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Abstract—中中中Mobile CrowdSensing (MCS) is a promising sens-
ing paradigm that leverages users’ mobile devices to collect
and share data for various applications. A key challenge in
MCS is task allocation, which aims to assign sensing tasks
to suitable users efficiently and effectively. Existing task allo-
cation approaches are mostly centralized, requiring users to
disclose their private information and facing high computational
complexity. Moreover, centralized approaches may not satisfy
users’ preferences or incentives. To address these issues, we
propose a novel distributed task allocation scheme based on
route navigation systems. We consider two scenarios: time-
tolerant tasks and time-sensitive tasks, and formulate them as
potential games. We design distributed algorithms to achieve
Nash equilibria while considering users’ individual preferences
and the platform’s task allocation objectives. We also analyze the
convergence and performance of our algorithm theoretically. In
the time-sensitive task scenario, the problem becomes even more
intricate due to temporal conflicts among tasks. We prove the
task selection problem is NP-hard and propose a distributed task
selection algorithm. In contrast to existing distributed approaches
that require users to deviate from their regular routes, our
method ensures task completion while minimizing disruption to
users. Trace-based simulation results validate that the proposed
algorithm attains a Nash equilibrium and offers a total user profit
performance closely aligned with that of the optimal solution.

Index Terms—Mobile crowdSensing, route navigation, poten-
tial game, Nash equilibrium.

I. INTRODUCTION

MOBILE CrowdSensing (MCS) [2], [3], [4] is a powerful
sensing technique that has gained prominence with the

proliferation of mobile devices. MCS approach leverages the
capabilities of mobile devices to collect and share data for
various sensing applications, including air quality monitoring
[5], noise monitoring [6], and road traffic detection [7].

An important issue in MCS is how to efficiently allocate
tasks to appropriate users, giving rise to the task allocation
problem [8], [9]. A number of recent results adopt the central-
ized task allocation approach [10], [11], [12], [13], [14], [15],
where the platform gathers user information in a centralized
manner and subsequently makes task allocation decisions. We
contend that this information collection process exposes users
to potential privacy breaches, and finding the optimal task-
user matches with spatial-temporal constraints is intricate.

A conference version of the paper has appeared in Proceedings of ICPP
2021 [1].

En Wang, Dongming Luan, Yuanbo Xu, and Yongjian Yang are with
the Department of Computer Science and Technology, Jilin Univer-
sity, Changchun, Jilin 130012, China. (E-mail: wangen@jlu.edu.cn; lu-
andm20@mails.jlu.edu.cn; yuanbox@jlu.edu.cn; yyj@jlu.edu.cn)

Jie Wu is with the Department of Computer and Information Sciences,
Temple University, Philadelphia, PA 19122, USA. (E-mail:jiewu@temple.edu)
∗The corresponding author is Yuanbo Xu.

How to find an equilibrium state? 
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Fig. 1: An illustrative example for distributed task selection.

Furthermore, centralized task allocation may not always result
in user satisfaction. For instance, a user may be unwilling to
deviate from their original route to complete a task assigned at
a remote location, even if the task offers an attractive reward.
Conversely, when users independently perform sensing tasks
according to their own plans, certain tasks with low rewards
or distant locations may remain incomplete.

Some existing works [16], [17] have proposed using dis-
tributed algorithms to address the multi-user task selection
problem. However, these approaches do not consider users’
original routes. Consequently, users still need to deviate from
their daily routes to complete tasks. This approach brings
additional movement costs to users and is intrusive to users.
Furthermore, these works do not consider users’ individual
preferences, such as task rewards and detour distances.

Given the widespread use of map navigation systems (e.g.,
Google Maps [18]), we are inspired to explore distributed task
allocation with the assistance of route navigation. The route
navigation system recommends several routes to users after
they input their initial locations and destinations in applica-
tions. Each route may involve various MCS tasks. When a
user selects a route, the user can complete the tasks along
that route and receive the corresponding task rewards. This
approach allows users to choose routes for task completion in
a distributed manner, rather than uploading their information
to a centralized platform. Moreover, users complete tasks on
the selected route without deviating from their daily routes.

We consider the following two scenarios: time-tolerant tasks
and time-sensitive tasks [19], [20]. Time-tolerant tasks have
flexible temporal requirements and can tolerate delays in data
collection, such as noise monitoring [6] and air pollution
monitoring [5]. Since time-tolerant tasks do not have strict
temporal requirements, a user can complete all the tasks on a
route one by one when passing by each task. Time-sensitive
tasks, on the other hand, have strict temporal requirements,
necessitating completion within specific time constraints. For
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example, checking the queue situation at a restaurant at 11:00
am [21] or assessing the on-shelf availability and price of
Coca-Cola in a supermarket at 9:00 am [22]. In this case,
users are required to collect data at precise times and locations,
leading to temporal conflicts among tasks. As a result, users
may be unable to complete all the tasks on their selected
routes. The user must simultaneously select a route and choose
the tasks to be performed along that route.

We illustrate an example in Fig. 1. In this scenario, there are
two users, and the route navigation system recommends two
routes for each of them. The service provider offers rewards
to incentivize user participation [23], [24]. Due to the limited
reward, task rewards are shared among users who complete
them, resulting in coupled user task selections. Therefore, our
objective is to find a stable equilibrium state in which no user
has the incentive to change the decision to increase their profit
unilaterally. In the time-tolerant task scenario depicted in the
top-left part of Fig. 1, the final equilibrium state sees user
u1 selecting route r2 and user u2 selecting route r4. Both
users complete all tasks on their respective routes and receive
a reward of $8 and $5 each. While in the time-sensitive task
scenario in the bottom-left part of Fig. 1, user u2 begins its
journey at 9:45 and must reach the destination by 11:15. The
user is required to start task l1 at 10:00, with an estimated task
duration of 25 minutes. Since l2 should be started at 10:15,
the temporal conflict arises between l1 and l2. As a result,
different from the time-tolerant task scenario, user u2 selects
to perform l4 and share the reward with u1.

Since users need to compete for a limited reward, a user’s
task selection decision may affect other users’ profits, resulting
in coupled task selections. The first challenge lies in proving
the existence of an equilibrium state and constructing a dis-
tributed model to achieve an equilibrium while guaranteeing a
lower performance bound. Moreover, during the task selection
process, each user has individual preferences. Similarly, the
platform also has specific task allocation goals (e.g., maxi-
mizing task completion). Hence, the second challenge is how
to design a unified distributed algorithm that considers the
requirements of both the platform and users. Furthermore, in
the time-sensitive task scenario, the user must simultaneously
select a route and choose the tasks to be performed along
that route. This complexity arises from temporal conflicts
among tasks, making the task selection problem more intricate.
Therefore, the third challenge is how to find a solution to tackle
these temporal conflicts and reach an equilibrium state in the
time-sensitive task scenario.

To address the aforementioned challenges, we first formu-
late the task selection problem as a multi-user route navi-
gation game for the time-tolerant task scenario, where each
user makes a decision to maximize their own profit function
independently. Then, we prove that the formulated game is a
potential game by constructing a global potential function. The
change in the profit functions of all the users can be uniformly
mapped into the change in the global potential function. By
continuously approaching the maximum value of the global
potential function, we achieve an equilibrium state where each
user’s profit function reaches a local maximum. Furthermore,
we design a distributed game-theoretical algorithm to achieve

the Nash equilibrium. For the profit function, the weighting
parameters can be adjusted by the users based on their indi-
vidual preferences, as well as by the platform according to the
task allocation objectives. Finally, for the more intricate time-
sensitive task scenario, we further design a branch and bound
task selection algorithm and incorporate it into the potential
game framework.

In summary, the contributions are listed as follows:
• Distributed Task Selection Scheme: Traditional distributed

task allocation schemes are participatory crowdsensing,
which require users to move to task locations, often
deviating from their regular routes. Motivated by route
navigation systems, we propose a new distributed crowd-
sensing task selection scheme that ensures task com-
pletion without necessitating users to deviate from their
regular routes.

• Multi-User Route Navigation Game: We formulate the
time-tolerant task selection problem as a potential game.
To reach an equilibrium state, we design a distributed
route navigation algorithm, where users can adjust the
parameters of the profit function to align with their
individual preferences, and the platform can do the same
to achieve its task allocation purpose. Furthermore, we
analyze its convergence and performance theoretically.

• Distributed Task Selection Algorithm: Temporal conflicts
make the problem more complex for time-sensitive task
selection. We have proven that both the centralized route
navigation problem and the task selection problem are
NP-hard. We formulate the problem as a multi-user task
selection game and design a distributed task selection
algorithm to reach a Nash equilibrium.

