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Abstract—Sparse spatiotemporal data completion is crucial in
Mobile CrowdSensing for urban application scenarios. In fact,
accurate urban data completion can enhance data expression,
improve urban analysis, and ultimately guide city planning.
However, it is a non-trivial task to consider outlier values caused
by the special events (e.g., parking peak, traffic congestion,
or festival parade) in spatiotemporal data completion because
of the following challenges: 1) the rarity and unpredictability,
2) the inconsistency compared to normal values, and 3) the
complex spatiotemporal relations. In spite of the considerable
improvements, recent deep learning-based methods overlook the
existence of outlier values, which results in misidentifying these
values. To this end, focusing on spatiotemporal data, we propose
a matrix completion method that takes outlier value effects into
consideration. Specifically, an outlier value model is proposed
by adding a memory network and modifying the loss function
to traditional matrix completion. Along this line, we extract the
features of outlier values and further efficiently complete and
predict the unsensed data. Finally, we conduct both qualitative
and quantitative experiments on three different datasets, and
the results demonstrate that the performance of our method
outperforms the state-of-the-art baselines.

Index Terms—Sparse Mobile CrowdSensing, matrix comple-
tion, outlier value, memory network

I. INTRODUCTION

With the rapid development of the Quality of Service (QoS)
in Internet of Things (IoT), Mobile CrowdSensing (MCS) [1],
which recruits mobile users carrying IoT devices to collect
various urban sensing data [2]–[4], has become an increasingly
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Fig. 1: An example to describe the outlier value effect in data
inference problem.

powerful sensing paradigm. In real-world scenarios, MCS can
not only help the government monitor the current urban status,
but also predict the future situation by utilizing historical data.
To reduce sensing cost of MCS, some researchers introduce
data inference techniques into MCS for enhancing QoS [5].
Thus, Sparse MCS [6], [7] appears, which senses some limited
areas and explores the correlations to infer the rest data for
the unsensed areas.

The problem description for exploiting outlier value effects
in sparse urban crowdsensing is shown in Fig. 1. The whole
city map is equally divided into 4 × 4 grids, and we have
collected sensing data of m time segments. Due to the sensing
budget constraint and uncertain user mobilities, we can hardly
sense all 16 subareas’ data at each time segment [8], [9].
In this case, some vital information may be lost, which
results in missing emergency data. For example, a temperature
monitoring system sustains to monitor the temperature of each978-0-7381-3207-5/21/$31.00 © 2021 IEEE
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urban subarea. If there is a fire disaster (which leads to a high
temperature) in a forest park and the system does not sense
the abnormal temperature increasing in this subarea, it will
cause a serious loss of lives and properties. Generally, we
call this abnormal sensing data an “outlier value,” which is
significantly higher (or lower) than the normal value (non-
outlier value) distribution. Actually, the occurrence of outlier
values may always satisfy some potential rules. For example,
the occurrence probability of a forest fire in winter is higher
than that in summer. Hence, if we focus on outlier values in
sensed data, the unsensed outlier value data may be efficiently
inferred and even predicted in time.

Actually, how to infer outlier values in sparse urban crowd-
sensing is still an open issue. As shown in Fig. 1, some
existing data inference algorithms (e.g., DMF [10], IGMC
[11], etc.) can help us complete the unsensed data. However,
focusing on the circled grid where outlier values should appear,
we find that traditional inference has a large inference error
(0.95 minus 0.75) compared with the real data. This situation
may lead the inference outlier value to be lower than the
threshold (0.8). Thus, the vital outlier value is regarded as a
normal value, which is unacceptable. The main reason for this
phenomenon is that there are rare samples related to outlier
values for training the existing models. In common situations,
outlier values only account for less than 5% of the total data.
The imbalance between normal value data and outlier value
data may lead to the following two problems: 1) Underfitting:
The model regards all sensed value data as normal value data,
so unsensed outlier value data cannot be recovered entirely.
2) Overfitting: The model fits both the normal and outlier
value data perfectly, so some unsensed normal value data are
recovered with large error. Hence, traditional Deep Neural
Network-based matrix completion methods cannot effectively
recover these data when we do not sense enough outlier value
data. Therefore, how to recover outlier values from such rare
outlier value data is the first challenge.

From the perspective of occurrence probability distribution,
the normal value distribution is relatively concentrated and the
occurrence probability is always high. While, the outlier value
distribution is relatively deconcentrated and the occurrence
probability is always low. In other words, the probability
distributions of normal values and outlier values are com-
pletely different. If we deal with outlier values in the same
way as normal values for designing and training models, the
data inference models may be underfitting and ineffective.
Therefore, how to deal with inconsistent data distribution
between normal and outlier values is the second challenge.

