
Distributed Game-Theoretical Task Offloading for
Mobile Edge Computing

En Wang1, Pengmin Dong1, Yuanbo Xu∗1, Dawei Li2, Liang Wang3, and Yongjian Yang1

1Jilin University, China
2Montclair State University, USA

3Northwestern Polytechnical University, China

Abstract—Mobile Edge Computing (MEC) has been envisioned
as a promising distributed computing paradigm, where mobile
users offload their tasks to edge nodes to decrease the cost
of energy and computation. However, most existing works only
consider the congestion of wireless channels as the crucial factor
influencing the strategy-making process, and ignore the impact
of the offloading among edge nodes. In addition, centralized
task offloading strategies result in heavy computation complexity
in center nodes. Along this line, we take both the congestion
of wireless channels and the offloading among multiple edge
nodes into consideration to enrich users’ offloading strategies.
To this end, we first formulate the offloading problem as a
multi-user potential game, and then propose a distributed task
offloading algorithm to reach an equilibrium state which can
also protect individual privacy. Specifically, in the above task
offloading algorithm, we propose two subalgorithms to select
users for updating strategies: Parallel User Selection Algorithm
(PUS) and Single User Selection Algorithm (SUS) in order to
substantially accelerate the convergence. Extensive experiments
on three real-world data sets validate that the proposed algorithm
achieves a Nash equilibrium and effectively decreases the total
user cost which is acceptable compared to the optimal solution.

Index Terms—Mobile Edge Computing, computation offload-
ing, potential game, Nash equilibrium.

I. INTRODUCTION

With the development of 5G [1] and other network-

ing technologies, terminal devices have been involved with

computation-intensive and latency-critical applications, includ-

ing face recognition, natural language processing, interactive

gaming [2]–[5] and so on. Due to hardware limitation, mobile

devices are generally limited in battery life and computing

resources. Mobile Edge Computing (MEC) is envisioned as

a promising distributed computing paradigm to decrease the

computing cost as well as enhance Quality of Service (QoS)

by utilizing edge nodes’ computing capacity [6]–[8].

In MEC, because the computing capacity and wireless

channels of edge nodes are shared by the offloading users,

the mobile users need to decide whether offloading tasks to

edge nodes for computing or processing tasks utilizing their

local devices, which raises the fundamental task offloading

problem. Recently, some works only consider the impact of

wireless channel’s competition regardless of the offloading

among edge nodes, which may change the offloading decision

[9]. Moreover, the proposed offloading strategies are mostly

∗The corresponding author is Yuanbo Xu.

edge node 1 edge node 2

Algorithm Method Cost Equilibrium

Minimum
cost 26 No

Distributed
equilibrium 19 Yes

Centralized
 optimal 18 No

Methods : L : Local device 1 : node 1 2 : node 2
N: number of users

C1 = 13 C1 = 12 C1 = 7

C2 = 2

C4 = 4 * N C4 = 2 * N

C1: local computing cost
C3: transmitting cost

C2: offloading cost

C4: edge computing cost

C3 = 1

Fig. 1: Problem description for task offloading game.

centralized [10]–[12], i.e., the edge nodes collect the users’

information and make the global task offloading decisions

which may result in both heavy computation complexity for

the edge nodes and privacy leakage for users. Furthermore, the

overall offloading decisions may be incapable of satisfying

all the users when users have better options and alter the

offloading strategy unilaterally.

Therefore, in this paper, we take both the offloading among

edge nodes and the competition in wireless channels into

consideration. Each mobile user has a home edge node, which

is the nearest edge node to the user, and multiple neighbor edge

nodes, which are connected to the user’s home edge node via

optical fiber cables. As illustrated in Fig. 1 (left part), user

u1 regards the edge node 1 as his/her home node and edge

node 2 as its neighbor edge node. Due to different locations

and the transmission distance of optical fiber, each edge node

has some neighbor connecting nodes. Obviously, for different

mobile users, the division of edge nodes may also be different.

The wireless channels shown as blue arrows in Fig. 1 are

shared by the offloading users. There are three methods for

task computing. Apart from processing tasks utilizing their

local devices, users have two more options: offloading to the

home edge node, and offloading to the neighbor edge node

via fibre-optical wired transmission from the home edge node.

When they choose to offload the tasks to neighbor edge nodes,

they must first offload tasks to their home edge nodes, and

then their home edge nodes will offload tasks to corresponding

neighbor edge nodes.

Moreover, we consider a distributed algorithm to let users

select offloading methods instead of uploading users’ infor-

216

2021 IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems (MASS)

978-1-6654-4935-9/21/$31.00 ©2021 IEEE
DOI 10.1109/MASS52906.2021.00037

20
21

 IE
EE

 1
8t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 M
ob

ile
 A

d
H

oc
 a

nd
 S

m
ar

t S
ys

te
m

s (
M

A
SS

) |
 9

78
-1

-6
65

4-
49

35
-9

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

M
A

SS
52

90
6.

20
21

.0
00

37

Authorized licensed use limited to: JILIN UNIVERSITY. Downloaded on March 06,2024 at 11:59:07 UTC from IEEE Xplore. Restrictions apply.

mation to the center edge node which can protect individual

privacy. Some comparing offloading algorithms are shown in

Fig. 1 (right part). An intuitive idea (Minimum cost) for each

user is to assume that there is only him/her in this model and to

select the method with the minimum cost. However, this leads

to the highest total cost of 26. An ideal approach (Centralized

optimal) achieves the least total cost of 18. Nevertheless, it

does not reach an equilibrium state because u3 can select node

2 to achieve a less cost. A trade-off (Distributed equilibrium)

is our target method, where a relatively acceptable cost of 19

and an equilibrium state are achieved, and no user has the

motivation to change the decision unilaterally. Hence, in this

paper, how to construct a distributed model to achieve the
equilibrium while guaranteeing a good total cost is the first

challenge. Moreover, during the task offloading process, each

user has individual conditions (e.g., battery condition, and the

time urgency of the task). Therefore, the second challenge is

how to design a unified distributed algorithm satisfying all
mobile users’ personal conditions. Finally, even if we find the

distributed equilibrium state, the total cost performance is not

always optimal. Hence, the third challenge is how to guarantee
a good total cost that is upper-bounded with respect to the
centralized optimal solution.

To deal with the above challenges, we first formulate the

task offloading problem as a multi-user task offloading game,

where each user selects a task offloading method to minimize

his/her cost separately. Then, we prove that the formulated

game is a potential game by constructing a global potential

function. The change of each user’s cost can be uniformly

mapped into the change of the global potential function.

