponding to the miss-
ing dimensions in the action data at sample 𝑖. We denote that for each 
sample 𝑖, there are |𝑖| missing dimensions.

3.2.  Problem statement

Given a dataset missing with incomplete action data across specific 
dimensions in various samples, which affects the fidelity of the dataset 
and consequently impairs the performance of offline RL. The goal is 
to develop an imputation method to estimate the missing entries in 
missing, producing an imputed dataset imputed that closely approxi-
mates the quality of the oracle dataset . By addressing the incomplete 
data, it is expected to reduce the overall performance degradation of 
imputed relative to  in offline RL tasks.

4.  Methodology

In this section, we begin by introducing a practical training pipeline 
tailored for DSMADP. Next, we offer an in-depth look at CORIMP, which 
consists of three parts. Firstly, we detail its crucial preliminary step: 

Fig. 3. Our proposed training pipeline.

missing data identification. Secondly, we describe its architecture. Fi-
nally, we elaborate on the implementation details.

4.1.  Training pipeline

In conventional offline RL, datasets are typically assumed to be 
reliable and immediately usable for training. However, datasets with 
missing data require preprocessing to ensure their suitability for subse-
quent applications. Based on this insight, we propose a practical training 
pipeline to address DSMADP. This pipeline ensures dataset completeness 
and, consequently, supports effective learning in downstream tasks. As 
shown in Fig. 3, the pipeline comprises three stages: model training, 
data imputation, and offline RL.

• Model Training: This stage trains CORIMP using only the com-
plete action samples, denoted as 𝐀available. Specifically, we first ran-
domly split 𝐀available into training (70%), validation (15%), and test-
ing (15%) subsets. Then, to construct the training pairs, we extract 
values from specific dimensions of these samples: the values corre-
sponding to the observed dimensions (available) serve as the input 
vector 𝐱, while the values at the missing dimensions (missing) are 
used as the regression targets 𝐲. The model learns to map 𝐱 to 𝐲 by 
minimizing prediction error, thereby effectively capturing the intra-
example inter-dimension correlations.

• Data Imputation: In the second stage, the trained CORIMP model 
is applied to the dataset missing. The model estimates and imputes 
the missing entries, producing a complete dataset imputed.

• Offline RL: In the final stage, the imputed dataset imputed is used 
to train an offline RL agent. This allows the agent to benefit from 
comprehensive and accurate information, which is crucial for devel-
oping effective policies and enhancing decision-making capabilities 
in complex environments.

4.2.  Missing data identification

We represent the action data from missing as a matrix 𝐀 ∈ ℝ𝑁×𝐶 . 
Each row of this matrix corresponds to an action vector ̃𝐚𝑖 from missing, 
and each entry 𝑎̃𝑖𝑗 in 𝐀 corresponds to the value of the 𝑖th sample in the 
𝑗th dimension.

𝐀 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑎̃11 𝑎̃12 ⋯ 𝑎̃1𝐶
𝑎̃21 𝑎̃22 ⋯ 𝑎̃2𝐶
⋮ ⋮ ⋱ ⋮

𝑎̃𝑁1 𝑎̃𝑁2 ⋯ 𝑎̃𝑁𝐶

⎤

⎥

⎥

⎥

⎥

⎦

. (3)

To identify missing data, we employ a binary mask matrix 𝐌 ∈
{0, 1}𝑁×𝐶 , where 𝑚𝑖𝑗 = 0 indicates that 𝑎̃𝑖𝑗 is missing, and 𝑚𝑖𝑗 = 1 sig-
nifies that 𝑎̃𝑖𝑗 is available:

𝐌 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑚11 𝑚12 ⋯ 𝑚1𝐶
𝑚21 𝑚22 ⋯ 𝑚2𝐶
⋮ ⋮ ⋱ ⋮

𝑚𝑁1 𝑚𝑁2 ⋯ 𝑚𝑁𝐶

⎤

⎥

⎥

⎥

⎥

⎦

. (4)
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Fig. 4. Training-time architecture of CORIMP.

Based on this mask, we define 𝐀available as the set of complete action 
samples (i.e., rows from 𝐀 with no missing values). Only these samples 
are used for training CORIMP. Specifically, 𝐀available can be expressed 
as:

𝐀available =
{

𝐀𝑖 ∣ ∀𝑗 ∈ {1,… , 𝐶}, 𝑚𝑖𝑗 = 1
}

, (5)

where 𝐀𝑖 represents the 𝑖th sample of the matrix 𝐀 (i.e., the action vector 
𝐚̃𝑖), which contains no missing values in any of its dimensions.

Moreover, we use 𝐌 to classify dimensions as missing or available. 
A dimension 𝑗 is missing if there is at least one sample 𝑖 with 𝑚𝑖𝑗 = 0, 
and available if 𝑚𝑖𝑗 = 1 for all samples 𝑖. Formally, the sets are defined 
as:

missing = {𝑗 ∈ {1,… , 𝐶} ∣ ∃𝑖 ∈ {1,… , 𝑁} such that 𝑚𝑖𝑗 = 0} (6)

available = {𝑗 ∈ {1,… , 𝐶} ∣ ∀𝑖 ∈ {1,… , 𝑁}, 𝑚𝑖𝑗 = 1} (7)

The set available provides the input features for CORIMP, while missing
comprises the target dimensions for imputation.

4.3.  Model architecture

CORIMP is designed to capture and harness the correlations between 
dimensions in the action data by drawing inspiration from the corre-
lated nature between joints in moving objects. The training-time archi-
tecture of CORIMP is illustrated in Fig. 4. For any given action sample, it 
uses data from available dimensions to impute missing values based on 
the captured inter-dimension correlations effectively. At inference time, 
CORIMP performs a single forward pass to impute the missing action 
dimensions using the trained network.

• Input Layer: Accepts an input vector 𝐱𝑖 ∈ ℝ|available|, representing 
the observed dimensions (defined by available in Eq. (7)) of an action 
sample 𝐚̃𝑖.

• Hidden Layers: Two hidden layers, each with 𝑑ℎ units, transform 
the input 𝐱𝑖 to produce activations 𝐡𝑖,1,𝐡𝑖,2 ∈ ℝ𝑑ℎ :

𝐡𝑖,1 = Dropout(ReLU(𝑊1𝐱𝑖 + 𝐛1)) (8)

𝐡𝑖,2 = Dropout(ReLU(𝑊2𝐡𝑖,1 + 𝐛2)) (9)

where 𝑊1,𝑊2 are weight matrices and 𝐛1,𝐛2 are bias vectors. ReLU 
serves as the activation function, and Dropout is applied for regular-
ization.

• Output Layer: Produces the predicted vector 𝐲̂𝑖 ∈ ℝ|missing| for the 
target dimensions (defined by missing in Eq. (6)):
𝐲̂𝑖 = Clamp(𝑊3𝐡𝑖,2 + 𝐛3) (10)

where 𝑊3 and 𝑏3 are the output layer’s weight matrix and bias vector, 
respectively, the Clamp(⋅) function ensures that output values are 
within a valid range.
This architecture effectively models the inter-dimension correla-

tions, leading to accurate intra-example imputation and improved per-
formance in downstream RL tasks.

4.4.  Implementation details

The dataset is stored in HDF5 format and includes actions with miss-
ing values denoted by zeros. The preprocessing steps involve loading the 
dataset, classifying dimensions as missing or available (Eqs. (6) and 7), 
and filtering out complete samples (Eq. (5)). Only the complete samples 
are used for model training. For training preparation, the complete sam-
ples are split into training, test, and validation sets with ratios of 70%, 
15%, and 15%, respectively. Data loaders with a batch size of 1024 are 
employed to feed data into the model during training efficiently.