• Extensive Trace-based Simulations: We perform exten-
sive trace-based simulations based on three data sets. The
results verify that our proposed algorithm can achieve a
Nash equilibrium, while achieving a total user profit close
to that of the optimal solution.

The remainder of the paper is organized as follows: After
reviewing the related works in Section II, we introduce the sys-
tem model, the proof of NP-hardness, and the potential game
formulation in Section III. Then, we propose the distributed
route navigation algorithm for time-tolerant selection and ana-
lyze its performance theoretically in Section IV. Furthermore,
we propose the task-sensitive selection algorithm in Section
V. Finally, we conduct extensive simulations to evaluate the
algorithm in Section VI and conclude the paper in Section VII.

II. RELATED WORKS

A. Crowdsensing task allocation

Crowdsensing tasks can be classified into two categories
based on their time constraints:time-tolerant tasks and time-
sensitive tasks [19], [20]. Time-tolerant tasks have flexible
temporal requirements and can tolerate delays in data collec-
tion, such as noise monitoring and air pollution monitoring.
For example, Yang et al. [21] design a PoI-based mobility
prediction model to calculate the task completion probabilities
and propose a greedy offline user selection algorithm. Dai
et al. [25] construct a distributed matching model and design
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the budget-constrained task allocation strategies for MCS
based on stable matching theory. Nguyen et al. [5] utilize the
air quality sensors mounted on buses that move along their
routes to broaden the sensing areas. Yin et al. [26] propose
a task allocation scheme to maximize total rationality, where
the rationality is measured by route distance, task similarity,
and task priority.

On the other hand, time-sensitive tasks come with stringent
temporal requirements, necessitating the completion of tasks
within specific time constraints. This is particularly relevant in
scenarios such as real-time traffic monitoring and emergency
response. For instance, Wang et al. [27] propose a time-
sensitive task allocation approach, enabling the planning of
task execution paths for participants. Cai et al. [28] delve
into the complex problem of sensing task assignment and
scheduling with multi-dimensional task diversity. They put
forward a distributed auction scheme in which each task owner
can autonomously process the auction procedure. Lai et al.
[29] devise a duration-sensitive task allocation scheme aimed
at maximizing the task completion ratio while adhering to task
duration constraints. Dai et al. [30] design a decentralized
deep reinforcement learning model tailored for delay-sensitive
and energy-efficient UAV crowdsensing.

In contrast to the previous research, we introduce a dis-
tributed task selection approach that takes into account both
time-tolerant and time-sensitive task scenarios. This approach
guarantees task completion without requiring users to deviate
from their daily routes.

B. Potential Game Applications

Recently, a lot of studies have utilized the potential game
theory to derive distributed game-theoretical decisions and
achieve the Nash equilibria. Chen et al. [31] propose a social
recommendation-aided DSA framework, which exploits the
temporal and spatial correlations for spectrum utilization and
potential game theory to achieve a Nash equilibrium. Fabiani
et al. [32] formulate the multi-vehicle driving coordination
problem as a mixed-integer potential game and find an equi-
librium solution. Hong et al. [33] formulate the computation
offloading problem as a potential game in which the mobile
devices make the offloading decisions in a distributed manner.
He et al. [34] formulate the edge user allocation problem as a
potential game and propose a decentralized algorithm to serve
the maximum number of users with minimum overall system
cost. Cheung et al. [16] investigate a distributed task selection
problem in mobile crowdsensing and propose a distributed po-
tential game algorithm that helps the users determine their task
selections and mobility plans. Liu et al. [35] develop a poten-
tial game-based decision-making framework for autonomous
driving, which provides theoretical guarantees for the existence
of Nash equilibria. Varga et al. [36] propose a potential game
approach for the design of a limited information-shared control
system. The method is applied to the control of a large vehicle
manipulator system.

However, in the above research, the corresponding potential
game does not take the diverse requirements of both the
platform and mobile users into consideration. In this paper, we
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Fig. 2: An illustrative example of the influence of φ and θ.

propose a distributed game-theoretical approach, where both
the platform and mobile users can achieve different purposes
by adjusting the parameters of the profit function.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Route Navigation for Time-Tolerant Tasks

We first introduce the route navigation model for time-
tolerant tasks. We assume that there are a sufficient number
of users to cover most of the tasks. When a user reports the
initial location and destination to the platform, the platform
recommends available routes to the user. Additionally, these
routes potentially cover various tasks. Users can review the
recommended routes and see which tasks these routes cover
using their smartphones.

Let U = {1, 2, · · · ,M} be the set of users and L =
{1, 2, · · · , N} be the set of tasks covered by the routes of
users. Each user i will receive a set of available routes from the
platform, denoted as Ri, and each route r ∈ Ri may cover a
set of MCS tasks, denoted as Lr. Each task k ∈ L is associated
with a reward wk, which is defined as follows:

wk(x) = ak + µk · lnx, (1)

where x is the number of users performing task k, ak signifies
an initial reward of task k, and µk acts as a weight parameter
quantifying the increased degree in reward with the growing
number of users. This parameter is constrained within the
range of [0,1]. The task requester of task k could set initial
reward ak and weight parameter µk according to its own
demand. Given that task completion quality is enhanced by
accumulating results from multiple users [37], we design the
reward function as follows: As more users engage in the
sensing task, there is a slight increment in the task reward.
This aligns with real-world practical scenarios.

In the context of strategy profile for all users s = (si, s−i),
where si represents the decision of user i and s−i represents
the decisions of all users except user i. More specifically, the
route selection decision si of user i in the time-tolerant task
scenario is to select a route r from the recommended route set
Ri, as a user can perform all the tasks on the selected route.
The profit of user i under this strategy profile s is expressed
as follows:

Pi(s)=αi·
∑

k∈Lsi

wk(nk(s))/nk(s)−βi · d(si)−γi·b(si), (2)

where αi, βi, γi represent user weight parameters that gauge
a user’s preferences. Users have the flexibility to adjust these
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TABLE I: Main notations

Symbol Meaning
U ,L the sets of mobile users, MCS tasks.
Lr the set of tasks that is covered by route r
s, si, s−i the strategy profile for route selection, the route

selection decision of user i, and the strategies of
users except user i.

L, Li, L−i the task selection strategy profile, the task selec-
tion decision of user i, and the strategies of users
except user i.

Ri the recommended route set of user i.
Pi(s) the profit of user i under the strategy profile s.
nk(s) the number of users performing the task k under

strategy profile s.
wk(x) the reward of task k when the number of users

performing the task is x.
d(si), b(si) the cost incurred by detour distance, and the

congestion level under strategy si.
h(si), c(si) the detour distance, and the congestion level

under strategy si.
αi, βi, γi the weight parameters controlled by user i.
ϕ, θ the weight parameters controlled by the platform.
φ(s) the potential function.

parameters to align with their preferences. emin < αi, βi,
γi < emax, where emin > 0. For example, if user i prefers a
high reward, it can increase the value of αi. We use nk(s) to
represent the number of users performing task k under strategy
profile s. d(si) is the cost incurred when traveling the detour
distance of si, which is defined as follows:

d(si) = ϕ · h(si), (3)

where h(si) is the detour distance of the selected route si
compared to the shortest route between the initial location
and the destination. ϕ is a weight parameter adjusted by the
platform, where 0 < ϕ < 1. b(si) in Eq. (2) is the cost incurred
by the congestion on the route si, which is defined as follows:

b(si) = θ · c(si), (4)

where c(si) is used to measure the congestion level of the
selected route si. θ is a weight parameter controlled by the
platform and 0 < θ < 1. The number of mobile users
participating in crowdsensing on a certain route is usually far
less than the considerable traffic flow on the road. Changes
in user route selection strategies have a negligible impact on
the congestion level of a road and can be ignored. Hence, we
assume that the congestion level of route si selected by user i
is irrelevant to other users’ route selection decisions. In other
words, we assume the congestion level of a route is the same
under different route strategy profiles.

By adjusting the values of ϕ and θ, the platform can achieve
different task allocation purposes. As shown in Fig. 2, we
consider a simple case to demonstrate the influence of the
weight parameters ϕ and θ, where each route only contains
one task and the two users are at the same initial location.
We observe the number of covered tasks, the detour distance
and the congestion level with the change of ϕ and θ. The
platform can decrease the values of both ϕ and θ to maximize
the number of tasks covered by users. Moreover, by increasing

the values of ϕ and θ, the platform can guide users to select
the routes with short detour distance and low congestion
level, respectively. Similarly, user i can also achieve individual
preference by adjusting the values of αi, βi, γi in Eq. (2). In
other words, when the platform has set the system parameters
(ϕ and θ), user i can adjust its user weight parameters (αi,
βi and γi) under these settings of the platform to achieve the
individual preference.

