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Abstract

With the increasing popularity of location-based
services, accurately recommending points of inter-
est (POIs) has become a critical task. Although ex-
isting technologies are proficient in processing se-
quential data, they fall short when it comes to ac-
commodating the diversity and dynamism in users’
POI selections, particularly in extracting key sig-
nals from complex historical behaviors. To ad-
dress this challenge, we introduced the Hierarchi-
cal Reinforcement Learning Preprocessing Frame-
work (HRL-PRP), a framework that can be inte-
grated into existing recommendation models to ef-
fectively optimize user profiles. The HRL-PRP
framework employs a two-tiered decision-making
process, where the high-level process determines
the necessity of modifying profiles, and the low-
level process focuses on selecting POIs within the
profiles. Through evaluations of multiple real-
world datasets, we have demonstrated that HRL-
PRP surpasses existing state-of-the-art methods in
various recommendation performance metrics.

1 Introduciton

With the popularity of location-based services (LBS), point-
of-interest (POI) recommendations have become an impor-
tant tool for users to navigate [Wang er al., 2023b] and ex-
plore cities [Qin et al., 2023]. Recommendation systems need
to extract learning from users’ historical location data to pro-
vide accurate recommendation services. However, given the
diversity and ever-changing nature of users’ points of interest,
it becomes a major challenge to filter out signals with predic-
tive value from numerous historical data. Therefore, there is
an urgent need to develop a new recommendation paradigm
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that can deeply understand adapt to users’ behavioral patterns
to improve recommendation accuracy.

Early POI recommendation research focused on sequen-
tial behavioral influence, using models such as recurrent
neural networks (RNN) [Xu er al., 2022; Huang ef al.,
2020], long short-term memory (LSTM) [Liu et al., 2020;
Luo et al., 2021] and gated recurrent units (GRU) [Manotum-
ruksa er al., 2020]. With the increasingly available location-
based social networks (LBSNs), research began to fuse geo-
graphic [Sun er al., 2020], semantic [Wu et al., 2019], tempo-
ral [Doan et al., 2019], and other multidimensional informa-
tion [Feng et al., 2020] to improve the understanding of user
behavior, but introducing additional model complexity. How-
ever, the fidelity of the model is limited by a key assumption:
all historical POIs have the same influence in estimating the
similarity between user preferences and target POIs. This as-
sumption may lead to ignoring the unique contributions of
different historical POIs in the prediction process. There-
fore, it becomes critical to introduce an attention mechanism
to distinguish the impact of historical check-ins. For exam-
ple, attention-based models such as NAIS [He er al., 2018]
and NASR [Li et al., 2017] evaluate the attention coefficient
of each historical POI to determine its importance in recom-
mending target check-ins.

Attention-based POI recommendation models, while im-
proving performance, still face challenges such as the dilu-
tion effect caused by users’ diverse check-in histories. In a
user’s check-in history, visits that truly reflect interest in a
target POl may be obfuscated by a large number of irrele-
vant POIs, thus weakening the impact of key POIs. As show
in the Figure 1 illustrates the recommendation results of the
NAIS model, where the score of each historical POI reflects
its attention factor. Key historical POIs such as “Shopping
Centers”, “Shoe Stores”, and “Jewelry Stores”, despite re-
ceiving high attention factors, are diluted in importance by
other categories of POIs when all historical POI scores are
aggregated. For example, POIs such as “Coffee Shops”, “In-



ternational Hotels”, and “Cinema” reduce the impact of the
main historical POIs. In addition, the model assigns an at-
tention factor to each historical POI, including POIs that are
not related to the predicted target, such as “gym”, which may
result in these random POIs being ranked higher than the ac-
tual target POIs. Therefore, even non-critical historical POIs
assigned a low attention factor may have a negative impact
on the predicted results. Overall, there is a need to distin-
guish key points of interest from non-key points of interest in
a more effective manner, thereby improving the accuracy and
usefulness of recommendation systems.