After recovering historical data completely and learning
the characteristics of historical outlier value data, we could
predict the future state through neural network-based methods
such as RNN, LSTM, GRU, etc. To explore the complex
spatiotemporal relationships, we hope to recover complete data
from sparse data at both the current (data inference) and future
(data prediction) time. In both cases, they need the help of
spatiotemporal relationship among the sensed data. Therefore,
how to extract the complex spatiotemporal relationship of

outlier value data is the third challenge.
To deal with the challenges above, we must make full use

of sparse spatiotemporal data. If an outlier value is unsensed
at the current time segment, we can try to determine whether
other time segments have similar spatiotemporal data distribu-
tion to the current time segment. Therefore, the key to solving
the problem is to compare the similarity of time segments
and explore the space relations among different areas. To
this end, this paper focuses on outlier values in sparse urban
crowdsensing problems via Sparse MCS, aiming to recover the
full map data, especially for outlier value data. Along with this
line, we propose Deep Matrix Factorization with exploiting
Outlier Value (DMF-OV), which focuses on predicting outlier
value data. Specifically, considering the complex spatiotem-
poral correlations of sensed data, we first apply Deep Matrix
Factorization (DMF) algorithm with Outlier Value Loss (OVL)
function to initially recover the sparse sensing matrix. Unlike
existing data inference models, we construct an outlier value
memory network to predict the label which indicates whether
the empty value is an outlier data. With the help of the outlier
value model, the proposed sparse matrix completion method
could efficiently complete and predict the unsensed data for
the city-scale map.

Our work has the following contributions:
• We formalize the sparse urban crowdsensing problem,

with the goal of recovering the unsensed normal and
outlier value data from the sparse sensed data.

• We propose an urban crowdsensing method named DMF-
OV, which aims to solve the problem of inferring outlier
value data from sparse sensed data based on DMF.
Compared with the traditional methods, our method can
effectively extract the complex spatiotemporal relation-
ship between the outlier value data and the normal value
data.

• We evaluate the proposed method on three real-world
datasets with three typical urban sensing tasks. The
results verify the effectiveness in improving the recovery
and prediction accuracy with the sparse sensed data when
considering outlier values.

The reminder of this paper is organized as follows. Section
II reviews related works. Section III presents the system model
and the problem formulation. In section IV, we describe the
details of our DMF-OV. We evaluate the performance of our
approach through extensive simulations in Section V, followed
by the conclusion in Section VI.

II. RELATED WORK

A. Mobile CrowdSensing

Mobile CrowdSensing (MCS) technology utilized mobile
devices carried by users to perform series of urban crowd-
sensing tasks [1], [12]. For example, in the application of
urban environmental MCS, measurements (e.g., noise levels
[13], traffic speeds [14], etc.) enabled the mapping of various
large-scale urban environmental phenomena by involving the
common person. Compared to traditional sensor networks,
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MCS had a number of unique characteristics that brought
opportunities to researchers and users. To provide QoS, some
existing efforts [15], [16] recruited as many users as possible
to collect data. Such a type of approaches could indeed
provide better service, however, collecting a large number of
users meant a huge cost. In our application scenario of the
outlier value data inference, it did help to be aware of such
large amounts of data, but it was unrealistic in most cases.
Therefore, traditional MCS could not be applied directly. In
fact, by utilizing spatiotemporal correlations among subareas,
we needed only a small amount of the data to infer the data
of other unsensed areas [6]. In this way, if the data inference
algorithm performs well, the cost of data sensing will be
greatly reduced.

B. Sparse MCS

In recent years, researchers have developed many urban
crowdsensing systems based on Sparse MCS, which first
sensed limited subareas and then infered the entire map.
An example of the application of noise monitoring would
reveal how effective the idea was. Rana et al. [13] built an
urban noise monitoring system that used compressive sensing
method to realize inferring a fine-grained urban noise map
from the randomly and incompletely sensed data. What’s
more, He et al. [17] and Liu et al. [18] proposed a Sparse
MCS-based urban air pollution and signal mapping systems.
Furthermore, an incentive design had been added to guide
users to sense more subareas of data. Wei et al. [19] also
made efforts in the field of task allocation. They achieved
a highly diverse and spatial quality coverage level within a
limited budget for different application scenarios. Li et al.
[20] focused on the critical problem that which data instances
should be collected to maximize the performance of the trained
model under the budget limit. They proposed the multi-round
crowdsensing framework and came up with a novel data utility
model to bridge the gap between the performance of the
trained model and the collected series of instances effectively.
Although existing Sparse MCS technology had not solve our
problem directly, it was an inspiration for our work.

C. Matrix Completion for Spatiotemporal Data

For spatiotemporal data, sparse MCS was essentially the
completion of the sparse spatiotemporal matrix. Matrix Fac-
torization (MF) was a classical matrix completion algorithm,
which took the advantage of the low-rank properties of the
complete matrix. With the wide application of deep neural
networks in the past several years, Fan and Cheng [10]
proposed the Deep Matrix Factorization (DMF) method by
combining traditional linear matrix factorization with deep
neural network. Using DMF to complete the sparse matrix
could obtain the non-linear spatiotemporal characteristics ef-
fectively. Wang et al. [21] utilized the DMF method in the
field of sparse urban sensing and prediction, and combined it
with the time series prediction method to realize the use of
sparse data to predict the future value by a end-to-end model.
In recent years, with the rapid development of graph neural