Through continuing to approach the minimum value of the

global potential function, we achieve an equilibrium state

where each user’s cost function achieves a local minimum

value. Furthermore, we design a distributed game-theoretical

task offloading algorithm to achieve the Nash equilibrium. For

the cost function, the weighting parameters can be modified

by the users based on their individual conditions. Finally, we

utilize the metric of Price of Anarchy (PoA) to guarantee

the upper bound of the total cost with respect to that of the

centralized optimal solution.
In summary, the contributions are listed as follows:

• We first prove that it is NP-hard to find the centralized

optimal solution of the task offloading problem in MEC.

Instead, we formulate the distributed task offloading

problem as a multi-user task offloading game, which takes

both wireless channels and the offloading among edge

nodes into consideration.

• We prove that the formulated multi-user game is a po-

tential game. Furthermore, we design a distributed task

offloading algorithm to reach an equilibrium state; at the

same time, users could modify the parameters of the cost

function to satisfy their individual conditions.

• We show that the proposed distributed task offloading

algorithm can converge to a Nash equilibrium within

a finite number of update steps. Moreover, we prove

the upper bound of the number of update steps and the

lower bound of the total costs compared to the optimal

centralized solution.

• We conduct extensive simulations based on three real

widely-used data sets of edge networks. The results

verify that our proposed algorithm can achieve a Nash

equilibrium, while achieving a total user cost close to

that of the optimal solution.

The remainder of the paper is organized as follows. After

reviewing the related works in Section II, we introduce the

system model, the NP-hardness of the centralized problem

and the potential game formulation in Section III. Then, we

propose the distributed task offloading algorithm and analyze

its performance theoretically in Section IV. Finally, we conduct

extensive simulations to evaluate the proposed algorithm in

Section V and conclude the paper in Section VI.

II. RELATED WORKS

A. Task Offloading

The research on task offloading in MEC can be classified

into two categories: centralized task offloading and distributed

task offloading. For the former [13], [14], Baron et al. [13]

propose a multi-user task offloading approach among multi-

edge, which can achieve the maximum task completing ratio.

Jiang et al. [14] propose a centralized task offloading approach

based on deep learning and MEC to minimize the total

energy consumption. The centralized strategies always fail

to consider whether a user is satisfied with the offloading

decisions. For the latter [15], [16], Hong et al. [15] propose

multi-hop cooperative computation offloading for industrial

IoT–Edge–Cloud computing environments. Wang et al. [16]

investigate the offloading problem and resource allocation

utilizing deep reinforcement learning. However, most existing

works fail to consider the impact of offloading among edge

nodes or the congestion of wireless channels, which is actually

a more realistic scenario.

B. Potential Game

Many studies have recently utilized the potential game

theory to make distributed game-theoretical decisions and

achieve the Nash equilibrium. Fabiani et al. [17] formulate

the multi-vehicle driving coordination problem as a mixed-

integer potential game and find an equilibrium solution. Liu

et al. [18] formulate the multi-user computation offloading

problem as a potential game in which the mobile devices

make the offloading decisions in a distributed manner. Raschell

et al. [19] propose a novel access point selection approach

based on a potential game relying on software-defined net-

working. He et al. [20] investigate a app users computation

offloading problem in mobile edge computing. Furthermore,

they propose a potential game-theoretical approach to achieve

efficient computation offloading. Wu et al. [21] formulate the

edge user allocation problem as a potential game and propose

a decentralized algorithm to serve the maximum number of

users with minimum overall system cost. However, most works

design a fixed and unified cost function for all the users.

Hence, the corresponding potential game does not consider the

217

Authorized licensed use limited to: JILIN UNIVERSITY. Downloaded on March 06,2024 at 11:59:07 UTC from IEEE Xplore. Restrictions apply.

diverse requirements of the users. In this paper, we propose

a distributed game-theoretical approach, where mobile users

can achieve different preferences by adjusting the parameters

of the cost function.

III. MULTI-USER TASK OFFLOADING GAME

A. System Model

We first introduce the system model for the task offload-

ing in MEC. In our system, there are N users denoted

as U = {u1, u2, ..., uN} and M edge nodes denoted as

K = {b1, b2, ..., bM} embedded in base stations. Each edge

node is interconnected via optical fibers with not all but several

nodes. Our model investigates the offloading problem in quasi-

static scenarios where the users’ locations and edge nodes are

stable. Each user has his/her own nearest edge node called the

home edge node. Correspondingly, other edge nodes connected

with the home edge node are regarded as the user’s neighbor

edge nodes. For different users, their home edge nodes and

neighbor edge nodes may be different. We assume that users’

tasks are generated by their daily mobile devices such as

mobile phones or pads and so on. And there are three ways

of computing their tasks: 1) utilizing their own devices, 2)

utilizing their home edge nodes through wireless channels,

and 3) utilizing their neighbor edge nodes, where the users’

tasks must be first offloaded to the home edge nodes and then

sent to the neighbor edge nodes.

B. Local Device Computing Model

Let Cl = {cu1
, cu2

, ..., cuN
} denote the computing capacity

of all users’ local devices, where cui(i = 1, ..., N) means

the computing capacity of user ui’s local device. If user ui

determines to compute tasks in the local device, the computing

time will be formulated as follows:

tui
=

Ri

cui

, (1)

where Ri denotes the CPU cycles required to complete tasks.

Furthermore, we consider energy consumption. Let Pi denote

the energy consumption per CPU cycle, then the energy

consumption will be given as:

eui
= Pi ·Ri. (2)

Besides, in order to adjust users’ individual conditions, we

associate two positive parameters, α and β (0 <= α, β <= 1),
with the time cost and energy cost, respectively, when calcu-

lating the total cost for a user. If there is little energy left

in the user’s battery, user can increase the value of the β to

increase the cost of energy consumption. Equally, if their time

is valuable, they can increase α to emphasize the impact of

time costs. In brief, users can adjust the value of the two

weights to adapt to the ever-changing situation. As described

above, for user ui, according to Eq. (1) and Eq. (2) the total

cost of local device computing is formulated as

Tl(i) = αitui
+ βieui

. (3)

C. Home Edge Node Computing Model

In this section, we consider the scenario where users

choose their home edge nodes (i.e., the closest edge node)

for completing tasks. The computing time consists of two

parts: task computing time and task offloading time. Let

Ce = {cb1 , cb2 , ..., cbM } denote the computing capacities of all

edge nodes and ch(ui)(ui ∈ U) denotes the computing capacity

of user i’s home edge node. In addition, Nh(ui) denotes the

total number of users of user i’s home node. Then, the task

computing time is given by:

th(ui) =
Ri

(
ch(ui)