To address the above issues, we propose to modify user
profiles by removing noisy POIs, rather than assigning atten-
tion to each POI to improve the accuracy of the model. The
key challenge is that we lack explicit guidance for identify-
ing and removing noisy POIs from historical data. To this
end, we introduce a Hierarchical Reinforcement Learning
PReProcessing framework (HRL-PRP). HRL-PRP build pro-
file modifiers through a hierarchical decision-making pro-
cess: in high-level decision-making, a high-level agent de-
cides whether a profile needs to be modified; in low-level
decision-making, a low-level agent decides which POISs to re-
move. The two levels of tasks alternate in an environment
where the dataset and the pre-trained base recommendation
model provide feedback. Essentially, the profile modifier and
the base recommendation model are trained jointly.

Our contributions are threefold:

* We introduce an auxiliary POI recommendation model
consisting of a profile modifier and a basic recommen-
dation model. The joint training of these two models
effectively removes the noisy POI from user profiles, re-
sulting in higher prediction accuracy.

A hierarchical reinforcement learning framework has
been developed that is capable of recognizing and re-
moving irrelevant information in an unsupervised man-
ner, thus enhancing the recommendation process with-
out the need for explicit labeling.

After extensive experiments on a large number of real
datasets, our model proves its effectiveness. When
generalized to current mainstream recommender system
models, the model achieves significant improvements in
key performance metrics.

2 Definitions and Problem Formulation

This section provides foundational definitions to establish the
context for our study on improving POI recommendation sys-
tems using hierarchical reinforcement learning.

2.1 Definitions

User Profile. Given user u U = {u1,us,...,uy|}, a series
of POIs P = {p1,p2,...,p|p|}. Each user profile sequence
is expressed as £* = (p{, py,...,p},). Where p}' represents
the POI visited by the specified user w at time ¢, pf’, denotes
the last visited POL.
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Figure 1: Example of poi recommendation motivation. The scores at
the top of the history poi are mainly the attention coefficients com-
puted by the NAIS, and the right side of the target poi is the recom-
mendation probability predicted by the NAIS. The goal of this paper
is to remove the poi that contributes the least to the prediction.

2.2 Problem Formulation

The primary objective of this research is to develop an op-
timization function that maximizes the probability of accu-
rately predicting the next POI p a user will visit. This involves
refining a user’s original profile £* to focus more effectively
on the POI that are most influential for future predictions. The
refined profile can be expressed as

g =F(Ev), (1)

where F comes from the process function aimed at refining

the profile, and Eu represents the refined profile.

Given £", our task is to predict the POl py’ ., that the user
is most likely to visit next. Mathematically, this is formulated
as

argmax,,c p P(y = 11E% p¢ 1), 2)

where P(y = 1|€%,p}’ ,,) represents the conditional prob-
ability that the user visits POI p, y = 1 indicates that the
prediction matches the actual next POI visited by the user. In
contrast, y = 0 means that there is no match.

To evaluate the effectiveness of the predictive model, we
use the following accuracy metric define as

Accuracy = Z argmax . p P(y = 1|5A",p§‘u+1). 3)

1
|U| uelU
The efficacy of the function F is quantified by calculat-
ing the average maximum probability that the predicted POIs
correspond to the POIs actually visited by users.

3 Method

In this section, we first give an overview of the proposed
model, then we introduce a hierarchal reinforcement learn-
ing algorithm to revise user profiles and finally present the
training process of the entire model.
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Figure 2: Hierarchical Reinforcement Learning for POI Recommendation. It is mainly composed of the High-level agent, the Low-level
agent, and the Basic Recommendation Model and the basic recommendation model is exemplified by NAIS.

3.1 Overview Framework

Our model improves the fundamental recommendation sys-
tem by refining user profiles. It identifies and removes
“noisy” POIs—irrelevant check-ins that obscure the impact
of significant POIs. This process relies on a hierarchical rein-
forcement learning algorithm, which divides the profile mod-
ification into sequential decision-making tasks at both high
and low levels. The agent’s actions, guided by a modification
policy, aim to optimize the user profile summary. After each
modification cycle, the agent receives feedback from the en-
vironment, comprising the dataset and an initial recommen-
dation model, to adjust its policy. Subsequently, the basic rec-
ommendation model is retrained based on the agent’s updated
profile summaries. This joint training approach, which in-
volves both the profile editor and the recommendation model,
ensures more accurate POI recommendations. Figure 2 illus-
trates this framework.