CORIMP is trained using the Adam optimizer (Kingma & Ba, 2014) 
with a learning rate of 1 × 10−4 and a batch size of 1024. The objective is 
to minimize the Huber loss with a threshold 𝛿 = 1.0. Regarding the net-
work architecture, we set the hidden layer size 𝑑ℎ = 1024 (see Eq. (8)) 
and apply a dropout rate of 0.1. To ensure optimal performance without 
overfitting, we employ early stopping with a patience of 35 epochs (halt-
ing training if the validation loss does not improve for 35 consecutive 
epochs).

For each training sample ̃𝐚𝑘 ∈ 𝐀available and for each target dimension 
𝑗 ∈ missing (Eq. (6)), let 𝑎̃𝑘𝑗 be the ground truth value from ̃𝐚𝑘, and 𝑎̂𝑘𝑗 be 
CORIMP’s corresponding prediction (i.e., the component of 𝐲̂𝑘 = 𝑓 (𝐱𝑘)
associated with dimension 𝑗). The component-wise Huber loss is:

𝛿(𝑎̃𝑘𝑗 , 𝑎̂𝑘𝑗 ) =

{

1
2 (𝑎̃𝑘𝑗 − 𝑎̂𝑘𝑗 )2 if |𝑎̃𝑘𝑗 − 𝑎̂𝑘𝑗 | ≤ 𝛿
𝛿|𝑎̃𝑘𝑗 − 𝑎̂𝑘𝑗 | −

1
2 𝛿

2 otherwise
. (11)

5.  Theoretical analysis

This section analyzes the theoretical properties of CORIMP. We 
model the underlying data generation process and bound the imputation 
error, subsequently quantifying its impact on the downstream offline RL 
value estimation. 

5.1.  Assumptions and error decomposition

For any ground-truth action sample, denoted as 𝐚∗𝑖 , we decompose 
it into observed features 𝐱𝑖 (values at dimensions available) and missing 
targets 𝐲𝑖 (values at dimensions missing). Let 𝑓 be the learned imputa-
tion model. We define the predicted missing values as 𝐲̂𝑖 = 𝑓 (𝐱𝑖). Conse-
quently, the reconstructed (imputed) action 𝐚̂𝑖 is formed by combining 
the observed 𝐱𝑖 and the predicted 𝐲̂𝑖.
Assumption 1  (Ground-truth correlation and noise). We assume the 
missing values are governed by an underlying physical function 𝑓 ∗: 
𝐲𝑖 = 𝑓 ∗(𝐱𝑖) + 𝛜𝑖. Here, 𝑓 ∗ represents the intrinsic system dynamics (e.g., 
non-linear kinematic constraints), and 𝛜𝑖 represents irreducible aleatoric 
noise satisfying 𝔼[𝛜𝑖] = 𝟎 and 𝔼[‖𝛜𝑖‖22] ≤ 𝜎2noise.

Assumption 2  (Bounded approximation error). We assume the ex-
pected squared difference between the learned model 𝑓 and the ground 
truth 𝑓 ∗ is bounded: 𝔼𝐱[‖𝑓 (𝐱) − 𝑓 ∗(𝐱)‖22] ≤ 𝜖2

𝑓
. This term represents the 

epistemic uncertainty (approximation and estimation error) minimized 
during training.
Theorem 1  (Imputation error bound). Under Assumptions 1 and 2, the 
expected squared 𝐿2 error of the imputed action ̂𝐚𝑖 with respect to the ground 
truth 𝐚∗𝑖  is bounded by:
𝔼[‖𝐚̂𝑖 − 𝐚∗𝑖 ‖

2
2] ≤ 𝜖2

𝑓
+ 𝜎2noise =∶ 𝜖2CORIMP (12)

Proof.  Since the imputed action 𝐚̂𝑖 uses the true values 𝐱𝑖 for the ob-
served dimensions, the error is non-zero only in the missing dimensions. 
Thus, ‖𝐚̂𝑖 − 𝐚∗𝑖 ‖

2
2 = ‖𝐲̂𝑖 − 𝐲𝑖‖22. Substitute 𝐲̂𝑖 = 𝑓 (𝐱𝑖) and 𝐲𝑖 = 𝑓 ∗(𝐱𝑖) + 𝛜𝑖, 

the error vector becomes (𝑓 (𝐱𝑖) − 𝑓 ∗(𝐱𝑖)) − 𝛜𝑖. Expanding the squared 
norm yields ‖𝑓 − 𝑓 ∗

‖

2
2 + ‖𝛜‖22 − 2(𝑓 − 𝑓 ∗)𝑇 𝛜. Since the intrinsic noise 

𝛜 is zero-mean and independent of the model bias, the expectation of 
the cross-term vanishes. The result follows by summing the expected 
squared norms. ∎
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Fig. 5. Distance correlation matrices for action dimensions in three datasets: (a) Halfcheetah-medium, (b) Walker2d-medium, and (c) Hopper-medium. Each heatmap 
visualizes the pairwise distance correlation coefficients between action dimensions (numbered 0 to 5 for Halfcheetah and Walker2d, and 0 to 2 for Hopper), sampled 
at 0.1% of the original data. Warmer colors (e.g., yellow, green) indicate stronger correlations, while cooler colors (e.g., blue, purple) represent weaker correlations.

Remark 1  (Theoretical Advantage over Linear Baselines).  This de-
composition explicitly highlights why CORIMP outperforms traditional 
methods. Methods like Mean Imputation (assuming constant 𝑓 ∗) or
Linear Regression (assuming linear 𝑓 ∗) suffer from a significant struc-
tural mismatch when modeling complex robotic dynamics, leading to a 
high approximation error 𝜖2

𝑓
. In contrast, CORIMP leverages the univer-

sal approximation capability of MLPs to fit the non-linear manifold of 
𝑓 ∗, theoretically minimizing 𝜖2

𝑓
 towards the irreducible noise limit. 

5.2.  Downstream impact on offline RL

We now link the imputation quality to the reliability of the Q-value 
estimation, which is critical for offline RL performance.
Assumption 3  (Lipschitz continuity). The learned Q-function 𝑄(𝐬, 𝐚)
is 𝐿𝑄-Lipschitz continuous with respect to actions, such that |𝑄(𝐬, 𝐚1) −
𝑄(𝐬, 𝐚2)| ≤ 𝐿𝑄‖𝐚1 − 𝐚2‖2.

Property 1  (Q-Value Perturbation Bound). Given Assumption 3 and The-
orem 1, the expected error in Q-value estimation caused by imputation is 
bounded by:
𝔼[|𝑄(𝐬𝑖, 𝐚̂𝑖) −𝑄(𝐬𝑖, 𝐚∗𝑖 )|] ≤ 𝐿𝑄 ⋅ 𝜖CORIMP (13)

Proof.  By the Lipschitz condition, |𝑄(𝐬𝑖, 𝐚̂𝑖) −𝑄(𝐬𝑖, 𝐚∗𝑖 )| ≤ 𝐿𝑄‖𝐚̂𝑖 − 𝐚∗𝑖 ‖2. 
Taking the expectation and applying Jensen’s inequality (𝔼[𝑋] ≤
√

𝔼[𝑋2] for non-negative variable 𝑋), we have 𝔼[‖𝐚̂𝑖 − 𝐚∗𝑖 ‖2] ≤
√

𝔼[‖𝐚̂𝑖 − 𝐚∗𝑖 ‖
2
2] ≤ 𝜖CORIMP. Multiplying by 𝐿𝑄 completes the proof. ∎

Insight. The Lipschitz constant 𝐿𝑄 acts as an amplifier. Since Q-
functions in offline RL can be sharp near the data manifold (to penalize 
out-of-distribution actions), minimizing 𝜖CORIMP is mathematically es-
sential. Property 1 confirms that CORIMP’s ability to capture non-linear 
correlations (Remark 1) directly translates to a tighter theoretical bound 
on value estimation error compared to linear or constant baselines.