Nh(ui)
)
=

RiNh(ui)

ch(ui)
. (4)

Meanwhile, the task offloading time is as follows:

toffui
=

ki
ri

+AkiU(i), (5)

where ki denotes user ui’s offloading data size, ri denotes the

transmission rate, U(i) denotes the number of users that share

user ui selected channel, and A is a congestion parameter. As

mentioned earlier, we also need to take energy consumption

into consideration. Let Ei denote user ui’s data transmission

power. The energy consumption is described as:

eoffui
= Ei · ki. (6)

And for user ui, the total cost of home edge node compu-

tation is derived as:

Th(i) = αi(th(ui) + toffui
) + βiEit

off
ui

. (7)

According to the method of Eq. (3), here the user ui’s

parameters, αi and βi (both are positive numbers) denote the

weights of computing time and energy consumption.

D. Neighbor Edge Node Computing Model

In the case of neighbor edge node computing, the operation

mechanism is that first users offload their tasks to the home

edge node through wireless channels, then the home edge node

will transmit the tasks to the neighbor edge node specified

by users in advance. Compared with the home edge node

computing model, the neighbor edge node computing model

adds an extra variable, which is the transmission time between

home edge node a and neighbor edge node b denoted as Bab.

For user ui, the task computing time is as follows:

tn(ui) =
Ri

(
cn(ui)

Nn(ui)
)
=

RiNn(ui)

cn(ui)
, (8)

where cn(ui) denotes neighbor edge node’s computing capacity

selected by user ui and Nn(ui) denotes the neighbor edge

node’s total number of users selected by user ui. We might

as well assume that user ui chooses offloading tasks to

neighbor edge node b through home edge node a, then the

task offloading time is derived as:

tnei_offui
=

ki
ri

+AkiU(i) +Bab. (9)

Let Ei denote user ui’s data transmission power. The energy

consumption for offloading task is derived as:

218

Authorized licensed use limited to: JILIN UNIVERSITY. Downloaded on March 06,2024 at 11:59:07 UTC from IEEE Xplore. Restrictions apply.

enei_offui
= Ei · ki. (10)

As mentioned above, we set positive parameters, αi and βi

to adjust different individual performance, the total cost for

performing the tasks is described as:

Tn(i) = αi(tn(ui) + tnei_offui
) + βie

nei_off
ui

. (11)

E. NP-hardness of the Centralized Problem

First, we consider the centralized optimization problem of

minimizing the total costs of all users. Mathematically, given

all users’ strategies s = (si, s−i) (i.e., si denotes the user ui’s

strategy and s−i denotes others’ strategies), the problem can

be formulated as follows:

min
s

∑
ui∈U

Ti(s),

subject to si ∈ Si, ∀ui ∈ U , (12)

where Si means the optional strategies of user ui and Ti is user

ui’s total cost. Then, we try to prove that finding the optimal

solution of the formulated centralized optimization problem is

quite difficult, as shown in Theorem 1.

Theorem 1. The problem of finding the optimal solution to
minimize the total cost in a centralized manner is NP-hard.

Proof. The main idea is to change the perspective of the

problem in order to tally with the maximization version of

Generalized Assignment Problem (GAP) [22] which is NP-

hard. The problem of GAP is defined as follows:

Input: there are n items and m knapsacks, where every

item has a different profit and size when assigned to different

knapsacks and each knapsack has its own capacity. For exam-

ple, assigning item i to knapsack j, its size and profit will be

si,j and pi,j , separately.

Output: The assignment of items to knapsacks which will

reach the optimal total profits without exceeding the capacity

limit of the knapsacks.

In our problem, the worst situation is processing tasks at

local devices. Thus, we regard the cost saving utilizing edge

nodes compared with local computation as the task’s profit. In

that way, the profit of item i is defined as ci − ei, where ci
denotes the cost of local device computation and ei denotes

the cost of edge node computation. When the user number of

wireless channel is large enough that ei = ci, the user number

at this time is the task’s striction of item i. And the size of task

i is regarded as the size of item, the capacity of each channel

is tasks’ strictions. Now that the maximization version of GAP

is NP-hard, our problem is also NP-hard.

F. Potential Game Formulation

In this section, we try to utilize distributed task offloading

method and formulate our model as a potential game [23],

[24]. First, we will introduce some definitions.

Definition 1. (Nash equilibrium) A strategy profile ŝ =
{ŝ1, ŝ2, ..., ŝN} is a Nash equilibrium for our multi-user task
offloading game if and only if

Ti(ŝi, ŝ−i) = min Ti(si, ŝ−i) ∀ui ∈ U , ∀si ∈ Si. (13)

It is obvious that no user has motivation to decrease the

task completing costs by altering the strategy unilaterally in

the state of Nash equilibrium.

Definition 2. (Weighted potential game) A game is a
weighted potential game if and only if there exists a potential
function δ(s) for ∀i ∈ U satisfying:
Ti(si, s_i)− Ti(śi, s−i) = μi(δ(si, s−i)− δ(śi, s−i))

∀si, ∀śi ∈ Si, ∀s−i ∈ S−i, (14)

where μi (i = 1, ..., N) constitutes a vector of positive

numbers.

Now we introduce the two significant properties of a po-

tential game: (1) the existence of Nash equilibrium : there is

always at least one Nash equilibrium in the potential game,

(2) Finite improvement property: the potential game always

converges to a Nash equilibrium in a finite number of decision

steps which can decrease their costs, irrespective of the initial

strategy profile or the users’ updating order.

Next, in Theorem 2, we will prove that our multi-user task

offloading game is a weighted potential game.

Theorem 2. The multi-user task offloading game is a weighted
potential game and has at least one Nash equilibrium and the
finite improvement property.