3.2 The Basic Recommendation Model

The key element of recommendation is to accurately charac-
terize the user’s preferences based on hisher profile £*. The
general idea is that we represent each historical POI p} as a
revalued low-dimensional embedding vector v} and summa-
rize the embeddings of all historical POIs v{, vy, ...., v{ to
denote the preference of the user u’s v,,. If we also denote
the target POI p; as the embedding vector v;, the probability
of recommending the POI p; to user u, i.e., P(y = 1|E%, p;),
can be represented as

P(y = 1|€% p;) = a(VLvi), 4)

where y = 1 indicates that p; is recommended to the user w
and o is the sigmoid function to transform the input into a
probability. Then the key question is how to obtain the ag-
gregated embedding v,,.. One straightforward way is to av-

erage the embeddings of all the historical POls,i.e. v, =

1 Zt 1 p¢'. However, equally treating all the POIs’ contri-
butlons may impact the representation of a user’s real interest
in the target POI. Thus, as NAIS does, we can adopt the at-
tention mechanism to estimate an attention coefficient aj; for
each historical POI py* when recommending p;. Specifically,
we parameterize the attention coefficient af, as a function
with v} and v; as input and then aggregate the embeddings
according to their attentions defined as

tu

o U U

Vo = E ) L
t=1

where f can be instantiated by a multi-layer perception on the
concatenation or the element-wise product of the two embed-
dings v} and v;.

In addition to NAIS, our framework is compatible with var-
ious types of existing attention mechanisms and recommen-
dation models. To ensure the generalizability and consistency
of the study, we chose NAIS as the main mechanism for the
computation of attention in our experiments. This choice not
only demonstrates the flexibility of the framework, but also
provides a unified benchmark for comparing different mod-
els.

a’zf = f(vgavi)v (5)

3.3 Profile Reviser

As mentioned above, the purpose of the profile re-visner is to
remove noisy processes that do not contribute much to the
prediction. Inspired by the theory of hierarchical abstract
machines [Parr and Russell, 1997], we describe the task of
profile revision as a hierarchical Markov Decision Process
(MDP). In general, we decompose the entire MDP task M
into two classes of subtasks M" and M!, where M" is a
high-level abstract task in the hierarchy, and solving it solves



the entire MDP M, and M' is a low-level prototask in the
hierarchy. Each kind of task is defined as a 4-tuple MDP
(S, A, T,R), where S is a set of states, A is a set of actions,
T is a transition model mapping S X A x § into probabilities
in [0,1], and R is a reward function mapping S x A x S into
real-valued rewards.

We formulate our task by a high-level task and a low-
level task. Specifically, given a sequence of historical POIs
& = (pY,py,...,p¢,) of user u and target POI p, the agent
performs a high-level task of one binary action to determine
whether to revise the profile £“ or not. If it decides to revise
&, the agent performs a low-level task of multiple actions to
determine whether to remove each historical POI p} € &*
or not. After the low-level task is finished, the overall task is
finished. If the high-level task decides to make no revision,
the low-level task will not be executed and the overall task is
directly finished.

We formulate the profile reviser as two-level MDPs be-

cause some of the user profiles are discriminative and can
already be correctly predicted by the basic recommendation
model. We can simply keep those profiles as the original ones
and only revise the ones that result in false recommendations.
Out of this consideration, we design a high-level task to de-
cide whether to revise the profile of a user or not, and a low-
level task to decide which POI in the profile should be re-
moved. We will introduce the details of how to design the
state, action, and reward for the two-level tasks.
State. The high-level task takes an action according to the
state of the whole profile £" and the low-level task takes a
sequence of actions according to the state of each POI p} €
E". We define different state features for the two tasks.