TABLE I: Main notations

Symbol Type Meaning
m, m0 N+ number of time segments, the length of the

time segments contained in each sampling
period

n, ñ N+ number of all subareas and sensed subareas
i N+ index of a time segment
j N+ index of a subarea
r N+ rank we assume of the complete matrix
Y, Y′, Ŷ Rm×n ground truth of the complete data, the sensed

sparse data, the estimated data
C {0, 1}m×n label of which grids are sensed
V, V′ {0,±1}m×n ground truth of complete label matrix, the

label matrix of sensed sparse data
Z Rr×n input of DMF
K, L N+ number of target and reference matrices
k, l N+ index of a target matrix and a reference matrix
Y′(k) Rm0×n k-th target matrix
Ŷ(k) Rm0×n completion matrix of Y′(k) by DMF and OVL
Z(k) Rr×n embedding matrix of Y′(k) by DMF and OVL
W(l) Rm0×n l-th reference matrix
Ŷ

(l)
W Rm0×n completion matrix of W(l) by DMF and OVL

Z
(l)
W Rr×n embedding matrix of W(l) by DMF and OVL

V
(l)
W {0,±1}m0×nsparse label matrix of W(l)

αkl R inner product of vec(Z(k)) and vec(Z
(l)
W )

ωkl [0, 1] similarity of vec(Z(k)) and vec(Z
(l)
W )

U(k) [−1, 1]m0×n probability that there will be an outlier value
Ô(k) Rm0×n complete matrix of Y′(k) by DMF-OV
Ô Rm×n matrix composed of all matrix Ô(k)

Ôfix Rm×n corrected output of DMF-OV

network (GNN), the algorithm of matrix completion using
GNN arised at the historic moment. Zhang et al. [11] proposed
an Inductive Graph-based Matrix Completion (IGMC) model
without using any side information for recommender systems
and applicable to the completion of sparse spatiotemporal
data matrix because of its inductive model. In the matrix
completion field, existing work usually ignored the impact of
outlier values.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Our research is based on a common urban sensing scheme
that recruits mobile users to collect data from some target areas
for recovering outlier value data. In this subsection, we are
going to show the mathematical representation of the system
model we design.

Given a whole urban sensing area which is divided into
n subareas (grids), we aim at achieving the whole n sub-
areas with only ñ sensed grids (ñ << n) for each time
segment. In order to represent which grids are sensed in the
i-th time segment, we introduce the logical vector c

(i)
1×n =

[ci1, ci2, . . . , cin] to denote which grids are sensed. If the
subarea j has been sensed, cij = 1, otherwise, cij = 0.
y′

(i)
1×n = [y′i1, y

′
i2, . . . , y

′
in] denotes the sparse sensed data.

The unsensed data are recorded as some meaningless values
(e.g., ∞). y

(i)
1×n = [yi1, yi2, . . . , yin] denotes the complete

data vector which includes both the sensed value data and
the unsensed value data.
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After m time segments, we can combine vectors to the
following matrices: Cm×n = [c(1)T, c(2)T, . . . , c(m)T]T de-
notes which grids are sensed for each time segment; sparse
matrix Y′m×n = [y′

(1)T
,y′

(2)T
, . . . ,y′

(m)T
]T denotes the

whole sensed data of m time segments; complete matrix
Ym×n = [y(1)T,y(2)T, . . . ,y(m)T]T denotes the ground truth
of complete data. Then the relationship of the three matrices
we introduce is as follows:

Y′ = Y ◦C, (1)

where the symbol ◦ denotes the Hadamard product. Then, we
want to find a data inference function g(·) to infer the unsensed
data from Y′ and we can get the estimated data matrix Ŷ:

Ŷ = g(Y′). (2)

Considering the influence of outlier values on the results of
matrix completion, it is necessary to define outlier values. We
can classify the data into left outlier values (−1), right outlier
values (1) and normal values (0) according to the value of the
data. vij ∈ {−1, 0, 1} denotes the type of outlier values in the
j-th subarea of the i-th time segment. The calculation method
of vij is as follows:

vij = v(yij) =

 1, yij > ε1
−1, yij < ε2

0, else
, (3)

where the large constant ε1 and small constant ε2 are thresh-
olds. By solving each element of matrix Ym×n with (3), we
can get the label matrix Vm×n = v(Ym×n). Similarly, we can
also get the sparse label matrix V′m×n = v(Y′m×n) from the
sparse sensed matrix Y′m×n.

B. Problem Formulation

Problem [Sparse Spatiotemporal Matrix Completion via
Outlier Values Model]: Given a sparse matrix Y′m×n, we need
to accomplish the following two tasks:
• Find a function g(·) to recover complete matrix Ŷ and

make Ŷ = g(Y′) be established.
• Ensure that the unsensed outlier value data can be recov-

ered correctly.
In this process, the following objective value obj should be

kept as small as possible:

obj = ||Ŷ −Y||+ ||v(g(Y′))−V||. (4)

In order to minimize the objective value obj, we should
first minimize the error of matrix completion and then focus
on outlier value data to correct outlier errors. It will be a two-
step process.