B. NP-hardness of The Centralized Route Navigation Problem

We first consider the centralized optimization problem of
finding a solution to maximize the total profit of all users.
Mathematically, given strategy profile s = (si, s−i), the
problem can be formulated as follows:

max
s

∑
i∈U

Pi(s),

subject to si ∈ Ri,∀i ∈ U . (5)

Then, we try to prove that finding the optimal solution to the
formulated centralized optimization problem is quite difficult,
as shown in Theorem 1.

Theorem 1. The centralized route navigation problem is NP-
hard.

Proof. The main idea is to reduce the maximum set cover
problem, which is NP-complete [38], to a special case of our
centralized route navigation problem.

First, we provide a definition of the maximum set cover
problem. Given a universal set E of n elements, a collection
of subsets of E, and an integer h, select h subsets so as to
maximize the number of covered elements.

Then, we construct a special case of our centralized profit
maximization problem with the following restrictions. Let
µk = 0, ak = a,∀k ∈ L; that is, the reward of all tasks is
a fixed value and exactly the same. Moreover, all users have
the same recommended route set. Finally, set ϕ, θ to zero, and
set αi = 1,∀i ∈ U . Correspondingly, Pi(s)=

∑
k∈Lsi

a
nk(s) .

In the constructed special case, each user selects only one
route. Consequently, the total number of selected routes is
equivalent to the number of users. Since all tasks offer the
same reward, we can maximize the total profit by selecting
routes that cover the maximum number of tasks. These tasks
can be viewed as elements in a maximum set cover problem.
Each recommended route covers a subset of tasks, which
directly corresponds to a subset of elements in the maximum
set cover problem. As a result, the maximum set cover problem
reduces to a special case of the centralized maximization
problem, and this problem is NP-hard.

According to the proof of Theorem 1, finding an optimal
solution to our problem in a centralized manner is extremely
difficult. Therefore, we turn to consider a distributed mecha-
nism with low computational complexity. The idea that comes
to mind is the application of game theory in distributed sce-
narios, which can lead to an equilibrium state. This inspiration
motivates us to formulate the route navigation problem as a
multi-user route navigation game.
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C. Potential Game Formulation

To investigate the existence of Nash equilibrium, we try to
formulate the multi-user route navigation game as a weighted
potential game. Before the description about the potential
game formulation, we first introduce some definitions.

Definition 1. (Better and best response update) For a strategy
profile s = (si, s−i), in the better response update, user i
changes the strategy from si ∈ Ri to s′i ∈ Ri, which can lead
to an increase of its profit, i.e., Pi(s′i, s−i) > Pi(si, s−i). The
best response update is a special type of the better response
update. Each user i ∈ U will select a new strategy s′i, which
maximizes the profit among all better response updates.

Definition 2. (Nash equilibrium) In the multi-user route
navigation game, a strategy profile ŝ = (ŝ1, · · · , ŝM ) is a
Nash equilibrium if and only if

Pi(ŝi, ŝ−i) = max
si∈Ri

Pi(si, ŝ−i) ∀i ∈ U . (6)

It is obvious that no user can improve the profit by altering
the strategy unilaterally in a Nash equilibrium.

Definition 3. (Weighted potential game) A game is defined as
a weighted potential game if and only if there exists a potential
function φ(s) such that ∀i ∈ U ,∀si,∀s′i∈Ri, ∀s−i∈

∏
j 6=iRj:

Pi(si, s−i)−Pi(s′i, s−i) = wi(φ(si, s−i)− φ(s′i, s−i)), (7)

where (wi)i∈U constitutes a vector of positive numbers.

The potential game has two significant properties: (1) Nash
equilibrium existence: there always exists at least one Nash
equilibrium in the potential game. (2) Finite improvement
property: the potential game always converges to a Nash
equilibrium in a finite number of decision steps when taking
better/best response updates, irrespective of the initial strategy
profile or the users’ updating order.

Then, Theorem 2 shows that the multi-user route navigation
game is a weighted potential game.

Theorem 2. The multi-user route navigation game is a
weighted potential game and has a Nash equilibrium and the
finite improvement property.

Proof. We first construct the potential function as follows:

φ(s)=
∑
k∈L

nk(s)∑
q=1

wk(q)

q
−
∑
i∈U

βi
αi
d(si)−

∑
i∈U

γi
αi
b(si). (8)

We define the original strategy profile as s=(si, s−i) and
a new strategy profile s′=(s′i, s−i) after user i changes the
decision from si to s′i. We can divide the set of tasks L into
four non-overlapping portions: L1={k : k ∈ Lsi , k ∈ Ls′i},
L2={k : k ∈ Lsi , k /∈ Ls′i}, L3={k : k /∈ Lsi , k ∈ Ls′i}, and
L4={k : k /∈ Lsi , k /∈ Ls′i}. Obviously, L = L1∪L2∪L3∪L4.

Then, we let F be defined as follows:

F=
∑
i∈U

βi
αi
d(s′i)+

∑
i∈U

γi
αi
b(s′i)−

∑
i∈U

βi
αi
d(si)−

∑
i∈U

γi
αi
b(si). (9)

Furthermore, we have

φ(s)−φ(s′)

=
∑

k∈L

∑nk(s)

q=1

wk(q)

q
−
∑

k∈L

∑nk(s′)

q=1

wk(q)

q
+ F

=
∑

k∈L1

(
∑nk(s)

q=1

wk(q)

q
−
∑nk(s′)

q=1

wk(q)

q
)

+
∑

k∈L2

(
∑nk(s)

q=1

wk(q)

q
−
∑nk(s′)

q=1

wk(q)

q
)

+
∑

k∈L3

(
∑nk(s)

q=1

wk(q)

q
−
∑nk(s′)

q=1

wk(q)

q
)

+
∑

k∈L4

(
∑nk(s)

q=1

wk(q)

q
−
∑nk(s′)

q=1

wk(q)

q
) + F (10)

Since user i switches from route si to route s′i, we have the
following situations:

nk(s)− nk(s′) =


1, k ∈ L2;

− 1, k ∈ L3;

0 otherwise.
(11)

Hence, according to Eq. (11), Eq. (10) can be derived as
follows

φ(s)−φ(s′)

=
∑

k∈L1

(
wk(nk(s))
nk(s)

−
wk(nk(s′))
nk(s′)

)

+

∑
k∈L2

wk(nk(s))
nk(s)

−
∑

k∈L3

wk(nk(s′))
nk(s′)

+F

=
∑

k∈L1∪L2

wk(nk(s))
nk(s)

−
∑

k∈L1∪L3

wk(nk(s′))
nk(s′)

+F. (12)

Since Lsi = L1 ∪ L2 and Ls′i = L1 ∪ L3 we have

φ(s)−φ(s′)

=
∑

k∈Lsi

wk(nk(s))
nk(s)

−
∑

k∈Ls′
i

wk(nk(s′))
nk(s′)

+F. (13)

Finally, according to Eq. (13), the following equation holds.

Pi(s)− Pi(s′) = αi(φ(s)− φ(s′)). (14)

Hence, Theorem 2 is proven.

According to Theorem 2, the multi-user route navigation
game is a weighted potential game, in which the change in the
profit of each user can be mapped to the potential function.
Each user’s decision update in each decision slot results in
an increase in their profit function, consequently raising the
potential function value. When the potential function value
reaches its maximum, a Nash equilibrium is achieved.

D. Time-Sensitive Task Selection Model

We introduce time-sensitive task selection in this subsection.
Time-sensitive tasks come with strict temporal requirements,
mandating that the task be completed within specific time
constraints. We denote tk as the start time and gk as the task
duration of task k, respectively. Therefore, the estimated end
time ek = tk + gk. A user i starts from an origin at time
ti and should reach the destination by time ei. We denote tri
as the time spent by user i traveling to the destination via
route r without performing any tasks. Therefore, the spare
time, denoted as zri , for user i on route r is calculated as
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zri = ei − ti − tri . In other words, zri represents the spare
time available to user i for task execution when selecting
route r. Due to the temporal conflicts among tasks with
different time constraints, a user may be unable to perform
all the tasks on the selected route. Consequently, different
from the time-tolerant task scenario, user i’s decision includes
simultaneously selecting a route si ∈ Ri and choosing the
tasks to be performed along that route, denoted as (si, Li),
where Li represents the set of selected tasks on route si.

We represent the strategy profile for all users as (s,L),
where s = (si, s−i) and L = (Li, L−i) denote route decisions
and task decisions for all users, respectively. The profit of user
i under strategy profile (s,L) is expressed as follows:

Pi(s,L)=αi·
∑
k∈Li

wk(nk(s,L))

nk(s,L)
−βi · d(si)−γi·b(si). (15)

Furthermore, we demonstrate that the multi-user task selec-
tion game is also a weighted potential game, as demonstrated
in Theorem 3.