* Low-level task: When determining to remove a histor-
ical POI py € £, we define the state features sf‘/ As
the cosine similarity between the embedding vectors of
the current historical POI p;' and the target POI p;, the
element-wise product between them, and also the aver-
age of the two previous features over all the reserved
historical POIs, where the embedding vector of a POI p;
can be provided by a pre-trained basic recommendation
model. We also treat the user’s level of interest in the
POI as an additional state feature that enhances the con-
tribution of pi' to p; in addition to the similarity-based
features. For simplicity, we omit the superscript « in all
the notations on the state features.

* High-level task: When determining to revise a whole
profile £%, we define the state features s" as the av-
erage cosine similarity between the embedding vectors
of each historical POI in £" and the target POI and
the average element-wise product between them. We
also define an additional state feature as the probabil-
ity P(y = 1/&",p;) of recommending p; to user u by
a basic recommendation model. The probability reflects
the credibility of the POI p; recommended based on the
profile £%. The lower the probability of recommenda-
tion, the more effort should be put into revising £*. Note
we train the profile reviser only based on the positive in-
stances, i.e., a user profile paired with a real target POI,
as negative instances with random target POIs can hardly

guide the agent to select the contributing POIs to the tar-
get POL. Thus P(y = 0|E", p;) for a negative instance is
not calculated.

Action and Policy. We define the high-level action a” €
{0,1} as a binary value to represent whether to revise the
whole profile of a user or not and define a low-level action a
a! € {0,1} as a binary value to represent whether to remove
the historical POI py or not. We perform a low-level action

al according to the policy function defined as

H' = ReLU(W's' +b'),
(s, a) = P(at]st, ©') ©6)
= ato(W2H') + (1 - aj) (1 — o(W2H")),

where W! € R %4> W, € R:*L and b € R% are the
parameters to be learned with d} as the number of the state
features and d), as the dimension of the hidden layer. Nota-
tion Hé represents the embedding of the input state. We de-
note © = {W! W, b'}. The sigmoid function o is used to
transform the input into a probability. The high-level action is
performed according to the similar policy function with dif-
ferent parameters ©" = {W" W4 b"}.

Reward. The reward is a signal to indicate whether the per-
formed actions are reasonable or not. We assume that every
low-level action in the low-level task has a delayed reward af-
ter the last action aiu is performed for the last POI péu S
In other words, the immediate reward for a low-level action is
zero except for the last low-level action. Thus, we define the
reward for each low-level action define as

0, otherwise,

)
where p(E¥, p;) is an abbreviation of P(y = 1|£%, p;) and £“
is the revised profile, which is a subset of £“. For the special
case £¥ = ¢, i.e., all the historical POIs are removed, we
randomly select a POI from the original set £*. The reward is
defined as the difference between the log-likelihood after and
before the profile is revised. A positive difference indicates a
positive utility gained by the revised profile.

If the high-level task chooses the revising action, it calls
the low-level task and receives the same delayed reward
R(al, sl) after the last low-level action is performed. Oth-
erwise, it keeps the original profile and obtains a zero reward
as log p(é“,pi) is not changed.

In addition, we define an internal reward G(al, s!) which is
used only inside the low-level task to speed up its local learn-
ing and does not propagate to the high-level task. Specifically,
we first calculate the average cosine similarity between each
historical POI and the target POI after and before the profile
is revised, and then use the difference between them as the
internal reward G (a!, s}). The internal reward encourages the
agent to select the most relevant POIs to the target POI. Fi-
nally, we sum G(a!, s!) and R(al, s}) as the reward for the
low-level task.

Objective Function. We aim at finding the optimal param-
eters of the policy function defined in Eq. 6 to maximize the

log p(E¥,p;) — log p(EY, p;), if t = ty;
R(ai,Si)—{ gp(€",pi) —logp(E", pi)