IV. SPATIOTEMPORAL MATRIX COMPLETION WITH
OUTLIER VALUES MODEL

Inspired by Deep Matrix Factorization (DMF) [10], we
design a novel method of matrix completion based on DMF.
Given a sparse matrix Y′m×n, DMF uses a Deep Neural
Network (DNN) to generate a complete matrix, as shown in
Fig. 2. We hope that the output vector of the neural network
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Fig. 2: Structure of traditional DMF.

is as close as possible to each column of the sparse matrix
Y′m×n. Unlike traditional DNNs, we need to treat the input
vector zr×1 of the DNN as the parameters of the DNN for
training. In addition, for the output layer, we only focus on
the values of sensed elements of the output vector instead of
all elements.

We use the function f(·) to represent the structure of the
DMF neural network. The loss function of traditional DMF
is a MSE loss function with two regularization penalty terms
and as shown in (5):

LMSE =
1

2mn
||(Y−f(Z))◦C||2 + λπ(f) + µ||Z||2, (5)

where π(f) and ||Z||2 represent the regularization penalty
terms of the deep neural network and input vector, respectively.
λ and µ are weight parameters.

However, considering the impact of outlier values, it is
necessary to add a penalty term to identify outlier value data
correctly. According to the probability distribution of outlier
value data, inspired by Extreme Value Loss (EVL) function for
extreme event prediction problem [22], we design our Outlier
Value Loss (OVL) function as follows:

LOVL = −
∑

(i,j)∈A

(1− β(vij))(1−
p

(vij)
ij

γ
)γ log(p

(vij)
ij ), (6)

where A = {(i, j)|cij = 1, 1 ≤ i ≤ m, 1 ≤ j ≤ n, (i, j) ∈
N2

+}. β(0), β(−1) and β(1) are the proportion of normal values,
left outlier values, and right outlier values in the dataset, re-
spectively. γ is the hyper-parameter, which is the outlier value
index in the approximation. p(0)

ij , p(−1)
ij and p(1)

ij are calculated
through Z by a full connection layer neural network. The input
of this neural network is vector zj ∈ Rr and the output vector
is [p

(0)
1j , p

(−1)
1j , p

(1)
1j , . . . , p

(0)
mj , p

(−1)
mj , p

(1)
mj ]

T ∈ R3m, where R
means the set of real numbers.

From what has been discussed above, we may easily con-
clude that we can not only reduce the matrix completion error
effectively but also identify the outlier value data correctly by
combining the MSE and OVL loss functions. So the mixed
loss function we get is:

Lmix = ξLMSE + (1− ξ)LOVL, (7)

where ξ represents the weight parameter. The influence of two
loss functions on the experimental results can be balanced by
adjusting the weight parameter ξ.
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Fig. 3: Framework overview.

There is also diversity among the outlier value data. The
outlier values that are just exceeding the threshold are different
from those far exceeding the threshold. In order to memorize
these outlier value data, we propose using a memory network,
which is proved to be effective in recognizing inherent patterns
contained in sensed information. So far, we can design a whole
model named DMF-OV model. The DMF-OV model exploits
the DMF algorithm with the mixed loss function and a memory
network which aims to remember and identify the distribution
characteristics of the outlier value data. We combine the DMF
algorithm with the OVL function, which can not only use
DMF to achieve high-precision matrix completion, but also
effectively reduce the influence of outlier data on the data
inference results.

The detailed DMF-OV algorithm is introduced in the fol-
lowing several paragraphs. In order to make it more easy for
readers to understand, we give a pseudo code flow table of
DMF-OV in Alg. 1, and an example framework figure is also
given in Fig. 3.

First, we define the concept of a window in our context.
In this paper, we will block or sample the data matrix and
label matrix according to a certain shape. The meaning of the
window is the size of this certain shape. As shown in Fig. 3
(left part), we randomly sample a sequence of windows by
W(1),W(2), ...,W(L), where L is the size of the memory
network and the number of rows in these matrices is m0. We
hope to obtain the characteristics of the outlier value data in
sensed data from W(1),W(2), ...,W(L), so we call these L
matrices reference matrices. Meanwhile, we divide the matrix
Y′ into Y′(1),Y′(2), ...,Y′(K) of the same size in the way
shown in Fig. 3. It is obvious that K = [ mm0

]. In particular,

when m
m0

is not an integer value which means that there will
be remaining rows of the whole sparse data matrix, we will
set K = [ mm0

] + 1, and Y′([
m
m0

]+1) will consist of the last m0

rows of the whole sparse data matrix. In the following, for the
sake of discussion, we assume that m

m0
is an integer value. In

other words, we assume that the whole sparse data matrix can
just be divided into K = m

m0
matrices. We want to recover

outlier values in these K matrices one by one, so we call these
K matrices target matrices. These K target matrices are our
goals to recover.

We find that these target matrices and reference matrices
are all sparse matrices. Most matrix operations are based on a
complete matrix rather than a sparse matrix. Sparse matrix is
not convenient for our subsequent processing of target matrices
and reference matrices. Therefore, it is necessary to get the
complete matrices first, even if they have not yet recovered
outlier values.