6.  Experiments

6.1.  Experimental setup

Missing Data Setup. Two key parameters, missing rate 𝑝 ∈ [0, 1], 
measuring the proportion of samples with missing data, and the number 
of dimensions with missing data 𝑐 ∈ {0, 1,… , 𝐶}, where 𝐶 is the total 
number of dimensions in the action dataset. In our generation protocol, 

the subset of 𝑐 dimensions is selected once and remains fixed across 
the entire dataset. For each sample, values in these dimensions are then 
masked with probability 𝑝.

Datasets. We evaluate our approach on three D4RL (Fu et al., 2020) 
MuJoCo locomotion tasks: Halfcheetah, Walker2d, and Hopper. The 
dataset types used for each task are medium and medium-expert.

The medium dataset is generated by first training a policy online using 
Soft Actor-Critic (Haarnoja et al., 2018), early-stopping the training, and 
collecting 1M samples from this partially-trained policy. The medium-
expert dataset combines equal amounts of expert demonstrations and 
suboptimal data generated via a partially trained policy or by unrolling 
a uniform-at-random policy. The medium dataset represents a more re-
alistic scenario where the policy is only partially trained, reflecting typ-
ical conditions in real-world applications. The medium-expert dataset 
provides a diverse mix of high-quality expert demonstrations and sub-
optimal samples, enabling a more thorough assessment of our method’s 
robustness and adaptability across varying data types.

Imputation Baselines and Offline RL Algorithms. To substantiate 
the effectiveness of our approach, CORIMP, we compare it against the 
following baselines:

• Zero Filling (Zero): Missing entries are replaced with zeros.
• Mean Imputation (Mean): Missing entries are replaced with the 
mean value of the corresponding dimension calculated from the 
training dataset.

• Linear Regression (LR): A parametric baseline implemented via 
Multivariate Imputation by Chained Equations (MICE). It iteratively 
models each missing feature as a linear function of others over 10 
iterations to capture linear dependencies.

• k-Nearest Neighbors (KNN): A non-parametric baseline that im-
putes missing values using the mean of the k=5 nearest neighbors 
found in the observed subspace, leveraging local similarity patterns.

We evaluate all imputation methods by training two offline RL algo-
rithms, TD3BC (Fujimoto & Gu, 2021) and IQL (Kostrikov et al., 2021), 
on the corresponding imputed datasets.

Evaluation Metric. TD3BC and IQL are trained on each dataset for 
1 million time steps and evaluated every 5000 time steps, each con-
sisting of 10 episodes. We report the normalized score, calculated as 
100×(score−random score)
expert score−random score . All reported scores are averaged over the final 
five evaluations, each with three seeds. For clarity in all tables, “m” 
signifies “medium”, and “me” signifies “medium-expert”.
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Fig. 6. Performance of TD3BC and IQL under (a)(b) different missing rates and (c)(d) different missing dimensions across various datasets and task domains.

Fig. 7. Boxplot analysis of Imputation RMSE across 120 dataset variants. The evaluation covers three environments (HalfCheetah, Walker2d, Hopper) with two 
dataset qualities (medium, medium-expert). The x-axis represents the missing rate ranging from 0.1 to 0.9. CORIMP (pink) consistently demonstrates lower median 
error and lower variance compared to linear (LR) and non-parametric (KNN) baselines, particularly in high-dimensional tasks.

6.2.  Intra-example inter-dimension correlations

To substantiate our core hypothesis that inherent correlations exist 
among the dimensions within individual action samples, referred to as 
intra-example inter-dimension correlations, we conducted a distance cor-
relation analysis (Székely et al., 2007) on action data from representa-
tive Mujoco environments in the D4RL dataset (Halfcheetah-medium, 
Walker2d-medium, and Hopper-medium). This analysis aims to un-

cover synergistic patterns in the torques applied to different body parts, 
such as various joints. Distance correlation coefficients between these 
joint torque dimensions were computed from a 0.1% data subsample. 
Fig. 5 visualizes these coefficients as heatmaps, depicting the associa-
tion strength between action dimensions across these environments.

For the Halfcheetah-medium dataset (Fig. 5(a)), the six-
dimensional action space represents torques for the back thigh, back 
shin, back foot, front thigh, front shin, and front foot. Significant 
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Table 1 
Results with varying missing rates while keeping the missing dimensions fixed at two. Oracle, Zero, Mean, LR, KNN, and CORIMP refer to 
TD3BC performance on the original datasets, datasets with missing actions filled with zeros, mean-imputed datasets, LR-imputed datasets, 
KNN-imputed datasets, and CORIMP-imputed datasets, respectively. Rel. (%) indicates the performance of TD3BC on the CORIMP-imputed 
datasets as a percentage of the original datasets. Best results among imputation methods are highlighted in bold..

 Oracle  Zero  Mean  LR  KNN CORIMP  Rel. (%)

Halfcheetah-m

 mr = 0.1

48.30 ± 0.32

 47.16 ± 0.30  46.82 ± 0.32  47.69 ± 0.33  47.88 ± 0.28  48.01 ± 0.28  99.40%
 mr = 0.3  36.65 ± 0.93  39.95 ± 0.77  45.13 ± 0.47  46.71 ± 0.30  47.19 ± 0.31  97.70%
 mr = 0.5  19.84 ± 2.65  33.97 ± 0.43  42.27 ± 0.42  45.34 ± 0.39  45.92 ± 0.30  95.07%
 mr = 0.7  6.78 ± 3.55  27.71 ± 1.13  40.93 ± 0.30  43.89 ± 0.18  45.02 ± 0.36  93.21%
 mr = 0.9  4.97 ± 0.51  20.35 ± 1.23  40.25 ± 0.40  42.66 ± 0.20  43.64 ± 0.66  90.35%

 Average  48.30  23.08  33.76  43.26  45.30  45.96  95.15%

Walker2d-m

 mr = 0.1

83.16 ± 3.94

 83.98 ± 1.86  84.87 ± 2.57  84.88 ± 1.15  82.95 ± 1.68  85.11 ± 1.62  102.34%
 mr = 0.3  82.77 ± 4.21  48.20 ± 18.30  86.72 ± 2.93  84.85 ± 1.58  85.40 ± 2.78  102.69%
 mr = 0.5  52.78 ± 12.77  16.96 ± 2.05  68.25 ± 17.24  85.47 ± 5.27  84.74 ± 4.34  101.90%
 mr = 0.7  14.95 ± 1.69  11.84 ± 1.83  21.17 ± 1.46  63.72 ± 13.49  69.68 ± 14.05  83.79%
 mr = 0.9  9.27 ± 1.62  11.82 ± 1.48  15.71 ± 0.69  18.33 ± 4.03  47.82 ± 12.92  57.50%