Proof. We first construct the potential function as follows:

δ(s) =
∑

n∈γ

C(n)∑

j=0

Aj +
∑

b∈K

|Nb|∑

j=0

q
j

cb
+

∑

i∈U
WiI(ai, 0)+

∑

i∈U
ViI(ai, 1) +

∑

i∈U
ZiI(ai, 2), (15)

where γ is the wireless channel set, q = Ri/ki denotes the

CPU cycles processing per data size, Wi = q(1
cui

+ βiPi

αi
),

Vi =
βiEi

αi
+ 1

ri
, Zi =

βiEi

αi
+ 1

ri
+ Bcd

ki
, and I(ai,m) is an

indicator function defined as:

I(ai,m) =

{
0, if ai �= m
1, if ai = m

(16)

Here, m = 0 means that users process tasks locally, m = 1
means that users choose offloading to home edge nodes, and

m = 2 means that users choose offloading to neighbor edge

nodes. Moreover, ai denotes user ui’s strategy assigned from

the set {0, 1, 2}.
We define the original strategy profile of user ui and other

users as s = (si, s−i). When user ui changes the strategy

into śi while others keep stable, the strategy profile becomes

s = (śi, s−i). Considering all the user ui’s strategy changing

situations, we will discuss the following five cases: 1) From

local device to home edge node; 2) From local device to

neighbor edge node; 3) From home edge node to neighbor

edge node; 4) From channel a to channel b of the home edge

node; 5) From neighbor edge node a to neighbor edge node

b. Obviously, reversing the order of each case does not affect

the result. For case 1):

219

Authorized licensed use limited to: JILIN UNIVERSITY. Downloaded on March 06,2024 at 11:59:07 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Distributed Game-Theoretical Task Offloading

Algorithm for user i ∈ U
1: Input αi, βi according to the battery condition and the time

urgency of the task.

2: Initialize si(0) = r by selecting a method r ∈ Si.

3: Report si(0) (ui ∈ U) to their home nodes.

4: Receive the condition of users in each home edge node’s

channels and the total user number of each neighbor edge

node.

5: Calculate the three costs Tl(i), Th(i), Tn(i) performing the

task in local device, home edge node and neighbor edge

node.

6: repeat for each decision slot t
7: Obtain the condition of users in home edge node’s

each channel and the total user number of each neighbor

edge node.

8: Compute the better option �i(t).
9: if �i(t) �= ∅ and �i(t) �= si(t− 1) then

10: Send the request to the edge node for competing

the opportunity of updating decision.

11: if Win the opportunity then
12: Update the offloading decision si(t) = �i(t).
13: Report si(t) to the edge node.

14: else
15: Maintain the last time slot decision si(t) =

si(t− 1).

16: until The termination message is received.

Ti(śi)− Ti(si) = (αi(
ki
ri

+
RiNh(ui)

ch(ui)

+AkiU(i)) + βiEiki)−

(αi
Ri

cui

+ βiPiRi)

= αiki(
1

ri
+ q

Nh(ui)

ch(ui)

+
βiEi

αi
+AU(i)−

q(
1

cui

+
βiPi

αi
))

= αiki(δ(śi)− δ(si)) = μ(δ(śi)− δ(si)). (17)

For case 2), We might as well suppose user ui’s home edge

node is c and his/her offloading neighbor edge node is d. Then

we have:

Ti(śi)− Ti(si) = (αi(
ki
ri

+
RiNn(ui)

cn(ui)

+Bcd +AkiU(i))

+ βiEiki)− (αi
Ri

cui

+ βiPiRi))

= αiki(
1

ri
+ q

Nn(ui)

cn(ui)

+
βiEi

αi
+

Bcd

ki
+AU(i)

− q(
1

cui

+
βiPi

αi
))

= αiki(δ(śi)− δ(si)) = μ(δ(śi)− δ(si)). (18)

For case 3), as mentioned above, we also suppose that edge

node c and d are user ui’s home node and selected neighbor

edge node.

Algorithm 2 Information Update Algorithm for the Edge

Nodes.

1: Receive si(0) (ui ∈ U) from each user.

2: For each edge node, send its user conditions of channels

to home users and its users number to corresponding

neighbor edge nodes.

3: repeat for each decision slot t.

4: Receive the updating request from the users and let û
denote the set of users who send the request.

5: if û �= ∅ then
6: Select a user randomly from û.

7: Inform the user to update the decision

8: Receive si(t) from user ui ∈ U and update the

user condition of each edge node’s channel.

9: until No request is received from the user.

10: Send the termination message to all users.

Ti(śi)− Ti(si) = (αi(
ki
ri

+
RiNn(ui)

cn(ui)

+Bcd +AkiU(i)) + βiEiki)

− (αi(
ki
ri

+
RiNh(ui)

ch(ui)

+AkiU(i)) + βiEiki)

= αiki(
1

ri
+ q

Nn(ui)

cn(ui)

+
βiEi

αi
+

Bcd

ki
−

(
1

ri
+ q

Nh(ui)

ch(ui)

+
βiEi

αi
))

= αiki(δ(śi)− δ(si)) = μ(δ(śi)− δ(si)). (19)

For case 4), since the number of mobile users among

different wireless channels is different, the user number are

different. We use C(ia) and C(ib) to denote the user number

before and after strategy changing.

Ti(śi)− Ti(si) = (αi(
ki
ri

+
RiNh(ui)

ch(ui)

+AkiU(ib)) + βiEiki)

− (αi(
ki
ri

+
RiNh(ui)

ch(ui)

+AkiU(ia)) + βiEiki)

= αiki(
1

ri
+ q

Nh(ui)

ch(ui)

+
βiEi

αi
+AU(ib)−

(
1

ri
+ q

Nh(ui)

ch(ui)

+
βiEi

αi
+AU(ia)))

= αiki(δ(śi)− δ(si)) = μ(δ(śi)− δ(si)). (20)

For case 5), by the similar argument in case 4), it is easily

to prove that in situation of neighobr edge nodes, the formula

also holds.

Finally, Theorem 2 is proved.

IV. ALGORITHM DESIGN

In this section, we introduce our algorithms. Algorithm 1

is the distributed game-theoretical task offloading algorithm

for the mobile users; Algorithm 2 is the information update

algorithm for the edge nodes. When the algorithm terminates,

a Nash equilibrium will be reached.

A. Distributed Task Offloading Algorithm

Theorem 2 guarantees that the multi-user task offloading

game will converge to a Nash equilibrium within a finite

220

Authorized licensed use limited to: JILIN UNIVERSITY. Downloaded on March 06,2024 at 11:59:07 UTC from IEEE Xplore. Restrictions apply.

number of decision slots. The main idea of the algorithm is

utilizing the finite improvement property and selecting a set

of mobile users to decrease their costs by updating the task

offloading decisions in each decision slot.

In the initialization phase (line 1) of Algorithm 1, mobile

users first input the weighted parameters of battery condition

and the time urgency of the tasks and a random offloading

strategy. In the calculation phase (lines 6-16), each user

receives the number of users of each edge node and channel.