Metrics | HR@5 | NDCG@5 | Recall @5 | F1@5 | MAP@5
Method Baseline HRL-PRP  Imp. | Baseline HRL-PRP  Imp. | Baseline HRL-PRP  Imp. | Baseline HRL-PRP  Imp. | Baseline HRL-PRP  Imp.
FPMC 01731 02152 +421% | 00588 00854  +2.66% | 00823  0.1341  +5.18% | 0.0274 00649  +3.75% | 00511 00828  +3.17%
LSTM 03645 04048  +4.03% | 02400 02698  +2.98% | 03141 03670  +529% | 01047  0.551  +504% | 02155 02700  +545%
ST-RNN 01377 01744  +367% | 00431 00820  +3.89% | 00724  0.235  +5.11% | 00241 00699  +4.58% | 0.0334 00707  +3.73%
HST-LSTM 03205 03758  +5.53% | 02164 02658  +4.94% | 02853 03341  +488% | 00951 01213  +2.62% | 0.1953 02356  +4.03%
o | SERM 03315 03618  +3.03% | 02024 02360  +3.36% | 03147 03452  +3.05% | 01049  0.1475  +426% | 02024 02548  +5.24%
> | DeepMove 03458 03764  +3.06% | 02498 03058  +5.60% | 03350 03693  +343% | 01117  0.1663  +546% | 02215 02694  +4.79%
Z | LSTPM 03693 04008  +3.15% | 02713 03081  +3.68% | 03624 03956  +332% | 01208  0.1551  +343% | 02411 02817  +4.06%
STAN 02313 02871  +558% | 0.354 01911  +557% | 0.835 02332  +497% | 00612 00950  +338% | 0.1195 01684  +4.89%
CARA 03948 04440  +4.92% | 02854 03206  +3.52% | 03688 03997  +3.09% | 01229  0.1679  +4.50% | 02577 03070  +4.93%
ATST-LSTM 04866 05180  +3.14% | 03886 04286  +4.00% | 04953 05286  +3.33% | 0.1651  0.1958  +3.07% | 03530 03976  +4.46%
GeoSAN 04791 05148  +3.57% | 03710 04143  +433% | 05157 05584  +427% | 01719 02203  +484% | 03232 03731  +4.99%
Metrics | HR@5 | NDCG@5 | Recall @5 | F1@5 | MAP@5
Method Baseline HRL-PRP  Imp. | Baseline HRL-PRP Imp. | Baseline HRL-PRP  Imp. | Baseline HRL-PRP  Imp. | Baseline HRL-PRP  Imp.
FPMC 02721 03232  +511% | 01574 01985  +4.11% | 02156 02782  +626% | 00719  0.1181  +4.62% | 0.1381 01694  +3.13%
LSTM 02841 03446  +6.05% | 0.1819 02349  +530% | 02449 02835  +3.86% | 0.0816  0.1247  +431% | 01610 02219  +6.09%
ST-RNN 01285 01942  +6.57% | 0.0230 00678  +448% | 00331  0.0971  +640% | 00110 00454  +344% | 00196 00669  +4.73%
HST-LSTM 02738 03335  +597% | 01766 02284  +5.18% | 02391 03051  +6.60% | 00797  0.1054  +2.57% | 01559 01791  +2.32%
5 | SERM 03128 03799  +671% | 02040 02435  +3.95% | 02740 03277  +537% | 0.0913  0.1306  +3.93% | 0.1807 02141  +3.34%
& | DeepMove 03425 04069  +644% | 02421 03078  +6.57% | 03264 03647  +3.83% | 01088  0.1437  +349% | 02141 02536  +3.95%
& | LSTPM 03360 03911  +551% | 02401 02772  +3.71% | 03307 03667 +3.60% | 01102 01604  +502% | 02101 02414  +3.13%
STAN 02504 03174  +670% | 01358  0.1674  +3.16% | 0.1966 02635  +6.69% | 00655 ~ 00915  +2.60% | 0.1158  0.1475  +3.17%
CARA 02130 02358  +2.28% | 0.1051 01554  +503% | 0.1657 02150  +493% | 00552  0.1174  +622% | 0.0852 01309  +4.57%
ATST-LSTM 04027 04453  +4.26% | 03029 03296  +2.67% | 04427 04854  +427% | 01476  0.1941  +4.65% | 02569 03186  +6.17%
GeoSAN 03403 03973 +570% | 02293 02980  +6.87% | 03218 03698  +480% | 01073  0.1648  +575% | 0.1987 02407  +4.20%

Table 1: The NAIS was uniformly used as a reward driver in the overall performance, and the results were averaged over five training sessions.

expected reward defined as

0" = Po(r; O)R(7), 8
argénaxz; o(T;©)R(7) ®)

where © represents either ©" or ©', 7 is a sequence of the
sampled actions and the transited states, Pg(7;0) denotes
the corresponding sampling probability and R(7) is the re-
ward for the sampled sequence 7. The sampled sequence T
can be {s},al, s}, ...s,al, st} for the low-level task and
{s",a"} fpr the high-level task.