Theorem 3. The multi-user task selection game is a weighted
potential game and has a Nash equilibrium and the finite
improvement property.

Proof. The proof of Theorem 3 can be constructed using a
method similar to that used in proving Theorem 2. Therefore,
we will not provide it here.

Unlike time-tolerant task selection, where users only need
to select routes, users in this context are faced with the dual
challenge of not only choosing a route but also selecting the
tasks along that route. Even after the route selection, they
must further determine the set of tasks on the chosen route
to maximize profit. We have demonstrated that the centralized
route navigation problem is NP-hard in Theorem 1. Then, we
demonstrate that the time-sensitive task selection on a selected
route is also NP-hard, as demonstrated in Theorem 4.

Theorem 4. The time-sensitive task selection problem on a
route is NP-hard.

Proof. The central idea is to reduce the Knapsack Problem
with Conflicts (KPC), known to be NP-complete [38], to a
specific case of our task selection problem.

To begin with, we provide a definition of the KPC problem.
In the KPC problem, there is a knapsack with a fixed capacity
C and a set of items V = {1, · · · , n}, where each item k has
a profit pk and a weight wk. Additionally, there is a conflict
graph G = (V,E), where V represents the set of n items, and
an edge i, j ∈ E signifies that items i and j cannot be placed
into the knapsack simultaneously. The objective in the KPC
problem is to select a subset of non-conflicting items, denoted
as S ⊆ V , in such a way that the total profit of the selected
items is maximized, while ensuring that the total weight does
not exceed the given knapsack capacity C.

Next, we construct a specialized instance of our task se-
lection problem, subject to certain constraints. For a user and
a set of tasks on a route, each task corresponds to an item,
with its task duration reflecting the weight of the item. The
spare time for the user corresponds to the knapsack capacity.

Algorithm 1 Distributed Game-Theoretical Route Navigation
Algorithm for user i ∈ U .

1: Input αi, βi, λi, the initial location and the destination.
2: Receive the recommended routes Ri.
3: Initialize si(0)=r by randomly selecting a route r∈Ri.
4: Report si(0) to the platform.
5: Receive nk for each task k that is covered by si(0).
6: Calculate the profit Pi.
7: Receive d(r) and b(r) for each route r in Ri.
8: repeat for each decision slot t
9: Obtain nk for each task k that is covered by Ri.

10: Compute the best route set 4i(t).
11: if 4i(t) 6= ∅ then
12: Send the request to contend the opportunity for

updating decision.
13: if Win the opportunity then
14: Update the route selection decision si(t) by

selecting a route r ∈ 4i(t).
15: Report si(t) to the platform.
16: else
17: Choose the original decision si(t) = si(t− 1).
18: until The termination message is received.

We create a conflict graph based on temporal conflicts among
tasks. Our objective is to select a subset of non-conflicting
tasks, maximizing the total task profits while ensuring that the
total task duration does not exceed the user’s allotted spare
time duration.

By doing so, we effectively reduce the KPC problem to our
task selection problem on a route, establishing the NP-hardness
of this problem.

According to Theorem 4, the presence of temporal conflicts
among tasks significantly amplifies the problem’s complexity.
To address this challenge, it is imperative that we develop a
distributed game theoretical task selection algorithm for time-
sensitive task selection.

IV. TIME-TOLERANT TASK SELECTION

To reach a Nash equilibrium, we introduce the following
three algorithms: the distributed route navigation algorithm
(Algorithm 1), the information update algorithm (Algorithm
2), and the parallel user update algorithm (Algorithm 3). The
distributed route navigation algorithm runs on each user’s
smartphone, helping each user autonomously select a route
from the recommended route set to maximize their own profits.
More specifically, the algorithm iteratively reaches a Nash
equilibrium by selecting a user to update their route selec-
tion decision in each decision slot. The information update
algorithm runs on the platform, updating and exchanging
information, and selecting users to update their decisions
in each decision slot. To accelerate the convergence of the
algorithm, the parallel user update algorithm is proposed,
allowing multiple users to update their decisions in each
decision slot.
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Algorithm 2 Information Update Algorithm for the platform.

1: Send the recommended route set Ri to the user i ∈ U .
2: Receive si(0) from each user i ∈ U .
3: Calculate nk for each task k ∈ L.
4: Send nk, d(r) and b(r) to the corresponding user.
5: repeat for each decision slot t
6: Receive the request from the users and let U ′ denote

the set of users that send the request.
7: if U ′ 6= ∅ then
8: Select a set of users µ by SUU or PUU algorithm.
9: Inform the users in µ to update the decisions.

10: Receive si(t) from user i ∈ µ and update nk for
each task k ∈ L.

11: until No request is received from the user.
12: Send the termination message to all users.

A. Distributed Route Navigation Algorithm

Theorem 2 guarantees that the multi-user route navigation
game converges to a Nash equilibrium within a finite number
of decision slots. The main idea of the distributed route navi-
gation algorithm is to utilize the finite improvement property
and select a set of mobile users to improve their profits by
updating their route selection decisions in each decision slot.

In the initialization phase (lines 1-7) of Algorithm 1, the
mobile user first inputs the weight parameters of preferences
αi, βi, λi, as well as the initial location and the destination
(line 1). Then, the recommended routes will be sent to the
mobile application (line 2). We use si(t) to represent the
route decision of user i in decision slot t. The algorithm
initializes the route selection decision by randomly selecting
a route from the recommended route set and calculates the
profit (lines 3-6). Finally, the mobile application receives the
detour distance d(r) and congestion level b(r) of each route
r in the recommended route set (line 7).

In the calculation phase (lines 8-18), each user obtains the
information on the number of users performing each task
covered by Ri (line 9). The algorithm then calculates the best
route set 4i(t) (line 10). The best route set is defined as the
set of route decisions that maximize the profit of the user and
can improve the profit compared to the previous decision slot.

If the best route set 4i(t) 6= ∅, which means that the
user can improve the profit by altering the route selection
decision, the user sends a request to the platform for updating
the decision. If the user wins the opportunity to update the
decision, it selects a route from the best route set to update
the current decision. Otherwise, the user will maintain the
decision consistent with the previous decision slot (lines 11-
17). The calculation process repeats until the termination
message is received from the platform (line 18). It is worth
noting that when all the users receive the termination message,
the algorithm converges to a Nash equilibrium, and the mobile
users achieve mutually satisfactory decisions.

B. Information Update Algorithm

The information update algorithm updates the number of
users that perform each task and interacts with the mobile

Algorithm 3 Parallel User Update Algorithm.

Input: U ′, τ , B.
1: Initialize µ = ∅, σ = ∅.
2: Calculate δi = τi

|Bi| ,∀i ∈ U
′.

3: Sort i ∈ U ′ in a non-ascending order of δi.
4: for all i ∈ U ′ do
5: if σ ∩Bi = ∅ then µ← µ ∪ i, σ ← σ ∪Bi.

return µ.

users, such as exchanging the information and selecting a set
of users to update the decision in each decision slot.

As shown in Algorithm 2, in the initialization phase (lines
1-4), the information update algorithm first sends the recom-
mended routes to each user (line 1). After receiving the initial
decisions from all the users (line 2), the algorithm calculates
the number of users (nk) that perform each task k ∈ L (line
3). Finally, the information that is required to calculate the
profit is sent to the user (line 4).

Next, in each decision slot, the platform receives the re-
quests from the users (line 6). Then, the platform utilizes
Single User Update algorithm (SUU) or Parallel User Update
algorithm (PUU) to determine the set of users to update their
decisions and informs the selected users to update the decision
(lines 8-9). When receiving the updated decision from the user,
the algorithm updates the number of participants in each task
k ∈ L (line 10). When no request is received from the users in
a decision slot, the algorithm sends the termination messages
to all users and the information update algorithm terminates
(lines 11-12).

Furthermore, we introduce the above two user update al-
gorithms, SUU and PUU. SUU algorithm randomly selects
only one user from the set of users that send the requests
to the platform and allows the user to update the decision
in each decision slot. To decrease the convergence time, we
further propose PUU algorithm, which is inspired by the idea
that some users whose selected routes cover no overlapping
tasks could concurrently update their route selections in the
same decision slot. This leads to a larger increase in the
potential function value in each decision slot and reduces the
convergence time.