 Average  83.16  48.75  34.74  55.35  67.06  74.55  89.65%

Hopper-m

 mr = 0.1

57.20 ± 5.56

 35.23 ± 3.83  36.27 ± 3.15  38.08 ± 6.10  36.13 ± 4.34  38.92 ± 4.40  68.04%
 mr = 0.3  19.34 ± 2.00  20.94 ± 1.70  19.58 ± 0.22  20.05 ± 2.28  22.01 ± 1.08  38.48%
 mr = 0.5  12.93 ± 1.33  14.96 ± 0.93  14.38 ± 1.58  13.64 ± 2.26  15.23 ± 1.10  26.63%
 mr = 0.7  9.45 ± 0.44  9.36 ± 0.65  10.89 ± 0.42  10.39 ± 0.35  9.71 ± 1.06  16.98%
 mr = 0.9  8.14 ± 0.28  7.48 ± 0.15  7.49 ± 0.07  4.03 ± 3.59  15.11 ± 12.14  26.42%

 Average  57.20  17.02  17.80  18.09  16.85  20.20  35.31%

Halfcheetah-me

 mr = 0.1

92.51 ± 3.23

 88.75 ± 2.74  90.33 ± 2.19  91.73 ± 3.25  91.25 ± 4.51  92.42 ± 3.11  99.90%
 mr = 0.3  24.27 ± 3.71  35.90 ± 2.41  65.20 ± 4.62  89.12 ± 1.17  91.76 ± 1.69  99.19%
 mr = 0.5  7.36 ± 2.86  20.42 ± 2.64  37.23 ± 4.68  82.15 ± 2.22  84.85 ± 4.81  91.72%
 mr = 0.7  1.93 ± 0.42  19.45 ± 2.16  36.90 ± 4.29  71.35 ± 6.57  80.93 ± 3.90  87.48%
 mr = 0.9  2.08 ± 0.67  11.00 ± 2.22  29.79 ± 3.49  62.67 ± 5.82  72.88 ± 4.90  78.78%

 Average  92.51  24.88  35.42  52.17  79.31  84.57  91.41%

Walker2d-me

 mr = 0.1

110.31 ± 0.53

 110.54 ± 0.56  110.39 ± 0.58  110.39 ± 0.49  110.37 ± 0.57  110.56 ± 0.49  100.23%
 mr = 0.3  101.43 ± 8.21  78.72 ± 33.95  108.75 ± 2.32  107.14 ± 2.68  111.02 ± 1.33  100.64%
 mr = 0.5  18.90 ± 3.88  13.29 ± 0.85  34.90 ± 12.79  74.17 ± 27.87  94.95 ± 13.60  86.08%
 mr = 0.7  12.62 ± 0.91  10.80 ± 0.34  14.75 ± 1.04  15.10 ± 1.53  20.87 ± 11.14  18.92%
 mr = 0.9  9.65 ± 1.65  10.57 ± 0.26  11.73 ± 0.57  11.54 ± 0.87  11.86 ± 0.61  10.75%

 Average  110.31  50.63  44.75  56.10  63.66  69.85  63.32%

Hopper-me

 mr = 0.1

98.94 ± 11.93

 27.95 ± 5.05  29.43 ± 7.22  34.07 ± 6.22  30.16 ± 4.49  36.62 ± 10.15  37.01%
 mr = 0.3  15.71 ± 1.92  17.98 ± 2.60  15.23 ± 1.81  15.92 ± 3.48  17.50 ± 2.12  17.69%
 mr = 0.5  11.31 ± 0.73  11.63 ± 0.71  11.20 ± 0.29  10.51 ± 1.65  11.90 ± 0.94  12.03%
 mr = 0.7  8.73 ± 0.86  12.49 ± 0.87  11.70 ± 0.71  10.56 ± 0.76  8.95 ± 0.78  9.05%
 mr = 0.9  8.40 ± 0.28  7.06 ± 4.89  2.49 ± 0.71  6.47 ± 5.49  10.80 ± 8.71  10.92%

 Average  98.94  14.42  15.72  14.94  14.72  17.15  17.34%

inter-dimensional correlations are observed. For instance, torque on 
the back thigh (dimension 0) exhibits correlation coefficients of 0.61, 
0.55, and 0.61 with torques on the back shin (dimension 1), back foot 
(dimension 2), and front foot (dimension 5), respectively. This high 
degree of synergy clearly reflects the necessity for highly coordinated 
torques across the fore and hind limbs and their respective joints 
when a quadrupedal robot like the Halfcheetah executes gaits such 
as running or performs complex maneuvers. Such coordination is 
vital for balance, propulsion, and agile postural adjustments. These 
strong correlations in the action data reflect its efficient movement
patterns.

Fig. 5(b) presents the correlation heatmap for the Walker2d-
medium dataset. The action space of this bipedal robot also con-
sists of six torque dimensions, controlling the right thigh_joint, right
leg_joint, right foot_joint, and the corresponding joints on the left 
side. Inter-dimensional correlations are also evident in this environment. 
For instance, the torque on the right foot_joint (dimension 2) has a 
correlation coefficient of 0.48 with the torque on the left foot_joint
(dimension 5). Concurrently, some association exists between the right
thigh_joint torque (dimension 0) and the right leg_joint torque (di-
mension 1). This indicates that during bipedal locomotion, the actions 
of the left and right legs, as well as the torque outputs of different joints 

within the same leg, are interdependent. Such coordination is crucial for 
stable gaits, maintaining balance, and enabling effective center of mass
transfer.

In the Hopper-medium dataset (Fig. 5(c)), this monodopal robot 
employs a concise three-dimensional action space: thigh_joint,
leg_joint, and foot_joint. The heatmap reveals, for instance, a cor-
relation of 0.33 between the leg_joint torque (dimension 1) and
foot_joint torque (dimension 2). Although less prominent than in 
multi-legged environments, they still signify non-independent actuator 
torques, even in relatively simple hopping motions. Such correlations 
likely reflect subtle coordinations. For instance, adjustments in leg and 
foot posture to absorb landing impact—essential for stability and achiev-
ing motor objectives across various phases. Even if numerically less pro-
nounced, these synergistic patterns are crucial for functions like balance 
or efficient energy transfer, providing a basis for learning-based imputa-
tion models, such as our proposed CORIMP, to leverage this underlying 
inter-dimensional information.

Experimental observations across agent environments with vary-
ing morphologies and locomotion modes consistently support our cen-
tral hypothesis: varying degrees of correlation exist among dimensions 
within action data samples. This inherent relatedness not only reflects 
the kinematic and dynamic constraints imposed when agents interact 
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Table 2 
Results with varying missing rates while keeping the missing dimensions fixed at two. Oracle, Zero, Mean, LR, KNN, and CORIMP refer to 
IQL performance on the original datasets, datasets with missing actions filled with zeros, mean-imputed datasets, LR-imputed datasets, KNN-
imputed datasets, and CORIMP-imputed datasets, respectively. Rel. (%) indicates the performance of IQL on the CORIMP-imputed datasets as 
a percentage of the original datasets. Best results among imputation methods are highlighted in bold..