Since there are too many possible action-state trajectories
for the entire sequences of the two tasks, we adopt the policy
gradient theorem and the Monte Carlo policy gradient meth-
ods [Sutton and Barto, 2018; Thomas and Brunskill, 2017]
to sample M action-state trajectories. The index m denotes
the m-th trajectory from these samples, where M is the to-
tal number of sampled trajectories. Based on these samples,
we calculate the gradient of the parameters for the low-level
policy function defined as

Mty

% Z Z Vologmy (s, ai")

m=1 t=1

(Rla", si") + G(a]"; ")),

Vo= ©)

where the reward R(a}", s7*) + G(a}", si*) for each action-
state pair in sequence 7("™) is assigned the same value and
equals to the terminal reward R (a}", s} ) + G(ay", s7*). The
gradient for the high-level policy function is defined as

M
1
J:— 1 m TYLR m m 10
Vo mmEﬂVg ogmp(s™, a™)R(a™, s™), (10)

where the reward R (a™, s™) is assigned as R(a}", s} ) when

a™ = 1, or 0. We omit the superscript " and ! in Eq. 8 and
Eq. 9 for simplicity.

3.4 Model Training

The two models of the profile reviser and the basic recom-
mendation model are interleaved together, and we need to
train them jointly. The training process is shown in Algorithm
1, where we first pre-train the basic recommendation model
based on the original dataset, then we fix the parameters of the
basic recommendation model and pre-train the profile reviser
to automatically revise the user profiles; finally, we jointly
train the models together. Same as the settings, to have a sta-
ble update, each parameter is updated by a linear combination
of its old version and the new old version, i.e. defined as

Gnew = )\(_)new + (1 - )\)G)old; (11)
where A < 1. The time complexity is O(L(Nt, M)), where
L is the number of epochs, N is the number of instances,
Ty is the average number of historical courses and M is the
Monto Carlo sampling time.

4 Experiment

We evaluate the performance of HRL-PRP in the next loca-
tion prediction task. We aim to answer the following five
main research questions:

* Q1: How does HRL-PRP perform in the next-location
prediction task?

Q2: What is the effectiveness of the roles of high-level
and low-level agents in the decision-making process?

* Q3: How does reward design affect the performance of
HRL-PRP?

* Q4: How can the necessity and rationality of the frame-
work be analyzed through examples?

* Q5: How hyperparameters settings affect recommenda-
tion performance?



Methods ‘ Revised profile or the learned attentions ‘ The target POI
HRL-PRP Cafes, Cake Stores, Clothing-Stere, Airports, Train-Stations Baker’s Store
NAIS Cafes (13.22), Cake Stores (9.41), Clothing Store (9.55), Airports (5.42), Train Stations (7.14) Baker’s Store
HRL-PRP Student Center, , Bar, Library Student Apartment
NAIS Student Center (15.20), Gym/Fitness Center (15.78), Bar (7.22), Library (12.41) Student Apartment
Table 2: Case studies of the profiles revised by HRL-PRP and the attention coefficients learned by NAIS.
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Figure 3: An ablation study of high-level agent.

4.1 Experiment Settings

Datasets. In our study, we additionally included other
datasets from Tokyo, Brightkite, Instagram, and Gowalla,
which are widely used benchmarks in POI recommendation
studies. Each dataset contains a series of historical POIs and
a specific target POI. During the training phase, the last POI
of the sequence is set as the target, and the rest constitutes
the historical context. When generating negative samples, the
target POI is replaced by four random POIs. In the testing
phase, each check-in in the test set is considered as a target
event and 99 random negative instances are paired to fully
evaluate the model performance.