The detailed description is as follows. As shown in Al-
gorithm 3, the inputs are U ′, τ and B. Specifically, U ′ is
the set of users sending the requests to update the decisions,
τ = {τi,∀i ∈ U ′} and B = {Bi,∀i ∈ U ′}. Let si denote
the original strategy of user i and s′i denote a new strategy
that maximizes the profit in the best route set. We use Bi
to denote the union set of tasks covered by si and s′i, and
τi = (Pi(s

′
i, s−i) − Pi(si, s−i))/αi. For each user i ∈ U ′, it

sends Bi and τi to the platform. PUU algorithm first calculates
δi for each user i ∈ U ′ (line 2) and sorts the users in U ′
in a non-ascending order of δi (line 3). Then, the algorithm
greedily chooses the set of users µ, which maximizes the sum
of τi and satisfies the constraint that the covered task set Bi
of i ∈ µ does not intersect with each other (lines 4-5). After
inspecting all the users in U ′, the algorithm returns the user set
µ and informs the users in µ to update decisions concurrently.∑

i∈µ τi corresponds to the increase of the potential function
value. PUU algorithm greedily selects a set of users with the



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 8

objective of maximizing the value of
∑
i∈µ τi in each decision

slot. We then analyze the performance of PUU algorithm
theoretically. Let µ̂ denote the set of selected users to update
the route decisions of the optimal solution, which maximizes
the value of

∑
i∈µ τi. Let τ =

∑
i∈µ τi and τ̂ =

∑
i∈µ̂ τi.

Theorem 5 analyzes the performance bound of PUU algorithm.

Theorem 5. The performance bound between the PUU al-
gorithm and the optimal solution maximizing the value of∑
i∈µ τi satisfies the following relation:

τ/τ̂ ≥ |Bi′ |/(|µ̂| ·Bmax), (16)

where i′ = arg maxi∈µ δi, Bmax = maxi∈µ̂ |Bi|, and |µ̂|
represents the number of selected users needed to update the
decisions in the optimal solution.

Proof. The PUU algorithm first selects the user that has the
maximum value of δi in U ′, δi′ ≥ τi/|Bi| ∀i ∈ µ̂. Hence, the
following equation holds.

|µ̂|τi′/|Bi′ | ≥
∑

i∈µ̂
τi/|Bi|. (17)

Since Bmax = maxi∈µ̂ |Bi|, we get Eq. (18).∑
i∈µ̂

τi/|Bi| ≥ τ̂ /Bmax. (18)

There exists τ ≥ τi′ . According to Eq. (17) and Eq. (18),
we get the following equation by rearranging the items.

τ/τ̂ ≥ |Bi′ |/(|µ̂| ·Bmax). (19)

Hence, Theorem 5 is proved.

Theorem 5 demonstrates a theoretical guarantee of the
performance of PUU algorithm. It is obvious that the increase
of the potential function value achieved by PUU algorithm is
not lower than τ̂ ·|Bi′ |/(|µ̂|·Bmax), even in the worst case. As
shown in Theorem 2, the change in the profit of each user can
be mapped into the potential function. The faster the potential
function value grows, the faster the algorithm converges.
Therefore, PUU algorithm speeds up the convergence for a
Nash equilibrium. As shown in Theorem 2, the change in the
profit of each user can be mapped to the potential function.
The faster the potential function value grows, the faster the
algorithm converges. Therefore, Algorithm 3 speeds up the
convergence for a Nash equilibrium.

The above algorithms proceed in an iterative way. In each
decision slot, Algorithm 1 receives the information from the
user and the platform. Then, Algorithm 1 calculates if the
user could update the decision to increase the profit and send
the updating decision request to the platform. Algorithm 2 on
the platform updates the information and selects a user (SUU
algorithm) or a set of users (PUU algorithm, i.e., Algorithm
3) to update the decision. The algorithms will finally converge
to a Nash equilibrium.

The proposed time-tolerant task selection algorithm is a
distributed algorithm from the computation perspective. Most
of the computation load is distributed to users. Each user cal-
culates the profit and makes the decision locally to maximize
a local profit. The centralized platform cannot control users.
It merely selects a random user to update the decision and
transmits the parameters among users.

C. Convergence Analysis

According to Theorem 2, the proposed distributed route
navigation algorithm will converge to a Nash equilibrium
within a finite number of update iterations. We then analyze
the upper bound of the iteration number for convergence. Let
S denote the strategy space of all the users. For ∀k ∈ L,∀s ∈
S, 1 ≤ q ≤ nk(s), let gmin = min{wk(q)/q}, gmax =
max{wk(q)/q}. There exists 0 ≤ d(si) ≤ dmax,∀i ∈ U and
0 ≤ b(si) ≤ bmax,∀i ∈ U . We denote the minimum change
value of the users’ profit when the user updates the decision
as ∆Pmin. For the number of decision slots for convergence,
the following theorem holds.

Theorem 6. The number of decision slots C for convergence
of the distributed route navigation algorithm satisfies the
following equation.

C<
emax

∆Pmin
|U|(|L|(gmax−gmin)+

emax

emin
dmax+

emax

emin
bmax). (20)

Proof. During a decision slot, consider the worst case where
there is only a user i ∈ U who alters the current strategy si
to s′i, which leads to an increase in its profit function, i.e.,
P (si, s−i) < P (s′i, s−i). According to Eq. (8), we have:

φ(s)>|L||U|gmin−|U|emaxdmax/emin−|U|emaxbmax/emin. (21)

φ(s) < |L||U|gmax. (22)

Furthermore, we have:

φ(s′)−φ(s)<|U|(|L|(gmax−gmin)+
emax

emin
dmax+

emax

emin
bmax). (23)

According to Eq. (14), the change of the value of the
potential function is equivalent to the change of a user’s profit
divided by αi. Therefore, for the number of decision slots C
for convergence, we have the following results:

C<
emax

∆Pmin
|U|(|L|(gmax−gmin)+

emax

emin
dmax+

emax

emin
bmax). (24)

Hence, Theorem 6 is proved.

From Theorem 6, to accelerate the convergence time, we can
select a set of users with no overlapping tasks to concurrently
update their route decisions in each decision slot as shown in
Algorithm 3. Since each selected user can increase the profit
by updating the decision in parallel, which leads to an increase
in the value of the potential function, the potential function
reaches the maximum value quickly. Hence, the convergence
time is decreased.

D. Theoretical Analysis

We then analyze the performance of the proposed distributed
route navigation algorithm by analyzing Price of Anarchy
(PoA) [34]. PoA is a metric measured by the ratio of the
total profit of all users in the worst case of Nash equilibrium
to the maximum total profit of the optimal strategy, as defined
in Eq. (25). By analyzing PoA, we quantify the efficiency of
the worst-case Nash equilibrium over the centralized optimal
solution in terms of the total profit. Let S′ be the set of strategy
profiles that can achieve Nash equilibrium and s∗ denote the
centralized optimal strategy.
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PoA = min
s∈S′

∑
i∈U

Pi(s)/
∑

i∈U
Pi(s∗). (25)

We consider a special case of the multi-user route navigation
game with the following restrictions. First, each route only
covers one task, and a task may be covered by several routes.
Second, the recommended route set Ri for each user i ∈ U
contains two parts: r′i, and R, where the task on route r′i is
only covered by r′i and R is a set of routes that covers the same
set of tasks for all users. The common task set covered by R is
denoted as L′. In other words, the task on r′i is only covered by
user i and the tasks in L′ can be covered by all users. Third, the
reward of a task k ∈ L′ is defined as wk = a+lnx, a > 0, and
we do not make any restrictions for the reward of other task
k /∈ L′. Let ki denote the task covered by the route decision
si for user i. Since a route only covers one task, the profit
for each user i is calculated as Pi(s) = wki(nki(s))/nki(s).
Specifically, the profit that user i achieves by selecting route
r′i is denoted as Pi.

Theorem 7. For the multi-user route navigation game, the
PoA metric of the overall profits satisfies that∑

i∈U max{Pi, Pmini }∑
i∈U max{Pi, Pmaxi }

≤ PoA ≤ 1, (26)

where Pmini = a+ln p
p , p = |U|+|L′|−1

|L′| , Pmaxi = a.

Proof. There exists nki(s)=1+
∑
j∈U\{i} I{kj = ki}. I{E}

is an indicator function, where I{E} = 1 if the event E is true
and I{E} = 0 otherwise. In the formulated special case, since
a route only covers one task, the profit of a route decreases
with the growth of the number of users performing the task on
that route. Since no user can increase the profit by changing
the decision unilaterally in Nash equilibrium, considering a
strategy profile s that achieves a Nash equilibrium and user i
selects a route in R, the following equation holds:∑

j∈U\{i}
I{kj = ki} ≤

∑
j∈U\{i}

I{kj = k} ∀k ∈ L′. (27)

Furthermore, we have:

|L′|(
∑

j∈U\{i}
I{kj=ki}) ≤

∑
k∈L′

∑
j∈U\{i}

I{kj=k}. (28)

According to Eq. (28), we substitute and rearrange the
corresponding terms. The following equation holds:∑

j∈U\{i}
I{kj = ki} ≤ (|U| − 1)/|L′|. (29)

Based on Eq. (29), there exists nki(s) ≤ (|U|+|L′|−1)/|L′|.
Furthermore, the following equation holds.