 Oracle  Zero  Mean  LR  KNN CORIMP  Rel. (%)

Halfcheetah-m

 mr = 0.1

48.30 ± 0.32

 47.16 ± 0.24  47.39 ± 0.33  48.02 ± 0.28  48.36 ± 0.14  48.55 ± 0.18  100.52%
 mr = 0.3  37.77 ± 0.48  42.24 ± 0.56  46.68 ± 0.29  48.03 ± 0.30  48.12 ± 0.25  99.63%
 mr = 0.5  25.98 ± 1.25  34.57 ± 0.53  43.24 ± 0.36  46.42 ± 0.18  46.74 ± 0.19  96.77%
 mr = 0.7  9.75 ± 4.29  29.16 ± 0.83  40.59 ± 0.35  44.18 ± 0.39  45.17 ± 0.30  93.52%
 mr = 0.9  3.30 ± 1.47  20.05 ± 0.88  39.24 ± 0.30  42.72 ± 0.27  43.72 ± 0.38  90.52%

Average  48.30  24.88  34.68  43.55  45.94  46.46  96.19%

Walker2d-m

 mr = 0.1

83.16 ± 3.94

 73.64 ± 14.96  80.65 ± 7.03  77.11 ± 3.57  74.59 ± 7.93  83.47 ± 3.72  100.37%
 mr = 0.3  73.63 ± 9.72  32.51 ± 13.86  73.78 ± 7.66  81.87 ± 5.80  79.20 ± 4.18  95.24%
 mr = 0.5  36.93 ± 15.85  12.31 ± 0.56  63.33 ± 5.85  73.95 ± 6.18  78.90 ± 5.66  94.88%
 mr = 0.7  13.73 ± 0.47  10.60 ± 1.90  24.87 ± 0.78  46.21 ± 5.66  70.69 ± 8.08  85.00%
 mr = 0.9  9.03 ± 0.97  10.71 ± 2.27  15.50 ± 0.12  25.80 ± 2.90  34.24 ± 11.61  41.17%

Average  83.16  41.39  29.36  50.92  60.48  69.30  83.33%

Hopper-m

 mr = 0.1

57.20 ± 5.56

 33.36 ± 3.24  33.13 ± 2.13  30.48 ± 0.16  26.28 ± 0.06  34.79 ± 5.57  60.82%
 mr = 0.3  22.53 ± 1.96  22.26 ± 1.72  21.36 ± 0.14  24.52 ± 0.03  22.61 ± 1.59  39.53%
 mr = 0.5  14.36 ± 2.19  13.52 ± 2.06  11.21 ± 0.01  12.73 ± 0.01  14.72 ± 3.01  25.73%
 mr = 0.7  9.61 ± 0.36  9.41 ± 0.63  9.72 ± 0.01  7.20 ± 0.01  10.47 ± 0.12  18.30%
 mr = 0.9  7.61 ± 0.34  7.35 ± 0.23  8.46 ± 0.01  7.25 ± 0.01  9.61 ± 0.36  16.80%

Average  57.20  17.49  17.13  16.25  15.60  18.44  32.24%

Halfcheetah-me

 mr = 0.1

92.51 ± 3.23

 89.21 ± 2.36  90.23 ± 0.70  91.71 ± 0.38  91.94 ± 2.80  92.43 ± 2.72  99.91%
 mr = 0.3  20.69 ± 4.22  39.54 ± 6.49  73.19 ± 0.84  91.90 ± 1.60  92.16 ± 2.01  99.26%
 mr = 0.5  10.56 ± 2.45  13.23 ± 3.53  35.27 ± 3.98  88.42 ± 0.43  90.77 ± 2.35  98.12%
 mr = 0.7  2.51 ± 1.32  12.73 ± 2.14  25.57 ± 1.70  83.41 ± 2.45  87.28 ± 1.05  94.35%
 mr = 0.9  1.64 ± 0.01  6.15 ± 3.47  18.41 ± 3.19  70.67 ± 4.20  77.76 ± 5.27  84.06%

Average  92.51  24.92  32.38  48.83  85.27  88.08  95.21%

Walker2d-me

 mr = 0.1

110.31 ± 0.53

 113.02 ± 0.58  113.12 ± 0.47  111.73 ± 0.09  111.79 ± 0.20  113.21 ± 1.15  102.63%
 mr = 0.3  91.28 ± 14.04  90.09 ± 29.40  112.58 ± 0.07  114.13 ± 0.03  114.63 ± 0.70  103.92%
 mr = 0.5  23.99 ± 4.09  16.02 ± 1.77  42.42 ± 3.84  80.45 ± 13.63  85.87 ± 19.49  77.84%
 mr = 0.7  13.76 ± 1.64  12.27 ± 1.08  17.78 ± 0.12  17.13 ± 0.21  30.29 ± 12.81  27.46%
 mr = 0.9  9.23 ± 1.87  10.67 ± 0.94  13.18 ± 0.10  12.33 ± 0.21  20.05 ± 6.27  18.18%

Average  110.31  50.26  48.43  59.54  67.17  72.81  66.00%

Hopper-me

 mr = 0.1

98.94 ± 11.93

 26.19 ± 6.08  28.85 ± 2.17  31.69 ± 0.16  24.03 ± 0.36  31.98 ± 5.66  32.32%
 mr = 0.3  10.29 ± 4.72  17.78 ± 0.23  18.63 ± 0.15  17.71 ± 0.03  18.71 ± 4.81  18.91%
 mr = 0.5  11.72 ± 0.12  13.18 ± 1.55  11.50 ± 0.01  10.37 ± 0.01  13.64 ± 1.89  13.79%
 mr = 0.7  7.42 ± 0.62  9.46 ± 0.54  8.17 ± 0.16  10.04 ± 0.01  9.53 ± 0.95  9.63%
 mr = 0.9  6.99 ± 1.45  2.18 ± 0.14  10.63 ± 0.01  7.18 ± 0.01  8.38 ± 0.80  8.47%

Average  98.94  12.52  14.29  16.12  13.87  16.45  16.62%

with the physical world but also forms the critical premise and solid 
foundation for our CORIMP model to effectively impute missing action 
dimensions from the known ones.

6.3.  Evaluation with varying missing rates

In this section, we keep the number of missing dimensions (denoted 
as “md”) fixed at two and vary the missing rate (denoted as “mr”) from 
0.1 to 0.9.

6.3.1.  Sensitivity analysis of tasks and dataset types
We examine how varying missing rates affect the performance of 

existing offline RL algorithms, focusing primarily on the TD3BC algo-
rithm across different types of datasets and task domains, with results 
presented in Fig. 6(a). Our goal is to uncover the unique sensitivity 
patterns of different tasks and dataset types in response to changes in 
missing rates. While this analysis primarily focuses on the TD3BC algo-
rithm, similar trends are observed with the IQL algorithm, as shown in 
Fig. 6(b).

The left plot reveals that for missing rates (mr) from 0.1 to 0.3,
Hopper’s performance drops most, while that of Walker2d remains 

largely unaffected, indicating its resilience in this lower mr range. How-
ever, for mr 0.3-0.7, Walker2d deteriorates most significantly, reflecting 
its heightened sensitivity in this range. Halfcheetah maintains a rela-
tively steady decline, whereas Hopper gradually decelerates. Finally, for 
missing rates from 0.7 to 0.9, all three tasks exhibit similar downward 
trends, culminating in notably poor results at a missing rate of 0.9.

In the right plot, TD3BC on medium-expert datasets shows sensitiv-
ity patterns like those on medium datasets. At missing rates from 0.1 to 
0.3, Halfcheetah declines most sharply, reflecting its greatest sensitiv-
ity within this lower range. Meanwhile, Walker2d and Hopper remain 
relatively stable. As the missing rate increases from 0.3 to 0.5, Walker2d
suffers a dramatic collapse, underscoring its sensitivity over Halfheetah
and Hopper. In the range from 0.5 to 0.9, all three tasks display compa-
rable performance declines, echoing the trends on the medium datasets. 
Ultimately, all tasks perform poorly at a 0.9 missing rate.