Then, we propose applying the DMF module with the
mixed loss function to complete each target matrix and each
reference matrix to build a memory network to remember
characteristics of outlier value data. After the processing of
matrix completion, we will get some parameters that can
characterize the memory network that we want to build. We
require that these parameters represent the characteristics of
sensed data and represent the characteristics of outlier values.
In order to achieve these goals, we build the architecture of
our memory network mainly consists of the following two
modules:

• Embedding Module
ZW = {Z(1)

W ,Z
(2)
W , · · · ,Z(L)

W }: Z
(l)
W ∈ Rr×n is the latent

representation of window l.
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Algorithm 1 Deep Matrix Factorization with Exploiting Out-
lier Value

Input: Y′m×n = [y′
(1)T

,y′
(2)T

, . . . ,y′
(m)T

]T and logical
matrix Cm×n = [c(1)T, c(2)T, . . . , c(m)T]T

Output: Ôfix

1: Calculate sparse label matrix V′m×n = v(Y′m×n);
2: Divide Y′m×n into K blocks: Y′(1), Y′(2),..., Y′(K);
3: Random Sample Y′m×n, get reference matrices: W(1),

W(2),..., W(L);
4: Random Init Z(1), Z(2),..., Z(K), Z(1)

W , Z(2)
W ,..., Z(L)

W ;
5: Build the Neural Networks by using f(·),
count = 0;

6: while not convergent and count < MAX ITER do
7: for k is from 1 to K do
8: Fix f(·), Z(k),

calculate Ŷ(k) = f(Z(k)),
and then calculate and reduce Lmix by (7);

9: end for
10: for l is from 1 to L do
11: Fix f(·), Z(l)

W ,
calculate Ŷ

(l)
W = f(Z

(l)
W ),

and then calculate and reduce Lmix by (7);
12: end for
13: count := count+ 1;
14: end while
15: for l is from 1 to L do
16: Calculate V

(l)
W = v(Ŷ

(l)
W );

17: end for
18: for k is from 1 to K do
19: for l is from 1 to L do
20: Calculate αkl = vec(Z(k))Tvec(Z

(l)
W );

21: end for
22: for l is from 1 to L do
23: Calculate ωkl = exp(αkl)∑L

l=1 exp(αkl)
;

24: end for
25: Calculate U(k) =

∑L
l=1 ωklV

(l)
W ;

26: Calculate O(k) = Ŷ(k) + bU(k);
27: end for
28: return Ôfix = Y′ ◦C + Ô ◦ C̄.

• Label Matrix Module
VW = {V(1)

W ,V
(2)
W , · · · ,V(L)

W }: V
(l)
W ∈ {−1, 0, 1}m0×n

is the outlier value label matrix of window l.

At each submatrix k, we use DMF to complete the matrix
with Ŷ(k) = f(Z(k)). Thus, Z could be regarded as a potential
representation of Ŷ. As we have discussed, Ŷ(k) may lack the
ability to detect outlier values in the future. Therefore, we also
require our model to retrospect its memory to check whether
there is a similarity between the target value and outlier value
in the sensed data. Hence, we propose to employ an attention
mechanism in our model. In order to measure the similarity
between the target matrix and the reference matrix by cosine
similarity, we utilize the matrix vec operator vec(·) to convert
a matrix into a vector. We abbreviate vec(Z(k)) as vector −→z (k)

and abbreviate vec(Z
(l)
W ) as vector −→z (l)

W . Then we can easily
use cosine similarity to measure the similarity between the k-th
target matrix and the l-th reference matrix. The mathematical
expression of the cosine similarity αkl between −→z (k) and −→z (l)

W

can be expressed as (8) shown:

αkl =
−→z (k)T−→z (l)

W

||−→z (k)|| · ||−→z (l)
W ||

, (8)

where ||·|| denotes the L2 vector norm. αkl only represents the
similarity between the k-th target matrix and the l-th reference
matrix. In fact, we hope that the k-th target matrix can be
compared with every reference matrix, and the comparison
results can be scored in the range of [0, 1]. Therefore, we use
a softmax function to realize the weighted average. So ωkl,
the new value of the similarity between the k-th target matrix
and the l-th reference matrix, can be calculated as:

ωkl =
exp(αkl)∑L
l=1 exp(αkl)

. (9)

According to (9), we can clearly find that ωk1, ωk2, · · · , ωkL
constrained by (10). Our subsequent processing will depend
on this important equation.

ωk1 + ωk2 + · · ·+ ωkL = 1. (10)

A large value of ωkl means that the k-th target matrix is
more similar to the l-th reference matrix. Therefore, we can
use the linear combination of label matrices V

(1)
W , V(2)

W , · · · ,
V

(L)
W as the k-th score matrix U(k) corresponding to the k-

th target matrix Y′(k) and ωk1, ωk2, · · · , ωkL can be set as
weight factors, i.e.,

U(k) =
L∑
l=1

ωklV
(l)
W . (11)

Unlike label matrix V
(1)
W , V

(2)
W , · · · , V

(L)
W , the elements

of the score matrix U(k) with the size of m0 × n are in the
range of [0, 1], i.e., U(k) ∈ [−1, 1]m0×n. U(k) impresses the
probability that there will be an outlier value or a normal value.
If the value of an element in the score matrix is negative, it
means that the position may correspond to a left outlier value.
On the contrary, a positive element value may correspond to
a right outlier value. We use absolute values to measure the
probability and the sign (positive or negative) to indicate the
classification (right or left outlier value) of outlier values.