Pi(s) ≥ a+ ln((|U|+ |L′| − 1)/|L′|)
(|U|+ |L′| − 1)/|L′|) . (30)

We use p to denote |U|+|L
′|−1

|L′| and Pmini to denote a+ln p
p .

As mentioned above, if user i selects r′i, the profit is Pi. Hence,
Pi(s) ≥ max{Pi, Pmini }.

On the other hand, due to the fact that nki(s) ≥ 1, there
exists Pi(s) ≤ a. Let Pmaxi = a. Furthermore, we can
conclude that Pi(s∗) ≤ max{Pi, Pmaxi }.

In conclusion, according to the above description, the fol-
lowing equation holds:

Algorithm 4 FindTask Algorithm.

Input: ρ, ξ, Ls, F , vl, B
Output: B

1: if ρ > vl then
2: vl ← ρ;
3: B ← Ls;
4: vu ← ρ;
5: c← ξ;
6: k ← Ω0(F );
7: while c < zri and k ≤ Ω−1(F ) do
8: if c+ ξk ≤ zri then
9: vu ← ρk + vu;

10: c← ξk + c;
11: k ← Ωk(F );
12: else
13: vu ← vu + (zri − c) · (ρk/ξk);
14: c← zri ;
15: if vu ≤ vl then return B;
16: k ← Ω0(F );
17: while ρ+(zri −ξ)· (ρk/ξk)> vl and k ≤ Ω−1(F ) do
18: j ← Ωk(F );
19: F ← F \ {k};
20: if ξ + ξk ≤ zri then
21: L′s ← Ls ∪ {k};
22: F̂ ← F \ Ck;
23: B ← FindTask(ρ+ ρk, ξ, L

′
s, F̂ , vl, B);

24: k ← j;
25: return B.

∑
i∈U max{Pi, Pmini }∑
i∈U max{Pi, Pmaxi }

≤ PoA ≤ 1. (31)

V. TIME-SENSITIVE TASK SELECTION

In this section, we introduce the distributed task selection
algorithm for the time-sensitive task scenario. In the time-
tolerant task scenario, users update their decisions by selecting
a route in each decision slot. When it comes to calculating
the profit for a chosen route, users simply add up the shared
rewards of all tasks along that route. While in the time-
sensitive task scenario, the strict temporal constraints introduce
temporal conflicts among tasks on a route. Here, users face the
challenge of simultaneously selecting a route and choosing
a set of tasks that are conflict-free along that chosen route.
The objective remains consistent: maximize the profit while
updating the decision. When calculating the profit for a route,
users must carefully select a set of tasks that do not conflict
with one another in order to maximize the profit on the route.

For the tasks included in a route, we must first perform
a task filtering operation to remove tasks that do not meet
one of the following two conditions: (1) the task has a start
time earlier than the user’s start time; (2) the task has an end
time later than the user’s deadline. The user will be unable to
complete a task that satisfies these conditions.
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Algorithm 5 Distributed Game-Theoretical Task Selection
Algorithm for user i ∈ U .

1: Input αi, βi, λi, the initial location and the destination.
2: Receive the recommended routes Ri and task set Li.
3: Initialize si(0)=r by randomly selecting a route r∈Ri.
4: Calculate the optimal task set Li(0) on route si(0) using

Algorithm 4.
5: Report (si(0), Li(0)) to the platform.
6: Receive nk for each task k that is in Li(0).
7: Calculate the profit Pi.
8: Receive d(r) and b(r) for each route r in Ri.
9: repeat for each decision slot t

10: Obtain nk for each task k that is covered by Ri.
11: Calculate the optimal task set and the corresponding

profit for each route r in Ri using Algorithm 4.
12: Obtain the best route set 4i(t).
13: if 4i(t) 6= ∅ then
14: Send the request to contest the opportunity to

update the decision.
15: if Win the opportunity then
16: Update the current task selection decision

(si(t), Li(t)) = (r, Lr) by selecting a route r ∈ 4i(t).
17: Report (si(t), Li(t)) to the platform.
18: else
19: Choose the original decision (si(t), Li(t)) =

(si(t− 1), Li(t− 1)).
20: until The termination message is received.

In order to select a set of tasks on a route without temporal
conflicts and maximize the profit when updating the decisions,
we then devise FindTask Algorithm to help users make the task
selection decision. The algorithm is demonstrated in Algorithm
4. The potential solution space can be constructed as a tree
structure. The primary goal is to systematically explore the
search space by traversing the tree structure in a depth-first
manner. Each leaf node and its parent nodes in the tree
correspond to a feasible solution. At each node in the search
tree, the algorithm calculates a lower bound and an upper
bound for the profit function value. As it explores the tree, it
uses bounds to prune branches of the tree that are guaranteed
not to lead to optimal solutions, making it more efficient in
finding the best solution within the search space.

For each task k ∈ Lr on route r, we define a set of tasks
Ck that are in conflict with task k. At any node of the search
tree, we denote Ls as the set of selected tasks in the current
partial solution. The set F represents candidate tasks that are
not currently inspected and do not conflict with tasks in Ls. We
denote ρk as the profit that the user could receive if it performs
task k and ξk as the time duration required to perform task k.
We sort the tasks in non-decreasing order of the ratio ρk/ξk.
Ωk(F ) represents the task following task k in the sorted list
of F . More specifically, Ω0(F ) represents the first task in F
and Ω−1(F ) represents the last task in F .

Algorithm 4 uses a branch and bound way to select a set of
tasks from task set Lr on route r. The inputs of Algorithm 4
include the following variables: the total profit in the current
partial solution ρ, the total time duration of the current partial

solution ξ, the selected tasks in the current partial solution Ls,
the candidate task set F , the current lower bound vl, and the
current optimal solution B.

Algorithm 4 proceeds in a recursive way and initializes
by calling FindTask(0, 0,∅,Lr, 0,∅). If the current total
profit ρ is greater than the current lower bound vl (i.e., the
current optimal profit), the algorithm updates the current lower
bound and the current optimal solution (lines 1-3). Then, the
algorithm updates the upper bound vu based on the current
node (lines 4-14). More specifically, the upper bound vu is
calculated at each node of the tree by solving the continuous
relaxation of the task selection problem ignoring temporal
conflicts:

vu = max {
∑

k∈F
ρkxk +

∑
k∈Ls

ρk},

subject to
∑

k∈F
ξkxk ≤ ξ −

∑
k∈Ls

ξk k ∈ F,

0 ≤ xk ≤ 1 k ∈ F. (32)

Problem (32) can be solved in O(n) time using a greedy
algorithm, as the tasks in F are sorted in a non-decreasing
order of the ratio ρk/ξk [39]. If the current upper bound
vu is less than or equal to the current lower bound vl, the
algorithm prunes the node, ending the recursive function (line
15). Otherwise, the algorithm branches the node in a depth-
first search manner. More specifically, it first extends the child
node k, which is sorted first in F , and removes it from F .
After exploring all branches of this child node, the algorithm
continues to extend the node following k in the sorted list
of F using a depth-first search approach (lines 16-24). The
algorithm terminates when all branches have been explored
and returns the optimal selected task set B (line 25).

Finally, we introduce the distributed time-sensitive task se-
lection algorithm (i.e., Algorithm 5) that integrates Algorithm
4. Similar to Algorithm 1, the algorithm first initializes the
parameters and the solution (lines 1-8). Each user calculates
their best decision and competes for the opportunity to update
the decision in each decision slot (lines 9-20). Different from
Algorithm 1, user i calculates the optimal task set for each
route in the recommended route set Ri using Algorithm
4 and obtains the best route set 4i(t) (lines 11-12). The
calculation process repeats until the termination message is
received from the platform (line 20), indicating that the algo-
rithm has converged to a Nash equilibrium. The information
update algorithm is similar to Algorithm 2, and we omit the
corresponding description for the sake of brevity.

The main idea of the time-sensitive task selection algorithm
is similar to that in the time-tolerant scenario. The main dif-
ference between the time-tolerant task selection and the time-
sensitive task selection exists in the process of calculating the
best decision. Algorithm 4 selects a set of tasks without tempo-
ral conflicts that maximizes the profit for a route. Algorithm
5 utilizes Algorithm 4 to calculate the optimal task set and
the corresponding profit for each route in the recommended
route set. Conversely, in the time-tolerant scenario, Algorithm
1 simply adds up the shared rewards of all tasks on a route
and selects the route with the maximum profit.
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Fig. 3: User profit vs. decision slot.
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Fig. 4: Decision slot vs. user number.