In this way, every user could calculate the better response

strategy (line 7-8); then, the user sends a request to the home

edge node applying for updating the decision. If the user is

selected, he/she updates the decision in the next slot. Other

users will keep the decision in the previous decision slot (lines

9-15). The process repeats until users receive the termination

message (line 16) (i.e., no users send the updating request to

nodes). Then the algorithm converges to a Nash equilibrium.

B. Information Update Algorithm

The information update algorithm updates the number of

users in each channel and edge node. In addition, this algo-

rithm selects users to update the decision in next decision slot.

In the initialization phase, after receiving the initial decisions

from all users (line 3), the algorithm updates the number of

users in each channel and edge node and sends it to users.

Next, when receiving users’ updating requests, the algorithm

will choose one user to update his/her strategy (lines 4-8). The

algorithm terminates until no request is received, then it sends

the termination messages to all users (lines 9-10).

Furthermore, we introduce the following two user selection

algorithms, Parallel User Selection Algorithm (PUS) and Sin-

gle User Selection Algorithm (SUS). SUS randomly selects

only one user from the set of users that send the updating

requests and allows the user to update the decision in next

decision slot. To decrease the convergence time, we further

propose PUS , which is inspired by the idea that some users

whose strategies cover no overlapping channels and edge

nodes could simultaneously update offloading strategy in the

same decision slot. The detailed description is as follows. As

shown in Algorithm 3, the inputs are U ′, and K. Specifically,

U ′ is the set of users sending the updating requests. In the

initialization phase (line 1), we set the selected updating users

set as empty. Then we traverse each edge node to find if there

exists users whose updating strategy consists this node (lines

2-6). If user’s strategy is local device and his/her home node

is the traversing node, then the user is added to set l′ (line

5). Meanwhile, if the updating strategy is the traversing edge

node no matter whether it is his/her home edge node or not,

she/he will be added to set e′(line 6). We will randomly select

two users belonging to set l′ and e′ respectively and add them

to set μ (lines 7-8), deleting the chosen users from the set U ′
by the way. Finally, when all the edge nodes are traversed, the

algorithm will return the selected users set μ.

Algorithm 3 Parallel User Selection Algorithm.

Input: U ′, K.

1: Initialize μ = ∅.

2: for all j ∈ K do
3: l′ = ∅ e′ = ∅

4: for all i ∈ U ′ do
5: if si(t) = Local and i ∈ j then l′ ← l′ ∪ i.
6: else if si(t) = j then e′ ← e′ ∪ i.

7: Randomly select a user m ∈ l′ and μ← μ ∪m
8: Randomly select a user n ∈ e′ and μ← μ ∪ n
9: U ′ ← U ′ −m− n

return μ.

C. Convergence Analysis

According to Theorem 2, the proposed distributed task

offloading algorithm will converge to a Nash equilibrium

within a finite number of update iterations. We then analyze

the upper bound of the number of iterations for convergence.

Theorem 3. The number of decision slots D for convergence
of the distributed task offloading algorithm satisfies the
following equation.

D <
|U|αmaxkmax

�Pmin
(q(

1

Cmin
l

+
βmaxPmax

αmin
)− Aj

2
(
|U|
|γ| + 1)−

q

2Cmax
e

(
|U|
|K| + 1)− (

βminEmin + αmax

αmaxrmax
)). (21)

Proof. We consider the situation where only a user ui ∈ U
changes strategy from si to śi. When users change strategy,

the value of potential function will decrease correspondingly.

When an equilibrium state is reached, the best case is that

the capacity of edge node is large enough for all the users to

offload their tasks to it. Then according to Eq. (14), we have

the following equation:

δ(s) ≥Aj
|U|
2

(
|U|
|γ| + 1) +

q|U|
2Cmax

e

(
|U|
|K| + 1)

+ |U|(βminEmin + αmax

αmaxrmax
), (22)

where Cmax
e means the maximum computing capacity among

all edge nodes.

On the contrary, the worst case is that mobile users can only

choose processing locally. So we have:

δ(s) ≤ q|U|(1

Cmin
l

+
βmaxPmax

αmin
), (23)

where Cmin
l denotes the minimum computing capacity of all

local devices.

According to Eq. (22) and Eq. (23), when user ui changes

strategy from si to śi, we have:

δ(s)− δ(́s) <q|U|(1

Cmin
l

+
βmaxPmax

αmin
)−Aj

|U|
2

(
|U|
|γ| + 1)−

q|U|
2Cmax

e

(
|U|
|K| + 1)− |U|(βminEmin + αmax

αmax
) (24)

Then, we have the following equation:

D <
|U|αmaxkmax

�Pmin
(q(

1

Cmin
l

+
βmaxPmax

αmin
)− Aj

2
(
|U|
|γ| + 1)−

q

2Cmax
e

(
|U|
|K| + 1)− (

βminEmin + αmax

αmax
)). (25)

221

Authorized licensed use limited to: JILIN UNIVERSITY. Downloaded on March 06,2024 at 11:59:07 UTC from IEEE Xplore. Restrictions apply.

(a) Melbourne (b) Shanghai (c) Darmstadt

Fig. 2: The presentation on real world data sets.

2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

U
s
e
rs

’
c
o
s
t

Decision slot

(a) Melbourne

2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

U
s
e
rs

’
c
o
s
t

Decision slot

(b) Shanghai

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

U
s
e
rs

’
c
o
s
t

Decision slot

(c) Darmstadt

Fig. 3: User cost vs. decision slot.

Hence, Theorem 3 is proved.

D. Theoretical Analysis

We then analyze the performance of the proposed distributed

task offloading algorithm by analyzing Price of Anarchy

(PoA). PoA is a metric measured by the ratio of the total

cost of all users in the worst case of Nash equilibrium to the

minimum total cost of the optimal strategy. Let S′ be the set

of strategy profile that can achieve Nash equilibrium of the

multi-user task offloading game and s∗ denote the centralized

optimal strategy. PoA is defined as follows:

PoA = max
s∈S′

∑
ui∈U

Ti(s)/
∑

ui∈U
Ti(s∗). (26)

Theorem 4. For the multi-user task offloading game, the PoA
of the metric of the overall costs satisfies that

tmax
l + emax

l

tmin
e + tmin

off (1 + Emin)
≥ PoA ≥ 1, (27)

where tmax
l and emax

l mean the maximum time and energy
cost among all users’ local devices, and tmin

e and tmin
off denote

the minimum computing time and the minimum task offloading
time among all edge nodes, respectively.