The performance patterns of the TD3BC algorithm across the
medium and medium-expert datasets reveal both consistencies and vari-
ations. Walker2d shows high sensitivity, especially at higher missing 
rates, implying greater vulnerability to incomplete data. Conversely,
Halfcheetah is more sensitive at lower missing rates on medium-expert
datasets, suggesting dataset complexity can amplify its performance de-
cline. Further, while Hopper consistently shows a relatively mild decline, 
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Table 3 
Results with varying missing dimensions while keeping missing rate fixed at 0.5. Oracle, Zero, Mean, LR, KNN, and CORIMP refer to TD3BC 
performance on the original datasets, datasets with missing actions filled with zeros, mean-imputed datasets, LR-imputed datasets, KNN-
imputed datasets, and CORIMP-imputed datasets, respectively. Rel. (%) indicates the performance of TD3BC on the CORIMP-imputed datasets 
as a percentage of the original datasets. Best results among imputation methods are highlighted in bold..

 Oracle  Zero  Mean  LR  KNN  CORIMP  Rel. (%)

Halfcheetah-m

 md = 1

48.30 ± 0.32

 42.04 ± 0.55  45.37 ± 0.44  45.68 ± 0.31  47.08 ± 0.34  47.24 ± 0.3  97.81%
 md = 2  19.84 ± 2.65  33.97 ± 0.43  42.27 ± 0.42  45.34 ± 0.39  45.92 ± 0.30  95.07%
 md = 3  17.02 ± 1.75  23.21 ± 1.26  39.29 ± 1.74  42.55 ± 0.79  44.38 ± 0.55  91.88%
 md = 4  7.26 ± 2.15  24.02 ± 1.55  35.20 ± 1.34  36.60 ± 1.44  38.07 ± 0.99  78.82%
 md = 5  4.78 ± 1.17  14.31 ± 1.95  23.07 ± 3.15  17.51 ± 3.07  28.11 ± 2.13  58.20%

Average  48.30  18.19  28.18  37.10  37.82  40.74  84.36%

Walker2d-m

 md = 1

83.16 ± 3.94

 70.37 ± 9.97  70.37 ± 9.97  81.76 ± 2.62  83.63 ± 1.22  84.46 ± 0.84  101.56%
 md = 2  52.78 ± 12.77  16.96 ± 2.05  68.25 ± 17.24  85.47 ± 5.27  84.74 ± 4.34  101.90%
 md = 3  6.78 ± 0.74  7.04 ± 0.33  11.01 ± 1.08  11.50 ± 0.43  13.49 ± 2.02  16.22%
 md = 4  8.04 ± 0.98  7.83 ± 0.67  8.77 ± 4.42  10.36 ± 0.93  12.48 ± 1.91  15.01%
 md = 5  7.45 ± 0.79  7.50 ± 0.57  7.79 ± 0.30  9.00 ± 0.67  8.79 ± 1.00  10.57%

Average  83.16  29.08  21.94  35.52  39.99  40.79  49.05%

Hopper-m
 md = 1

57.20 ± 5.56  54.25 ± 4.41  53.62 ± 7.52  53.98 ± 7.40  51.12 ± 4.69  54.76 ± 6.41  95.73%
 md = 2  12.93 ± 1.33  14.96 ± 0.93  14.38 ± 1.58  13.64 ± 2.26  15.23 ± 1.10  26.63%

Average  57.20  33.59  34.29  34.18  32.38  35.00  61.18%

Halfcheetah-me

 md = 1

92.51 ± 3.23

 39.81 ± 7.79  66.45 ± 5.77  78.77 ± 1.72  89.26 ± 1.60  79.16 ± 2.39  85.57%
 md = 2  7.36 ± 2.86  20.42 ± 2.64  37.23 ± 4.68  82.15 ± 2.22  84.85 ± 4.81  91.72%
 md = 3  2.29 ± 0.63  11.90 ± 4.87  36.34 ± 5.32  55.04 ± 8.08  55.76 ± 6.20  60.27%
 md = 4  2.05 ± 0.05  2.69 ± 1.08  32.28 ± 1.79  34.82 ± 0.66  36.40 ± 0.79  39.35%
 md = 5  2.19 ± 0.53  2.32 ± 0.89  28.46 ± 1.13  15.34 ± 8.32  27.46 ± 5.01  29.68%

Average  92.51  10.74  20.76  42.62  55.32  56.73  61.32%

Walker2d-me

 md = 1

110.31 ± 0.53

 103.32 ± 6.14  110.27 ± 0.44  110.09 ± 0.36  110.28 ± 0.48  110.34 ± 0.48  100.03%
 md = 2  18.90 ± 3.88  13.29 ± 0.85  34.90 ± 12.79  74.17 ± 27.87  94.95 ± 13.60  86.08%
 md = 3  6.95 ± 0.42  6.00 ± 0.24  8.22 ± 1.66  15.52 ± 2.60  15.00 ± 1.92  13.60%
 md = 4  5.97 ± 0.34  5.13 ± 0.46  4.60 ± 0.56  7.72 ± 1.35  7.38 ± 1.93  23.62%
 md = 5  5.47 ± 0.38  5.40 ± 0.42  6.19 ± 0.73  5.77 ± 0.81  6.49 ± 0.63  18.65%

Average  110.31  28.12  28.02  32.80  42.69  46.83  42.45%

Hopper-me
 md = 1

98.94 ± 11.93  10.91 ± 1.02  10.66 ± 1.64  10.97 ± 1.19  9.92 ± 0.88  10.92 ± 1.37  11.04%
 md = 2  11.31 ± 0.73  11.63 ± 0.71  11.20 ± 0.29  10.51 ± 1.65  11.90 ± 0.94  12.03%

Average  98.94  11.11  11.15  11.09  10.22  11.41  11.53%

this does not necessarily indicate robustness, as having two missing di-
mensions has already caused its performance to hit rock bottom. These 
observations suggest that task-specific data incompletion sensitivity is 
shaped by both dataset complexity and inherent task features.

Fig. 8. Downstream offline RL performance comparison. Experiments are con-
ducted under a fixed challenging setting: 2 missing dimensions with a 0.7 miss-
ing rate. CORIMP (red) demonstrates superior robustness, maintaining high per-
formance in complex environments like Walker2d and HalfCheetah where lin-
ear (LR) and local (KNN) baselines degrade significantly.

6.3.2.  Performance with CORIMP
With TD3BC, CORIMP demonstrates marked superiority over the 

Zero and Mean baselines, and consistently outperforms LR and KNN 
in the majority of scenarios, while achieving performance close to the 
oracle datasets, as illustrated in Table 1. Similar performance gains are 
seen with IQL in Table 2.

On Halfcheetah, CORIMP performs well on both dataset types, 
achieving over 90% of oracle performance. Remarkably, at a 0.7 missing 
rate on medium-expert dataset, CORIMP achieves a striking improve-
ment of 4093.26% over Zero, highlighting its ability to recover even 
under extreme conditions. For Walker2d, CORIMP even surpasses ora-
cle performance at missing rates from 0.1 to 0.5. This may be attributed 
to CORIMP enhancing data coverage, allowing the agent to learn from a 
more comprehensive dataset. Regarding Hopper, CORIMP shows modest 
improvements, with performance moderately below oracle levels. This 
is likely due to the high proportion of missing dimensions (two-thirds), 
which presents substantial challenges. In this specific low-dimensional 
setting, KNN occasionally matches or slightly exceeds CORIMP, suggest-
ing that local approximation suffices when dynamics are less complex.