The traditional matrix completion algorithm based on DNN
is usually acceptable for normal value, but not for outlier
value. Take the right outlier value as an example: the value
recovered by traditional methods is usually smaller than the
ground truth value. If we can judge which unsensed data are
outlier value data and compensate them in different degrees,
the data inference error of outlier value will be reduced. In
fact, we achieve this goal by calculating the matrix U(k). By
compensating the matrix Ŷ(k), we can get a better matrix
completion result. The compensation result of the k-th target
matrix is as shown in (12):

O(k) = Ŷ(k) + bU(k), (12)
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where b ∈ R+ is the scale parameter. The value b is determined
by that sensed outlier value data.

Intuitively, the main advantage of our model is that it
enables a flexible switch between yielding predictions of
normal values and outlier values.

Similarly, by processing K target matrices, we can combine
all the K matrices and get the complete matrix of optimized
recovery outlier value data as follows:

Ô = [O(1)T,O(2)T, . . . ,O(K)T]T. (13)

Finally, since values of sensed data are known, it is neces-
sary to fix these values to sensed value instead of inference
value. The corrected output is:

Ôfix = Y′ ◦C + Ô ◦ C̄, (14)

where C̄ denotes the logical operation of the negation of bool
matrix C.

From what has been discussed above, we may safely claim
that we can recover the unsensed data by our proposed method.
With its seemingly magic power, it can not only recover
normal value data, but also serve as an important role in
recovering outlier value data.

V. PERFORMANCE EVALUATION

In this section, we first introduce the datasets and the
baselines. Then we present performance evaluation results
for our proposed method. In particular, the main research
questions are:
• RQ1: Does our method really work for outlier value data

effectively?
• RQ2: Does our method improve the accuracy of matrix

completion and prediction?
• RQ3: What are the influences of hyper-parameters in the

model?

A. Datasets

For evaluating our proposed outlier value data inference
problem, we applied three famous and popular urban crowd-
sensing datasets, including Sensor-Scope [23], U-Air [24],
and Parking in Birmingham [25]. Sensor-Scope contained
various typical sensing data of urban environmental, such
as humidity, temperature, etc. U-Air collected the sensing
readings from a urban air quality monitoring systems, and
Parking in Birmingham includes the parking capacity data and
the number of parking cars. We provide a detailed description
of these three datasets in Table II.

Note that although all of these three datasets were collected
by using static sensors, we could also obtain the same sensing
data from mobile devices (or even human self). Moreover,
these three selected sensing tasks, including temperature,
PM2.5, and parking occupancy rate were typical urban crowd-
sensing tasks and also in need of outlier value data inference.
Therefore, we use these datasets in our evaluations to show
the effectiveness and the improvement of our proposed urban
crowdsensing problem.

B. Baselines

In order to effectively utilize the sparse sensed data to
infer outlier value data, we first present the matrix completion
algorithm with DMF-OV. We mainly compare our method with
the following matrix completion algorithms:
• KNN [26], which selects the top-K nearest sensed time

segments and calculates the average value. KNN algo-
rithm is a linear data inference algorithm.

• GP (Gaussian Process) [27], [28], which assumes that
the spatial distribution of data in the same time segment
obeys the Gaussian distribution. Unlike the KNN algo-
rithm we have introduced, GP algorithm is a non-linear
data inference algorithm.

• DMF [10], which is a deep neural network based on
matrix full rank factorization, is a popular matrix com-
pletion algorithm. Data from different subareas are still
inferred one by one. However, unlike the KNN and the
GP algorithms we have introduced, when we infer a
subarea’s data, we also use the characteristics of the data
from other subareas.

• IGMC [11], which is an inductive matrix completion
method based on GNN (Graph Neural Networks) without
using side information for recommender systems and
applicable to the completion of sparse spatiotemporal data
matrix because of its inductive model.

Then, we will introduce how these baselines are applied
for the three sensing tasks. For KNN and GP, we focus on
one subarea j. If there is no sensed data in the i-th time
segment, KNN will collect sensed data for k time segments
closest to time segment i. Then we calculate the average value
of these k time segments as the estimated value of KNN for
the time segment i. If there are m̃ time segments of sensed
data, GP will build a Gaussian distribution. The mean value
of the Gaussian distribution is set to be the statistical mean of
this m̃ sensed data, and the Gaussian distribution’s variance
value is set to be the statistical variance of this m̃ sensed
data. Then, GP generates a series of random values that obey
the Gaussian distribution we built as the estimated value of
the unsensed data of the subarea j. For DMF and IGMC, we
transform the unsensed data inference problem into a sparse
matrix completion problem. For a sparse matrix Y′m×n, the
DMF method divides the matrix Y′m×n into n sparse column
vectors y

′(1)
m×1, y

′(2)
m×1, · · · , y

′(n)
m×1. That means we have a

dataset of a deep neural network whose batch size equals n.
In addition, IGMC algorithm uses the currently popular GNN
method to implement matrix completion instead of traditional
DNN structure.