TABLE II: Simulation Parameters

Parameters Value
Route number recommended to a user 1∼5
Original reward of a task ak 10∼20
Parameter measuring reward increment µk 0∼1
User weight parameters αi, βi and γi 0.1∼0.9
System weight parameters ϕ, θ 0.1∼0.8
Number of repeated simulations 500

VI. PERFORMANCE EVALUATION

A. Trace-Based Sets

We use three widely-used real-world data sets to evaluate
the proposed algorithm. Shanghai [40] contains GPS trace
data of taxis collected from August 2006 to October 2006
in Shanghai, China. We select 200 traces from a single day.
Roma [41] contains GPS information from 320 taxis collected
over 30 days in Rome, Italy. We select 150 traces in the city
center. Epfl [42] consists of mobility data from 500 taxi cabs
collected over 30 days in the San Francisco Bay Area, USA.
From this dataset, we select 200 traces, each collected during
a one-day period.

We extract the origin and destination from the traces and
utilize the Google Maps API to generate a recommended route
set for each origin-destination pair. The tasks are randomly
generated with rewards and each recommended route may
cover some tasks. The detour distance for each route is
calculated as the additional distance compared to the shortest
route, and the congestion level is calculated by the velocity
of the vehicles on the route. The simulation parameters are
shown in Table II.

B. Comparison Algorithms

We use the following algorithms in the simulations.
• Distributed Game-theoretical Route Naviga-

tion(DGRN): The proposed route navigation algorithm
for the time-tolerant task scenario uses the SUU
algorithm to randomly select a user for decision updates.

20 40 60 80 100
5

10
15
20
25
30
35
40
45

D
ec

is
io

n 
sl

ot
s

Task number

 DGRN
 BRUN
 BUAU
 BATS
 MUUN

(a) Shanghai

20 40 60 80 100
4
8

12
16
20
24
28
32

D
ec

is
io

n 
sl

ot
s

Task number

 DGRN
 BRUN
 BUAU
 BATS
 MUUN

(b) Roma

20 40 60 80 100
0
5

10
15
20
25
30
35

D
ec

is
io

n 
sl

ot
s

Task number

 DGRN
 BRUN
 BUAU
 BATS
 MUUN

(c) Epfl

Fig. 5: Decision slot vs. task number.
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Fig. 6: Potential function and total profit vs. decision slot.

TABLE III: The selected user number vs. overlap ratio.

Total task # 50 60 70 80 90
Overlap ratio 0.526 0.531 0.532 0.536 0.538

Selected user # 2.013 1.978 1.842 1.751 1.701

• Multi-User Update Navigation (MUUN): The proposed
algorithm uses the PUU algorithm to select a set of
users from those who send update requests, enabling the
selected users to concurrently update their route decisions
by choosing the routes that maximize their profits.

• Better Response Update Navigation (BRUN): BRUN
randomly selects a user from the set of users who send
requests and allows them to choose a route better than
the current one in each decision slot.

• Best Update of All Users (BUAU): BUAU inspects all
users and selects the user that maximizes the potential
function’s value to update the decision.

• Bayesian Asynchronous Task Selection (BATS) [16]:
We adapt the task selection approach from the existing
research [16] to our scenario.

• Centralized Optimal Route Navigation (CORN): The
centralized optimal approach to maximize the total profit
of all users.

• Random Route Navigation (RRN): Each user randomly
selects a route from the recommended route set.

• Distributed Game-theoretical Task Selection (DGTS):
The proposed task selection algorithm for the time-
sensitive task scenario utilizes the PUU algorithm, en-
abling multiple users to update their decisions in parallel.

• Greedy Task Selection (GTS) [26]: We adapt the greedy
task allocation approach from [26] to the time-sensitive
task scenario. More specifically, each user selects a set
of tasks without temporal conflicts in a non-decreasing
order of the profit-to-time-duration ratio on a route.

C. Numerical Results of Time-Tolerant Task Selection

1) Convergence for Nash equilibrium: We initially validate
the convergence of the proposed distributed algorithm, as
illustrated in Fig. 3. Specifically, we randomly select 15 users
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Fig. 7: Total profit vs. user number.
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Fig. 8: Coverage vs. user number.

from each dataset and observe the dynamics of profits over 20
decision slots. It becomes evident that the profit of each user
fluctuates with the decision updates in the initial phases but
eventually converges to a stable point, which corresponds to
the Nash equilibrium of the multi-user game. It’s important to
note that in this process, some users’ profits may decrease due
to the decision updates made by other users. Since the reward
for a task is equally shared among the participants, when a
user selects a particular route, the profits of all users involved
in performing the task on that route decrease.

In Fig. 4, we investigate the number of decision slots
required for convergence as the number of users changes. The
simulation results reveal the following ranking of decision
slots: MUUN<BUAU<DGRN<BRUN<BATS. The reason
behind this order is that MUUN selects multiple users who
update their decisions in parallel, while BUAU selects only one
user who maximizes the potential function in each decision
slot. Consequently, MUUN reaches the maximum value as
quickly as possible. DGRN and BRUN randomly select a
user to update the decision using the best and better response
update manner, respectively. Therefore, DGRN converges to
equilibrium slightly faster than BRUN. In the case of BATS,
users update their decisions sequentially to maximize profit in
each decision slot. In some decision slots, some users cannot
increase their profits but still update their decisions, which
results in an increased number of decision slots required for
convergence.

In Fig. 5, we investigate the number of decision slots
required for convergence as the number of tasks changes. The
simulation results reveal the following ranking of decision
slots: MUUN<BUAU<DGRN<BRUN<BATS. The reason
for this ranking is the same as the description in Fig. 4. With
the increase in the number of tasks, the number of decision
slots shows a slight increase. This is because, as the number of
tasks grows, users are more likely to overlap in covering the
same tasks. Consequently, the route decisions of users become
more intertwined, and it takes more decision slots to reach a
Nash equilibrium state.

In Fig. 6, we observe the dynamics of the potential func-

20 40 60 80 100
0
5

10
15
20
25
30

Av
er

ag
e r

ew
ar

d

Task number

 DGRN
 BATS
 RRN

(a) Shanghai

20 40 60 80 100
0

5

10

15

20

Av
er

ag
e r

ew
ar

d

Task number

 DGRN
 BATS
 RRN

(b) Roma

20 40 60 80 100
0
5

10
15
20
25

Av
er

ag
e r

ew
ar

d

Task number

 DGRN
 BATS
 RRN

(c) Epfl

Fig. 9: Average reward vs. task number.
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Fig. 10: Jain’s fairness index vs. user number.

tion’s value and the total profit of all users as the decision
slots change. We can observe that the potential function’s
value initially increases and eventually converges to a stable
state, which aligns with the theoretical analysis. The total profit
generally increases as the number of decision slots grows, with
some fluctuations. This occurs because in the multi-user game,
each user seeks to maximize their own profit rather than the
total profit, and a user’s decision update may sometimes reduce
the profits of other users. Hence, there may be occasional
decreases in the total profit.

In Table. III, we analyze the selected number of users
for decision updates in MUUN as the overlap ratio changes.
The overlap ratio is defined as the ratio between the number
of tasks with multiple participants and the total number of
tasks. Specifically, we vary the total number of tasks from 50
to 90 to manipulate the overlap ratio and then observe the
average number of selected users across all decision slots. We
conduct the simulation on the Shanghai dataset and repeat the
simulation 500 times. As the number of tasks increases, more
routes intersect with each other at certain task locations. Since
MUUN selects users whose chosen routes do not intersect with
others at these task locations, the average number of selected
users decreases as the overlap ratio increases.

2) Profit, coverage, fairness and reward: As shown in
Fig. 7, we examine the trend of total profit as the number
of users increases, conducting the simulations 500 times.
Total profit is calculated as the sum of the profit function
values for all users. The ranking of total profit is as follows:
RRN<DGRN<CORN. DGRN, which maximizes each user’s
profit in an equilibrium state but doesn’t prioritize total profit,
yields slightly lower total profit than CORN.

As shown in Fig. 8, we investigate task coverage as the
number of users grows. The simulation is repeated 500 times.
Task coverage is calculated as the ratio between the number
of covered tasks and the total number of tasks. The coverage
ranks as follows: RRN<BATS<DGRN, as DGRN can adjust
the settings to increase task coverage.

As shown in Fig. 9, we investigate the trend of the average
reward as the number of tasks increases. The average reward
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Fig. 11: Average reward vs. task number and user number.

TABLE IV: Comparison between DGRN and CORN.