Proof. In our multi-edge conditions, for any user, the worst

strategy is computing task at their local devices. Therefore,

the total cost of our model when reaches a Nash equilibrium

is always less than the total cost when all the mobile users

choose to compute locally, which will be derived as:∑
ui∈U

Ti(s) = |U|(tmax
l + emax

l). (28)

On the other hand, if all the home nodes can afford the time

and energy cost of native users, the total cost will be minimum

which means:∑
ui∈U

Ti(s∗) ≥ |U|(tmin
e + tmin

off (1 + Emin)). (29)

In conclusion, according to the above description, the fol-

lowing equation holds:

tmax
l + emax

l

tmin
e + tmin

off (1 + Emin)
≥ PoA ≥ 1. (30)

Hence, Theorem 4 is proved.

0 20 40 60 80 100
0

20

40

60

80

100

120

140

N
u
m

b
e
r

o
f
it
e
ra

ti
o
n
s

User Number

 BRUO

 DGTO

 MUUO

 BUAU

(a) Melbourne

0 20 40 60 80 100
0

20

40

60

80

100

120

140

160

N
u
m

b
e
r

o
f
it
e
ra

ti
o
n
s

User Number

 BRUO

 DGTO

 MUUO

 BUAU

(b) Shanghai

0 20 40 60 80 100
0

20

40

60

80

100

120

N
u
m

b
e
r

o
f
it
e
ra

ti
o
n
s

User Number

 BRUO

 DGTO

 MUUO

 BUAU

(c) Darmstadt

Fig. 4: Decision slot vs. user number.

0 50 100 150 200
0

1000

2000

3000

4000

5000

6000

T
o
ta

l
c
o
s
t

User Number

 BRUO

 COTO

 RTO

(a) Melbourne

0 50 100 150 200
0

1000

2000

3000

4000

5000

6000

T
o
ta

l
c
o
s
t

User Number

 BRUO

 COTO

 RTO

(b) Shanghai

0 50 100 150 200
0

1000

2000

3000

4000

5000

6000

T
o
ta

l
c
o
s
t

User Number

 BRUO

 COTO

 RTO

(c) Darmstadt

Fig. 5: Total cost vs. user number.

V. PERFORMANCE EVALUATION

A. Data Sets & Settings

The following three real-world data sets are used for the

evaluation:

• Melbourne [25], [26] contains all cellular base stations

GPS data and all unique user locations in Australia. Fig.

2 (a) shows the distribution of edge nodes and users.

• Shanghai [27], [28] contains more than 7.2 million

records of accessing the Internet through 3,233 base

stations from 9,481 mobile phones for six months. Fig.

2 (b) shows the distribution of base stations. Each base

station denotes an edge node in Shanghai, China.

• Darmstadt [29] contains the GPS data of the base stations

in Darmstadt, Germany whose distributions are shown as

blue dots in Fig. 2 (c).

We let users’ mobile device process natural language pro-

cessing application whose data size ki distributes in [100, 200]
KB. And the computing capacity of users’ local devices

and edge nodes are a Poisson distribution in the ranges of

[1, 2.5] GHz and [100, 120] GHz, respectively. The energy

consumption per CPU cycle Pi is 1. As for offloading model,

we define users’ transmission rate ri as:

ri = w log2

(
1 +

λiPi

σ2D2
(i,j)

)
, (31)

where D(i,j) denotes the distance between user ui and edge

node j, σ means the path loss factor which is set as 2, and λ
denotes the background noise. And the channel bandwith W
is 15 MHz. The transmission rate between edge nodes is set

15 MB/s so that the delay of them will draw from a uniform

distribution across [0.1, 0.2] s.

B. Comparison Algorithms & Metrics

We use the following algorithms in the simulations.

• Distributed Game-theoretical Task Offloading (DGTO):

The proposed algorithm that utilizes SUU algorithm to

randomly select a user from the users who send the

updating requests and allows the user to select better

offloading method to minimize his/her cost.

222

Authorized licensed use limited to: JILIN UNIVERSITY. Downloaded on March 06,2024 at 11:59:07 UTC from IEEE Xplore. Restrictions apply.

0.0 0.2 0.4 0.6 0.8 1.0

300

400

500

600

700

800

900

T
o
ta

l
c
o
s
t

CPU cycles per data size

 BRUO

 RTO

 COTO

(a) Melbourne

0.0 0.2 0.4 0.6 0.8 1.0

300

400

500

600

700

800

900

T
o
ta

l
c
o
s
t

CPU cycles per data size

 BRUO

 RTO

 COTO

(b) Shanghai

0.0 0.2 0.4 0.6 0.8 1.0

300

400

500

600

700

800

900

T
o
ta

l
c
o
s
t

CPU cycles per data size

 BRUO

 RTO

 COTO

(c) Darmstadt

Fig. 6: Total cost vs. CPU cycles per data size.

0 2 4 6 8 10

300

400

500

600

700

800

900

1000

T
o
ta

l
c
o
s
t

Channel bandwidth (MHz)

 BRUO

 RTO

 COTO

(a) Melbourne

0 2 4 6 8 10

300

400

500

600

700

800

900

1000

T
o
ta

l
c
o
s
t

Channel bandwidth (MHz)

 BRUO

 RTO

 COTO

(b) Shanghai

0 2 4 6 8 10

300

400

500

600

700

800

900

T
o
ta

l
c
o
s
t

Channel bandwidth (MHz)

 BRUO

 RTO

 COTO

(c) Darmstadt

Fig. 7: Total cost vs. Channel bandwidth.

20 40 60 80 100

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

J
a
in

’s
 f
a
ir
n
e
s
s
 i
n
d
e
x

User Number

 DGTO

 COTO

 RTO

(a) Melbourne

20 40 60 80 100

0.65

0.70

0.75

0.80

0.85

0.90

0.95

J
a
in

’s
 f
a
ir
n
e
s
s
 i
n
d
e
x

User Number

 DGTO

 COTO

 RTO

(b) Shanghai

20 40 60 80 100

0.5

0.6

0.7

0.8

0.9

1.0

J
a
in

’s
 f
a
ir
n
e
s
s
 i
n
d
e
x

User Number

 DGTO

 COTO

 RTO

(c) Darmstadt

Fig. 8: Jain’s fairness index vs. User number.

• Multi-User Update Offloading (MUUO): The proposed

algorithm that utilizes PUS algorithm to select a set of

users from the users who send the updating requests

and allows the selected users to update the offloading

decisions in the next decision slot.