In this paper, we use three famous urban sensing datasets
with three representative types of urban crowdsensing tasks
(Sparse spatiotemporal matrix completion for Temperature,
PM2.5 and Parking occupancy rate.) For qualitative analysis,
we compare our method (DMF-OV) with traditional DMF
method to verify whether our method improves the completion
of outlier value data. For quantitative analysis, comparing
with KNN, GP, IGMC, and DMF, we verify our method can
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TABLE II: Statistics of three evaluation datasets.

Datasets
Sensor-Scope U-Air Parking in Birmingham

City Lausanne (Switzerland) Beijing (China) Birmingham (UK)
Data Temperature PM2.5 Parking occupancy rate

Subarea 57 subareas each with 50 × 30m2 36 subareas each with 1000 × 1000m2 30 parking lots
Period & Duration 0.5h & 7d 1h & 11d 0.5h & 77d

Mean ± Std. (Unit) 6.04± 1.87 (◦C) 79.11± 81.21 (µg/m3) 53.6± 26.3 (%)
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Fig. 4: Complementary effects of outlier values over Sensor-
Scope.
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Fig. 5: Complementary effects of outlier values over U-Air.

improve the completion accuracy of the sparse spatiotempo-
ral matrix. What’s more, we give the effect of two hyper-
parameters on the model. In this section, unless otherwise
specified, the error we mention means Rooted Mean Square
Error (RMSE).

In addition, our experiment platform is equipped with
Intel(R) Core(TM) CPU i5-3317U CPU @ 1.70GHz and 4.00
GB RAM, and we implement the urban crowdsensing scheme
using Python language with a famous open source machine
learning framework Pytorch.

C. Complementary Effects of Outlier Values (RQ1)
We first qualitatively verify that our method can effectively

deal with outlier values. We randomly extract 50% of the
data from the three tasks, and then use DMF and DMF-OV
algorithms to complete the matrix, respectively. To show the
experimental results, we randomly select a column from the
matrix completion results of each dataset, and give the ground
truth of the original data simultaneously. As shown in Figs.
4, 5, and 6, we find that DMF-OV algorithm can recover data
effectively, especially the outlier value data compared with the
traditional DMF algorithm. Among all the three experimental
results, the most obvious effect is the task over U-Air and the
experimental result is shown in Fig. 5. As shown in Fig. 5,
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Fig. 6: Complementary effects of outlier values over Parking
in Birmingham.

TABLE III: RMSE of outlier values over all three tasks.

DMF DMF-OV
Temperature (◦C) 0.67 0.45
PM2.5 (µg/m3) 20.56 11.74

Parking occupancy rate (%) 10.4 8.9

it is easy to find that the traditional DMF algorithm can not
recover the values greater than 300 between the 100th time
segment and the 150th time segment. However, when we use
DMF-OV algorithm to complete the data again, the values
greater than 300 can be recovered at a lower error. We also
find a similar phenomenon in the experimental results of the
Parking in Birmingham dataset, as shown in Fig. 6.

Through the data inference results of DMF and DMF-
OV algorithm, we notice a phenomenon that DMF-OV can
improve the data inference effect of not only normal value
data but also outlier value data. This is because our DMF-OV
method has such a characteristic that DMF-OV also judges
a normal value as a outlier value with a small probability. In
the other words, DMF-OV fixes all data instead of only outlier
value data. Therefore, we also calculate the completion errors
of that column by DMF and DMF-OV, the results of which are
shown in Table III. It is obvious that the error of DMF-OV is
less than that of DMF, especially when considering the effect
of outlier value data.

The above experiments show that our proposed DMF-OV
algorithm could deal with outlier value problems and increase
the accuracy of matrix completion.

D. Matrix Completion and Short-term Prediction (RQ2)
We start to test the sensed ratio’s effect on the sparse

matrix completion for the DMF-OV algorithm. In each urban
sensing task, we randomly select 50%-90% of the data in the
spatiotemporal data matrix as unsensed data, and the remaining
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Fig. 7: Inference and prediction accuracy under different
sensed ratios over Sensor-Scope.
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Fig. 8: Inference and prediction accuracy under different
sensed ratios over U-Air.

unextracted data is regarded as sensed data. We use different
matrix completion methods to infer the unsensed data and
calculate the matrix completion error. The experimental results
are shown in Figs. 7(a), 8(a), and 9(a). We can find out
that no matter which matrix completion algorithm is used
for unsensed data inference, the matrix completion error will
decrease with the sensed ratio increase. This is because the
effect of data inference is related to the amount of sensed data.
Simultaneously, it can also be found that the matrix completion
error of DMF-OV method is lower than other comparison
methods, especially when the data is sparse. DMF-OV inherits
the advantages of DMF in matrix completion, and focuses on
handling outlier values, so the accuracy of matrix completion
will be improved by DMF-OV.