User # DGRN CORN Ratio Bound
9 65 65 1 0.717
10 78 81 0.963 0.688
11 87 89 0.977 0.753
12 94 97 0.969 0.809
13 109 110 0.990 0.785
14 115 116 0.991 0.876

is defined as the total reward of all users divided by the
number of users. We repeat the simulations 500 times, and
the simulation results rank as follows: RRN<BATS<DGRN.
It is evident that the average reward increases with the growth
of the number of tasks, as users tend to perform more tasks
when the number of tasks increases. The error bars ensure the
accuracy of the simulation results.

Fig. 10 shows the dynamics of Jain’s fairness index as the
number of users increases. We repeat the simulations 500
times. Jain’s fairness index [43] is used to measure the fairness
of the user’s profit, which is defined as (

∑
i∈U Pi(s))2

|U|
∑

i∈U Pi(s)2 . Jain’s
fairness index depends on how evenly distributed the profit is
among users. The simulation results reveal that the proposed
DGRN achieves the highest Jain’s fairness index compared to
CORN and RRN. This is attributed to DGRN’s ability to reach
a Nash equilibrium in a multi-user game.

Fig. 11 displays the average reward of the proposed algo-
rithm as the number of tasks and users change. We repeat the
simulation 500 times. From the figure, we observe that the
average reward increases as the number of tasks grows but
decreases as the number of users increases. This is because
as the number of tasks increases, users tend to perform
more tasks, thus increasing their rewards. However, when the
number of users increases, the reward for a task is shared
among more participants, leading to a decrease in average
reward. These simulation results align with our theoretical
analysis.

In Table. IV, we examine the gap between DGRN and
CORN. As the number of users changes, the ratio between
the total profit of DGRN and CORN consistently exceeds the
lower bound of Price of Anarchy (PoA), in accordance with
our theoretical analysis.

3) The influence of algorithm parameters and the real-
world example: In Fig. 12, we evaluate the influence of the
system parameters ϕ and θ on the Shanghai dataset. We con-
ducted 500 simulation runs. It is noteworthy that the average
reward increases as both ϕ and θ decrease. This decrease in
ϕ and θ indicates that the platform places a greater emphasis
on enabling users to receive higher rewards. Correspondingly,
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Fig. 12: The influence of system parameters.
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Fig. 13: The presentation on real data sets.

TABLE V: The influence of the user parameters.

αi reward βi detour γi congestion
0.1 7.74 0.1 12.24 0.1 12.03
0.2 7.85 0.2 10.97 0.2 10.48
0.3 7.94 0.3 9.88 0.3 9.52
0.4 7.96 0.4 9.38 0.4 8.75
0.5 7.98 0.5 8.84 0.5 8.48
0.6 8.08 0.6 8.38 0.6 8.20
0.7 8.10 0.7 8.07 0.7 8.05
0.8 8.16 0.8 7.99 0.8 7.97

the detour distance decreases with the growth of ϕ and the
congestion level decreases with the growth of θ, respectively.

In Table. V, we randomly select a user from the user set and
vary the parameters αi, βi and γi from 0.1 to 0.8, respectively.
We repeat the simulation 500 times. When changing αi, we
observe the value of the reward obtained by user i. It is easy to
see that the reward increases with the growth of αi, because
αi is the weight parameter concerning how much the user
emphasizes receiving the task reward. As αi increases, user i
prefers to select the route with a high reward to increase the
profit. Similarly, the detour distance and the congestion level
decrease with the growth of βi and γi, respectively. Hence,
users can adjust the values of αi, βi and γi to achieve different
individual preferences.

To better illustrate our schemes, we present three examples
using data from three different datasets with the assistance of
Google Maps. In Figure 13 (a), sensing tasks are distributed
throughout the city. We consider two users and utilize the
Google Maps API to generate recommended routes between
their starting and destination points. The platform suggests 2
or 3 routes. The user selects one route (highlighted in green)
and completes the tasks along that route. As the scenarios in
Figures 13 (b) and (c) are similar to that in Figure 13 (a), no
additional description is provided.

D. Numerical Results of Time-Sensitive Task Selection

1) Convergence for Nash equilibrium: We initially validate
the convergence of the proposed distributed algorithm, as
illustrated in Fig. 14. We randomly select 15 users and observe
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Fig. 14: User profit vs. decision slot.
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Fig. 15: Decision slot vs. user number.
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Fig. 16: Decision slot vs. task number.

the dynamics of profits over 20 decision slots. Similar to the
previous results, the profit of each user first fluctuates with the
decision updates and eventually converges to a stable state,
which is the Nash equilibrium. Since the task’s reward is
equally shared by the participants, a user’s decision update
may affect other users’ profits, resulting in fluctuations in the
initial phase.

Then, we investigate the number of decision slots required
for convergence as the number of users and tasks change,
respectively. The simulation results are demonstrated in Figs.
15-16. The simulation results reveal the following ranking
of decision slots: DGTS<BUAU<BRUN<BATS. The reason
behind this order is that DGTS uses the PUU algorithm to
select multiple users for parallel decision updates. BUAU
selects a single user to maximize the potential function value,
and BRUN updates the decision in a better response update
manner. These different decision update manners result in
different convergence rates.

Furthermore, we investigate the dynamics of the potential
function’s value and the total profit of all users as the number
of decision slots changes. The simulation results are demon-
strated in Fig. 17. It is evident that the potential function’s
value initially increases and eventually converges to a stable
point, which aligns with the theoretical analysis. The total
profit of all users follows a similar trend as the number of
decision slots changes.

2) Convergence and profit: We first investigate the coverage
of tasks as the number of users grows in Fig. 18. The
simulation is repeated 500 times. As mentioned above, task
coverage is calculated as the ratio between the number of the
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Fig. 17: Potential function and total profit vs. decision slot.
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Fig. 18: Coverage vs. user number.
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Fig. 19: Total profit vs. user number.

tasks covered by users and the total number of tasks. The
simulation results reveal the following ranking of coverage:
DGTS>BATS>RRN. Compared to BATS, DGTS can adjust
the parameters of the settings to increase task coverage.

Then, we investigate the trend of total profit as the number
of users changes in Fig. 19. Total profit is calculated as the
sum of the profit obtained by all users. The simulation results
reveal the following ranking: GTS<DGTS<CORN. DGTS
maximizes each user’s profit in an equilibrium state but does
not prioritize total profit, resulting in a lower total profit than
that of CORN.

In Fig. 20, we further investigate the total profit achieved by
DGTS as the number of users and tasks changes, conducting
the simulation 500 times. It is evident that the total profit
increases as the number of tasks grows but decreases as the
number of users increases. As the number of tasks increases,
users tend to perform more tasks, thus increasing their profits.
However, when the number of users increases, the reward for
a task is shared among more participants, leading to a decrease
in their profits.

Finally, we conduct a simulation to investigate the trend
of total profit as the conflict ratio changes in Table. VI. The
conflict ratio is defined as the probability that there exists a
temporal conflict between two tasks on a route. We generate
tasks with different conflict ratios varying from 0.1 to 0.8.
The simulation results show that the total profit decreases as
the conflict ratio increases. The reason is that the number
of candidate tasks on a route decreases as the conflict ratio
increases.
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Fig. 20: Total profit vs. task number and user number.

TABLE VI: Total profit vs. Conflict ratio.

Conflict ratio Total Profit Conflict ratio Total Profit

0.1 931.8970 0.5 805.4229

0.2 887.9729 0.6 750.6201

0.3 850.7179 0.7 724.2337

0.4 822.0991 0.8 709.4291

VII. CONCLUSION

In this paper, drawing inspiration from widely-used map
navigation systems, we introduce the utilization of route nav-
igation systems for distributed crowdsensing task allocation.
Our approach covers two scenarios: time-tolerant tasks and
time-sensitive tasks. In the time-tolerant task scenario, we
commence by demonstrating the NP-hardness of the central-
ized optimization problem and then represent it as a multi-
user potential game. We subsequently present a distributed
route navigation algorithm, which allows users to fine-tune
the parameters of the profit function according to their in-
dividual preferences, while the platform can do the same to
achieve various task allocation objectives. Additionally, we
provide a theoretical analysis of this algorithm. In the time-
sensitive task scenario, the problem complexity escalates due
to temporal conflicts among tasks. In this scenario, users must
simultaneously make route selections and choose the tasks to
be executed along those routes. We prove the NP-hardness of
the task selection problem and put forward a distributed task
selection algorithm. Finally, we conduct extensive simulations
based on three real-world datasets. The simulation results
demonstrate that our proposed approach not only attains a
Nash equilibrium but also achieves a total user profit closely
approximating that of the optimal solution.
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