• Better Response Update Offloading (BRUO): BRUO ran-

domly selects a user from the users who send the update

requests and allows the user to randomly select a strategy

which is better than the current offloading method.

• Best Update of All Users (BUAU): BUAU inspects all

users and selects the user who minimizes the value of

the potential function to update the strategy in the next

decision slot.

• Centralized Optimal Task Offloading (COTO): COTO is

the centralized optimal approach to minimize the total

cost of all users. Specifically, we use simulated annealing

algorithm which is through one hundred experiments to

obtain the best parameters set.

• Random Task Offloading (RTO): Each mobile user ran-

domly selects a offloading method from the available

policy set.

C. Numerical Results

1) Convergence for Nash equilibrium: We first verify the

convergence for the proposed distributed algorithm, as shown

in Fig. 3. Specifically we randomly select 20 users in each

real data set, respectively and observe the dynamics of the

costs in 20 decision slots. It is obvious that the costs of

the mobile users change with the decision updates in the

beginning and can converge to a stable point which reaches

the state of Nash equilibrium. In Fig. 4, we investigate

1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

O
ff
lo

a
d
in

g
 r

a
ti
o

Channel bandwidth (MHz)

 Home node

 Local device

 Neighbor node

(a) Melbourne

1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

O
ff
lo

a
d
in

g
 r

a
ti
o

Channel bandwidth (MHz)

 Home node

 Local device

 Neighbor node

(b) Shanghai

1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

O
ff
lo

a
d
in

g
 r

a
ti
o

Channel bandwidth (MHz)

 Home node

 Local node

 Neighbor node

(c) Darmstadt

Fig. 9: Offloading ratio vs. Channel bandwidth.

0.2 0.4 0.6 0.8 1
0.0

0.2

0.4

0.6

0.8

1.0

O
ff
lo

a
d
in

g
 r

a
ti
o

CPU cycles per data size

 Home node

 Local device

 Neighbor node

(a) Melbourne

0.2 0.4 0.6 0.8 1
0.0

0.2

0.4

0.6

0.8

1.0

O
ff
lo

a
d
in

g
 r

a
ti
o

CPU cycles per data size

 Home node

 Local device

 Neighbor node

(b) Shanghai

0.2 0.4 0.6 0.8 1
0.0

0.2

0.4

0.6

0.8

1.0

O
ff
lo

a
d
in

g
 r

a
ti
o

CPU cycles per data size

 Home node

 Local device

 Neighbor node

(c) Darmstadt

Fig. 10: Offloading ratio vs. CPU cycles per data size.

 Uniform distribution

(a) Melbourne

 Uniform distribution

(b) Shanghai

 Uniform distribution

(c) Darmstadt

Fig. 11: Total cost vs. Data distribution.

the number of decision slots for convergence with respect

to the number of users. These algorithms rank as follows:

MUUO<BUAU<DGTO<BRUO. The reason is that MUUO

selects multiple users to update their decisions in parallel,

while BUAU selects only one user who minimizes the potential

function in each decision slot. What’s more, DGTO and BRUO

randomly select a user to update the decision with the best and

better response update manner respectively.

2) Costs, fairness: As shown in Fig. 5, 6 and 7, we

investigate the trend of total cost with respect to the number

of users, CPU cycles per data size and channel bandwidth.

We repeat the three simulations 500 times respectively which

all rank as follows: COTO<BRUO<RTO. According to Eq.

(11) and Eq. (31), we know the total cost is the positive

correlation with the user number and CPU cycles per data

size, and the negative correlation with the channel bandwidth.

In addition, the simulations indicate that our algorithm is

acceptable compared with the optimal solution.

Fig. 8 shows the dynamics of Jain’s fairness index with

the growth of the number of users. We repeat the simulations

500 times. Jain’s fairness index [30] is used to measure the

fairness of the user’s costs, which is defined as
(
∑

i∈U Pi(s))2

|U|∑i∈U Pi(s)2 .

It is worth noting that the fairness depends on how evenly

distributed the cost of each user is. The simulation results show

that the proposed DGTO achieves the highest Jain’s fairness

index among COTO and RTO, as DGTO can reach a Nash

equilibrium of multi-user game.

3) The influence of algorithm parameters: In Fig. 9 and

10, we evaluate the influence of the channel bandwidth and

CPU cycles per data size on the tasks offloading ratio. We

repeat each simulation 500 times which is conducted among

223

Authorized licensed use limited to: JILIN UNIVERSITY. Downloaded on March 06,2024 at 11:59:07 UTC from IEEE Xplore. Restrictions apply.

60 mobile users. It is interesting to find out that the offloading

ratio increases with the increase of channel bandwidth and

CPU cycles per data size. When channel bandwidth gets wider,

the transmission costs between edge nodes and users are lower

so that more users choose offloading tasks. And when tasks

are more complex, users are more likely to offload tasks to

edge nodes.

In Fig. 11, we research the impact of users’ data size distri-

bution on the total cost. We take normal distribution, poisson

distribution and uniform distribution into consideration. As

we predicted, the simulation results show that the costs of

these data distributions are in this order: uniform distribution

> normal distribution > poisson distribution which is same as

the rank of their users’ total data size.

VI. CONCLUSION

In this paper, we investigate the multi-user task offloading

problem, where we take both the offloading among edge nodes

and the competition in wireless channels into consideration.

We first prove that the centralized optimization problem is

NP-hard and formulate the task offloading problem as a multi-

user potential game, which always has a Nash equilibrium

and the finite improvement property. Then, we propose a

distributed task offloading algorithm to help users select the

offloading method that could achieve a Nash equilibrium.

Users can modify the parameters of the cost function to satisfy

their individual conditions. We analyze the convergence and

performance of the proposed algorithm theoretically. Finally,

the simulation results based on three real data sets show that

the proposed approach achieves a Nash equilibrium while

achieving a total user cost close to that of the optimal solution.

REFERENCES

[1] S. Kim, E. Visotsky, P. Moorut, K. Bechta, A. Ghosh, and C. Dietrich,
“Coexistence of 5g with the incumbents in the 28 and 70 ghz bands,”
IEEE Journal on Selected Areas in Communications, vol. 35, no. 6, pp.
1254–1268, 2017.

[2] C. Ding and D. Tao, “Trunk-branch ensemble convolutional neural
networks for video-based face recognition,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 1002–
1014, 2018.

[3] Z. Zong and C. Hong, “On application of natural language process-
ing in machine translation,” in 2018 3rd International Conference on
Mechanical, Control and Computer Engineering (ICMCCE), 2018, pp.
506–510.