CORIMP excels in the Halfcheetah and Walker2d tasks. On the 
one hand, it achieves near-oracle performance at lower missing rates 
(0.1 and 0.3), underscoring its practical value, as low missing rates are 
frequently encountered in real-world scenarios. On the other hand, it 
also demonstrates strong recovery at higher missing rates, making it a 
powerful tool for extreme situations involving significant data incom-
pleteness. The achievements across various missing rates underscore its
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Fig. 9. Visualization of imputed action trajectories via PCA projection on Walker2d-medium. The gray corridor represents the ground truth manifold. (1) Initialization 
Error: Naive baselines (Zero/Mean) deviate immediately at the Start Point (Circle), failing to match the initial pose. (2) Baseline Limitations: While advanced baselines 
initialize correctly, they fail to track dynamics. LR (purple) produces an oversmoothed path that ignores jagged turns, while KNN (orange) exhibits visible instability
and manifold shrinkage. (3) Ours: In contrast, CORIMP (red) accurately tracks both the initialization and the complex non-linear transitions, preserving the physical 
plausibility of the motion.

Table 4 
Results with varying missing dimensions while keeping missing rate fixed at 0.5. Oracle, Zero, Mean, LR, KNN, and CORIMP refer to IQL 
performance on the original datasets, datasets with missing actions filled with zeros, mean-imputed datasets, LR-imputed datasets, KNN-
imputed datasets, and CORIMP-imputed datasets, respectively. Rel. (%) indicates the performance of IQL on the CORIMP-imputed datasets 
as a percentage of the original datasets. Best results among imputation methods are highlighted in bold..

 Oracle  Zero  Mean  LR  KNN CORIMP  Rel. (%)

Halfcheetah-m

 md = 1

48.30 ± 0.32

 42.00 ± 0.57  45.42 ± 0.24  45.96 ± 0.32  47.18 ± 0.10  47.46 ± 0.14  98.26%
 md = 2  25.98 ± 1.25  34.57 ± 0.53  43.24 ± 0.36  46.42 ± 0.18  46.74 ± 0.19  96.77%
 md = 3  21.70 ± 1.95  29.19 ± 0.78  43.19 ± 0.19  44.52 ± 0.37  45.44 ± 0.35  94.08%
 md = 4  12.57 ± 2.65  28.96 ± 2.55  39.12 ± 0.42  39.13 ± 0.21  39.41 ± 0.22  81.59%
 md = 5  11.85 ± 2.65  27.79 ± 1.99  35.86 ± 0.35  32.92 ± 2.05  35.51 ± 2.56  73.52%

Average  48.30  22.81  33.19  41.47  42.03  42.91  88.84%

Walker2d-m

 md = 1

83.16 ± 3.94

 74.62 ± 4.58  74.62 ± 4.58  78.20 ± 3.56  79.83 ± 3.63  80.21 ± 4.68  96.45%
 md = 2  36.93 ± 15.85  12.31 ± 0.56  63.33 ± 5.85  73.95 ± 6.18  78.90 ± 5.66  94.88%
 md = 3  5.82 ± 0.79  6.29 ± 0.75  9.94 ± 0.16  11.52 ± 0.77  12.08 ± 0.79  14.53%
 md = 4  6.20 ± 0.49  8.28 ± 2.68  10.51 ± 0.03  10.70 ± 0.03  12.66 ± 2.20  15.22%
 md = 5  5.07 ± 0.37  7.95 ± 0.75  9.88 ± 0.02  8.67 ± 0.03  9.75 ± 0.64  11.72%

Average  83.16  25.73  21.89  34.37  36.75  38.72  46.56%

Hopper-m
 md = 1

57.20 ± 5.56  58.26 ± 6.57  56.81 ± 4.80  57.33 ± 3.48  52.76 ± 3.08  61.12 ± 5.61  106.85%
 md = 2  14.36 ± 2.19  13.52 ± 2.06  11.21 ± 0.01  12.73 ± 0.01  14.72 ± 3.01  25.73%

Average  57.20  36.31  35.17  34.27  34.86  37.92  66.29%

Halfcheetah-me

 md = 1

92.51 ± 3.23

 41.48 ± 9.22  53.71 ± 6.83  80.86 ± 1.70  86.68 ± 5.85  77.39 ± 6.00  83.66%
 md = 2  10.56 ± 2.45  13.23 ± 3.53  35.27 ± 3.98  88.42 ± 0.43  90.77 ± 2.35  98.12%
 md = 3  3.07 ± 1.97  14.09 ± 1.45  38.72 ± 1.65  49.64 ± 6.94  46.97 ± 7.67  50.77%
 md = 4  3.31 ± 0.44  9.72 ± 3.00  30.30 ± 1.83  32.91 ± 2.22  33.16 ± 3.07  35.84%
 md = 5  18.01 ± 9.95  25.50 ± 9.84  27.45 ± 1.25  32.53 ± 0.16  35.71 ± 0.89  38.60%

Average  92.51  15.29  23.25  42.52  58.04  56.80  61.40%

Walker2d-me

 md = 1

110.31 ± 0.53

 90.75 ± 12.08  111.66 ± 0.41  111.45 ± 0.95  111.63 ± 0.41  111.74 ± 0.93  101.30%
 md = 2  23.99 ± 4.09  16.02 ± 1.77  42.42 ± 3.84  80.45 ± 13.63  85.87 ± 19.49  77.84%
 md = 3  6.99 ± 0.37  6.15 ± 0.24  9.60 ± 0.10  13.03 ± 0.08  13.87 ± 2.14  12.57%
 md = 4  5.98 ± 0.09  5.57 ± 0.19  4.53 ± 0.01  6.98 ± 0.02  8.76 ± 3.72  7.94%
 md = 5  5.72 ± 0.11  4.79 ± 0.43  5.17 ± 0.01  4.52 ± 0.02  5.88 ± 0.41  5.33%

Average  110.31  26.69  28.84  34.63  43.32  45.22  40.99%

Hopper-me
 md = 1

98.94 ± 11.93  9.42 ± 0.34  11.04 ± 0.90  11.30 ± 0.01  10.36 ± 0.01  12.44 ± 2.16  12.57%
 md = 2  11.72 ± 0.12  13.18 ± 1.55  11.50 ± 0.01  10.37 ± 0.01  13.64 ± 1.89  13.79%

Average  98.94  10.57  12.11  11.40  10.37  13.04  13.18%

effectiveness in addressing different levels of data incompleteness and 
robustness under extreme data sparsity, demonstrating its value in alle-
viating the impact of incomplete data on offline RL.

6.4.  Evaluation with varying missing dimensions

Here, we fix the missing rate at 0.5 and vary missing dimensions 
from 1 to 𝐶 − 1.

6.4.1.  Sensitivity analysis of tasks and dataset types
We examine how varying missing dimensions affect the performance 

of existing offline RL algorithms, focusing primarily on the TD3BC algo-
rithm across different types of datasets and task domains, as shown in 
Fig. 6(c). Our goal is to uncover the unique sensitivity patterns of differ-
ent tasks and dataset types that react to changes in missing dimensions. 
While focusing on TD3BC, IQL exhibits comparable sensitivity patterns 
as Fig. 6(d)) shows.
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In the left plot, Hopper exhibits a sharp performance drop as missing 
dimensions increase from one to two. This decline is expected, as miss-
ing data in two of the three action dimensions poses a significant chal-
lenge. Halfcheetah and Walker2d also decline sharply as their missing 
dimensions increase from one to three. Both tasks’ performance plunges 
to critical lows when three dimensions are missing. The decline is most 
severe for Walker2d. These results suggest that Walker2d’s sensitivity 
to missing dimensions arises from both its inherent characteristics and 
task complexity. These observations reveal a threshold effect: beyond a 
certain level of missing data, performance stabilizes at a very low level.