The matrix completion error shows that the result of data
inference is very close to the real data. However, the smaller
matrix completion error does not necessarily mean that the
model can better fit the data’s spatiotemporal characteristics.
Considering that the accuracy of time series prediction is
closely related to the spatiotemporal characteristics of histori-
cal data, we use the matrix completion results of DMF-OV and
other comparison methods to predict the next time segment by
Gated Recurrent Unit (GRU) [29]. The experimental results
of next time segment prediction are shown in Figs. 7(b), 8(b),
and 9(b). We can find that the prediction error of DMF-OV
is also lower than other comparison methods, which indicates
that DMF-OV not only optimizes the outlier value inference,
but also extracts spatiotemporal features effectively. Similarly,
the increase in the sensed ratio is also helpful in improving
the prediction accuracy. It means that the more mobile users

0.5 0.6 0.7 0.8 0.9
Sensed ratio

2

4

6

R
M

SE
 (%

)

KNN
GP
IGMC
DMF
DMF-OV

(a) Inference task

0.5 0.6 0.7 0.8 0.9
Sensed ratio

8

10

12

14

R
M

SE
 (%

)

KNN
GP
IGMC
DMF
DMF-OV

(b) Prediction task

Fig. 9: Inference and prediction accuracy under different
sensed ratios over Parking in Birmingham.
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Fig. 10: Inference accuracy under different hyper-parameters
over Sensor-Scope, U-Air, and Parking in Birmingham.

we recruit, the better urban crowdsensing services we can
provide. Obviously, the experimental result is consistent with
our intuitive inference.

At the end of this experiment, we will discuss the dif-
ferences among different matrix completion methods. From
the results of matrix completion and short-term prediction,
we can find that KNN and GP algorithms have low accuracy
of matrix completion and prediction. KNN and GP only use
simple statistics instead of exploring particularly complex
spatiotemporal relationships. It may get better results in some
cases, but it is not a general method. The matrix completion
accuracy of IGMC and DMF is relatively high, and their
experimental results are similar. But the prediction accuracy of
IGMC is not as good as DMF. This is because IGMC is mostly
used in recommendation systems, and the effect of capturing
time series correlation is poorer than DMF. Therefore, when
dealing with urban crowdsensing tasks, we prefer to combine
the OV model with DMF instead of IGMC. Because these
two methods do not consider the influence of outlier value
data, the data inference error in some locations may be large,
which leads to the final matrix completion effect not being as
good as DMF-OV. On the other hand, with the increase in the
sensed ratio, the outlier value data in unsensed data becomes
less and less, and the advantage of DMF-OV algorithm may
be weakened in many tasks.

E. Impact of Hyper-parameters (RQ3)
Finally we test the influence of hyper-parameters in our

DMF-OV model, where the results are shown in Fig. 10.
In this paper, the right outlier value threshold ε1 (“Right
threshold” in Fig. 10) and the left outlier value threshold ε2
(“Left threshold” in Fig. 10) are the most important hyper-
parameters. The setting of the right and left threshold has a
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great influence on the performance of the model. We infer
that, a large right outlier value threshold or a small left outlier
value threshold will cause more values to be classified as
normal values, which in turn reduces the effectiveness of our
method. On the contrary, a small right outlier value threshold
or a too large left outlier value threshold will cause some
normal values to be classified as outlier values, which will
interfere with the model’s extraction of outlier values. In other
words, the frequency and range of outlier data affect the
quality of the experimental results. Therefore, the selection
of appropriate thresholds has a great impact on the effect of
the DMF-OV model. Empirically, we usually choose the value
of Mean± Std. to set the initial value of the thresholds.

As shown in Fig. 10, we keep the sensed ratio at a constant
50% and use our proposed DMF-OV method to recover the
complete matrix. By setting different thresholds, we get differ-
ent matrix completion errors. In this way, we not only test the
influence of hyper-parameters on the matrix completion error,
but also find the best right outlier value threshold ε1 and left
outlier value threshold ε2 that minimize the matrix completion
error. Therefore, when DMF-OV algorithm is applied to other
scenarios, we should first set reasonable outlier value threshold
according to the data distribution, so as to make the model play
the best effect.

VI. CONCLUSION

In this paper, we solve the problem of sparse spatiotemporal
matrix completion and unsensed outlier value data recovery. In
detail, we use sensed data of sparse spatiotemporal matrix to
infer unsensed normal and outlier values. In order to solve this
problem, we propose an urban sensing method named DMF-
OV, which is based on DMF with an outlier value model.
Specifically, an outlier value model is proposed by adding
a memory network and modifying the loss function from
traditional matrix completion. Experiments on three popular
urban sensing datasets show that the proposed DMF-OV
method can complete the sparse matrix with a high accuracy
and recover outlier value data effectively. Moreover, the actual
application areas of this paper are not limited to these three
tasks. Our proposed method can also be applied for other urban
sensing scenarios, such as traffic speed monitor, congestion
detection, etc.
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