[4] H. Meng and D. Wang, “Robust design for game-based instruction using
interactive whiteboards,” in 2012 IEEE Fourth International Conference
On Digital Game And Intelligent Toy Enhanced Learning, 2012, pp.
250–253.

[5] Z. Zhang, D. Weng, H. Jiang, Y. Liu, and Y. Wang, “Inverse augmented
reality: A virtual agent’s perspective,” in 2018 IEEE International
Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct),
2018, pp. 154–157.

[6] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge
computing: A survey,” IEEE Internet of Things Journal, vol. 5, no. 1,
pp. 450–465, 2017.

[7] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[8] Z. Niu, Y. Wu, J. Gong, and Z. Yang, “Cell zooming for cost-efficient
green cellular networks,” IEEE Communications Magazine, vol. 48,
no. 11, pp. 74–79, 2010.

[9] K. Kumar and Y. Lu, “Cloud computing for mobile users: Can offloading
computation save energy?” Computer, vol. 43, no. 4, pp. 51–56, 2010.

[10] Y. Chen, Z. Li, B. Yang, K. Nai, and K. Li, “A stackelberg game
approach to multiple resources allocation and pricing in mobile edge
computing,” Future Generation Computer Systems, 2020.

[11] A. Zhou, S. Wang, S. Wan, and L. Qi, “Lmm: latency-aware micro-
service mashup in mobile edge computing environment,” Neural Com-
puting and Applications, pp. 1–15, 2020.

[12] H. Badri, T. Bahreini, D. Grosu, and K. Yang, “Risk-aware application
placement in mobile edge computing systems: A learning-based opti-
mization approach,” in 2020 IEEE International Conference on Edge
Computing (EDGE), 2020, pp. 83–90.

[13] B. Baron, P. Spathis, H. Rivano, M. D. de Amorim, Y. Viniotis, and
M. H. Ammar, “Centrally controlled mass data offloading using vehic-
ular traffic,” IEEE Transactions on Network and Service Management,
vol. 14, no. 2, pp. 401–415, 2017.

[14] F. Jiang, R. Ma, C. Sun, and Z. Gu, “Dueling deep q-network learning
based computing offloading scheme for f-ran,” in 2020 IEEE 31st
Annual International Symposium on Personal, Indoor and Mobile Radio
Communications, 2020, pp. 1–6.

[15] Z. Hong, W. Chen, H. Huang, S. Guo, and Z. Zheng, “Multi-hop coop-
erative computation offloading for industrial iot–edge–cloud computing
environments,” IEEE Transactions on Parallel and Distributed Systems,
vol. 30, no. 12, pp. 2759–2774, 2019.

[16] Y. Wang, H. Ge, A. Feng, W. Li, L. Liu, and H. Jiang, “Computation
offloading strategy based on deep reinforcement learning in cloud-
assisted mobile edge computing,” in 2020 IEEE 5th International
Conference on Cloud Computing and Big Data Analytics (ICCCBDA),
2020, pp. 108–113.

[17] F. Fabiani and S. Grammatico, “Multi-vehicle automated driving as
a generalized mixed-integer potential game,” IEEE Transactions on
Intelligent Transportation Systems, vol. 21, no. 3, pp. 1064–1073, 2020.

[18] H. Liu, H. Jia, J. Chen, X. Ge, Y. Li, L. Tian, and J. Shi, “Comput-
ing resource allocation of mobile edge computing networks based on
potential game theory,” in 2018 IEEE 4th International Conference on
Computer and Communications (ICCC), 2018, pp. 693–699.

[19] A. Raschellà, F. Bouhafs, M. Mackay, Q. Shi, and M. Canales, “Ap
selection algorithm based on a potential game for large ieee 802.11
wlans,” in IEEE/IFIP Network Operations and Management Symposium
(NOMS 2018), 2018.

[20] Q. He, G. Cui, X. Zhang, F. Chen, S. Deng, H. Jin, Y. Li, and Y. Yang,
“A game-theoretical approach for user allocation in edge computing
environment,” IEEE Transactions on Parallel and Distributed Systems,
vol. 31, no. 3, pp. 515–529, 2020.

[21] B. Wu, J. Zeng, L. Ge, Y. Tang, and X. Su, “A game-theoretical approach
for energy-efficient resource allocation in mec network,” in ICC 2019 -
2019 IEEE International Conference on Communications (ICC), 2019,
pp. 1–6.

[22] T. Zhu, J. Li, Z. Cai, Y. Li, and H. Gao, “Computation scheduling for
wireless powered mobile edge computing networks,” in IEEE INFO-
COM 2020 - IEEE Conference on Computer Communications, 2020,
pp. 596–605.

[23] D. Monderer and L. S. Shapley, “Potential games,” Games and Economic
Behavior, vol. 14, no. 1, pp. 124–143, 1996. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0899825696900445

[24] Algorithmic Game Theory. Cambridge University Press, 2007.
[25] X. Xia, F. Chen, Q. He, J. Grundy, M. Abdelrazek, and H. Jin, “Online

collaborative data caching in edge computing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 32, no. 2, pp. 281–294, 2021.

[26] B. Li, Q. He, G. Cui, X. Xia, F. Chen, H. Jin, and Y. Yang, “Read:
Robustness-oriented edge application deployment in edge computing
environment,” IEEE Transactions on Services Computing, pp. 1–1, 2020.

[27] S. Wang, Y. Zhao, J. Xu, J. Yuan, and C. Hsu, “Edge server placement
in mobile edge computing,” J. Parallel Distributed Comput., vol. 127,
pp. 160–168, 2019.

[28] Y. Guo, S. Wang, A. Zhou, J. Xu, J. Yuan, and C. Hsu, “User allocation-
aware edge cloud placement in mobile edge computing,” Software:
Practice and Experience, vol. 50, pp. 489 – 502, 2020.

[29] J. Gedeon, J. Krisztinkovics, C. Meurisch, M. Stein, L. Wang, and
M. Mühlhäuser, “A multi-cloudlet infrastructure for future smart cities:
An empirical study,” in Proceedings of the 1st International Workshop
on Edge Systems, Analytics and Networking, pp. 19–24.

[30] R. Jain, D. M. Chiu, and H. WR, “A quantitative measure of fairness
and discrimination for resource allocation in shared computer systems,”
ACM Transactions on Computer Systems, 1984.

224

Authorized licensed use limited to: JILIN UNIVERSITY. Downloaded on March 06,2024 at 11:59:07 UTC from IEEE Xplore. Restrictions apply.