In the right plot, Hopper consistently performs poorly. As missing 
dimensions rise from one to two, Halfcheetah and Walker2d decline 
significantly, Walker2d especially sharply. When the number of missing 
dimensions reaches two or more, the decline in performance for both 
datasets slows down gradually. With two missing dimensions, perfor-
mance once again plummets to a notably low level, mirroring previous 
observations.

6.4.2.  Performance with CORIMP
CORIMP demonstrates marked superiority across varying missing di-

mensions, outperforming the Zero, Mean, LR, and KNN baselines in most 
settings while maintaining near-oracle performance. Detailed results are 
available in Tables 3 and 4. Here, we primarily focus on the performance 
of TD3BC, as shown in Table 3.

For Halfcheetah, CORIMP achieves over 90% of the oracle per-
formance with fewer than three missing dimensions on the medium
dataset, with an average performance of 84.36% relative to the oracle. 
Although CORIMP achieves a modest 61.32% on the medium-expert
dataset, it yields a substantial 428.18% improvement over Zero. Re-
garding Walker2d, CORIMP surpasses oracle performance in three out 
of four cases with one or two missing dimensions. On medium-expert, 
even with two missing dimensions, CORIMP reaches 86.08% of the ora-
cle performance, highlighting its practical significance. Notably, in this 
complex environment, LR often fails to capture the dynamics, leading 
to unstable performance (e.g., Table 3 shows LR scoring only 34.90 
on Walker2d-me at md=2, while CORIMP reaches 94.95). However, 
performance drops with more than two missing dimensions, as han-
dling a 0.5 missing rate on over half the dimensions is challenging. 
For Hopper, CORIMP demonstrates moderate performance relative to 
the oracle: 61.18% for the medium dataset and 11.53% for the medium-
expert dataset. Modest improvements indicate that a high proportion of 
missing dimensions (two-thirds) makes effective data imputation more 
challenging.

Overall, CORIMP performs effectively with few missing dimensions, 
underscoring its practical significance. Compared to baselines like LR 
and KNN which degrade rapidly as dimension loss increases (indicating 
structural mismatch or manifold shrinkage), CORIMP maintains supe-
rior robustness in preserving policy-relevant features. Nevertheless, as 
the number of missing dimensions approaches extreme levels, perfor-
mance inevitably deteriorates, highlighting the persistent challenge of 
handling severe data incompleteness.

6.5.  Analysis of imputation fidelity

To explicitly validate the quality of data reconstruction independent 
of downstream RL tasks, we benchmark CORIMP’s imputation accuracy 
against four baselines: Zero, Mean, LR, and KNN. We report the Root 
Mean Square Error (RMSE) between the imputed and ground-truth val-
ues across missing dimensions.

Fig. 7 presents the RMSE distributions aggregated over 120 dataset 
variants (covering diverse missing rates and missing dimension combi-
nations). 

• High-Dimensional Complexity: In environments with complex dy-
namics like HalfCheetah and Walker2d, CORIMP (pink) consistently 
achieves the lowest median RMSE and variance. This confirms that 

the MLP architecture effectively captures non-linear kinematic cor-
relations that LR fails to model.

• Comparison with Non-Parametric Methods: While KNN performs 
competitively in lower-dimensional tasks (e.g., Hopper), CORIMP 
outperforms KNN in high-quality datasets (medium-expert), sug-
gesting superior capability in learning the underlying data manifold 
rather than relying on local neighborhood retrieval.

6.6.  From imputation accuracy to downstream performance

To verify whether the superior imputation fidelity observed in Sec-
tion 6.5 translates to robust downstream policy learning, we further 
evaluate the offline RL performance using the imputed datasets. We in-
clude Zero, Mean, LR, and KNN to investigate how different imputation 
paradigms affect the final agent scores. We conduct this evaluation using 
the IQL algorithm under a highly challenging setting: 2 missing dimen-
sions with a 0.7 missing rate.

The results, summarized in Fig. 8, reveal a clear correlation between 
reconstruction accuracy and policy performance:

• Robustness in Complex Dynamics: CORIMP (red) consistently 
achieves the highest average normalized scores across most tasks. 
This advantage is most pronounced in the Walker2d-medium and
Walker2d-medium-expert environments, where CORIMP signifi-
cantly outperforms both LR and KNN. This confirms that minimizing 
reconstruction error via non-linear modeling is critical for recovering 
actionable signals in complex locomotion tasks.

• Limitations of Baselines: The parametric baseline LR struggles sig-
nificantly in high-quality datasets, highlighting the failure of linear 
assumptions to capture expert-level dynamics. Similarly, the non-
parametric baseline KNN, while competitive in simpler tasks (e.g.,
Hopper), falters in Walker2d, suggesting that local neighborhood re-
trieval is less robust than CORIMP’s global manifold learning when 
handling sparse, high-dimensional data.

6.7.  Qualitative analysis via trajectory visualization

To provide a deeper mechanistic understanding of CORIMP’s statis-
tical superiority (evidenced by RMSE in Section 6.5 and RL scores in 
Section 6.6), we further analyze the geometric structure of the imputed 
action trajectories using Principal Component Analysis (PCA). Visualiz-
ing the low-dimensional manifold offers direct insight into how different 
models handle complex physical dynamics. Fig. 9 displays a representa-
tive trajectory segment from the Walker2d-medium dataset (2 missing di-
mensions with a 0.7 missing rate), characterized by complex non-linear 
dynamics.

The visualization reveals critical insights into the structural fidelity of 
different imputation paradigms:

• Immediate Divergence of Naive Baselines: As observed at the Start 
Point (Circle), naive baselines like Zero (blue) and Mean (green) fail 
to match the initial state of the ground truth. This immediate devi-
ation confirms that simple heuristics cannot even recover the static 
starting pose, leading to catastrophic trajectory errors.

• Oversmoothing in Linear Models: While LR (purple) correctly 
identifies the starting point, it produces an oversmoothed path dur-
ing the motion. The ground truth exhibits high-frequency jagged 
turns near the terminal phase. LR fails to capture these sharp ge-
ometric fluctuations, due to its inability to model the fine-grained 
physical constraints required for stable locomotion.

• Instability in Non-Parametric Models: KNN (orange) captures the 
general trend but exhibits noticeable instability. The trajectory ap-
pears jittery and suffers from manifold shrinkage at the bottom of 
the curve, indicating that sparse local neighborhoods lead to discon-
tinuous estimates.

• Geometric Consistency of CORIMP: In contrast, CORIMP (red) 
demonstrates superior geometric fidelity. It accurately initializes 

Expert Systems With Applications 311 (2026) 131344 

11 



Y. Shao et al.

from the start point and faithfully reconstructs the local sharp turns 
near the endpoint. This qualitative evidence reinforces that CORIMP 
effectively learns the non-linear manifold structure, validating its 
strong performance in downstream offline RL tasks.

7.  Conclusion

This paper explores the dimension-specific missing action data prob-
lem (DSMADP) in offline RL. On the one hand, we thoroughly inves-
tigate how different tasks and types of datasets react to DSMADP. On 
the other hand, we propose CORIMP, a correlation-driven imputation 
model, to alleviate the impact of DSMADP. Experimental results on vari-
ants of missing D4RL datasets demonstrate its effectiveness. Our findings 
emphasize the significance of addressing DSMADP in offline RL and pro-
vide a practical solution through CORIMP. Future work can build on 
these findings by refining CORIMP and applying it to diverse real-world 
scenarios to improve its robustness and adaptability.
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