Baseline Methods. We compare HRL-PRP with eight base
algorithms for comparison, including (1) FPMC [Rendle et
al., 20101, (2) LSTM [Memory, 2010]., (3) ST-RNN [Xu
et al., 2022], (4) HST-LSTM [Kong and Wu, 2018], (5)
SERM [Yao et al., 20171, (6) Deepmove [Feng et al., 2018,
(7) LSTPM [Sun et al, 2020], (8) STAN [Luo et al,
20211, (9) CARA [Manotumruksa et al., 20201, (10) ATST-
LSTM [Huang et al., 2019], (11) GeoSan [Lian et al., 2020].
Evaluation Metrics. Our evaluation uses the following met-
rics: hit rate (HR), normalized discounted cumulative gain
(NDCQG), recall, F1 score, and mean accuracy (MAP).
Implementaion Details. For the profile reviser, sampling
time M is set as 3, and the learning rate is set as 0.001/0.0005
at the pre-training and joint-training stages respectively. In
the policy function, the dimensions of the hidden layer d},
and dg are both set as 8. For the basic recommender, the
dimension of the POI embeddings is set to 128, the learning
rate is 0.001 at both the pre-training and joint-training stages,
and the size of the minibatch is 128. The delayed coefficient
A for the joint training is 0.0005.

4.2 Overall Performance (Q1)

Table 1 shows the performance metrics of the HRL-PRP
framework before and after combining it with the base-
line recommendation model. The framework outperforms

(a) NYC

(b) TKY

Figure 4: An ablation study of low-level agent.

the baseline methods on key metrics, especially on sparse
datasets, compared to FPMC methods. Serialization methods
such as LSTM and LSTPM underperform in the distinction
of historical POIs. While methods such as STAN and CARA,
which fuse multidimensional information, are improved, they
are affected by data noise and have different effects. Overall,
existing recommender systems have limitations in handling
diverse user interests. HRL-PRP more accurately reflects user
preferences by effectively removing noisy POIs, thus achiev-
ing significant improvement in recommendation accuracy.

4.3 The Study of HRL-PRP Agents (Q2)

The design of High-level Agent. To demonstrate the effec-
tiveness of high-level tasks, we compare the HRL architecture
with the single-tier RL architecture (Deep Q-Learning, which
directly decides whether to delete each POI mainly through
low-level tasks) on several evaluation metrics. The results
show that HRL outperforms single-tier RL on all metrics,
highlighting the importance of high-level agents in maintain-
ing and adjusting the diversity of user profiles. For example,
the #Categories/#POlIs values of HRL-modified profiles aver-
aged 0.62 and 0.64, which were lower than those of single-
tier RL at 0.68 and 0.72, suggesting that HRL produced more
consistent profiles. This demonstrates the effectiveness of
HRL-PRP’s strategy of efficiently deciding to retain or mod-
ify profiles through high-level tasks.

The design of Low-level Agent. We compare the proposed
HRL with the greedy correction algorithm. First, if log P(y =
11€¥, p; < p1) decides to modify the whole contour £%, and
if the cosine similarity between e}’ € £* and p; is less than
{2, then ej' € & is further deleted. e}’ € £*. In Figure 4,
we tune 7 from 0.1 to 0.6 with an interval of 0.5, and tune
W from -0.1 to 0.1 with an interval of 0.1, and get the best
results for the two data when p1 = 0.4 and ps = 0.5, which
are 1.43% and 1.22% less than HRL-PRP. Note that the best
performance is obtained when the number of remaining POIs
is almost the same as HRL-PRP.
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Figure 5: An ablation study of reward design. Different attentional
mechanism models include NAIS, NASR, Location Encoded Atten-
tion (LEA.), Scaled Dot Product Attention (SDTA.), Self-Attention
Mechanism (SAM.), GRU, LSTM, and RNN.

4.4 The Study of Reward (Q3)

We investigated the performance of different attention mech-
anisms driven by intrinsic rewards. As shown in Figure 5,
among the multiple attention models examined, NAIS ex-
hibits the best performance, while RNN and LSTM perform
weakly. This performance difference mainly stems from
the fact that RNN and LSTM do not sufficiently consider
the episodic and non-sequential nature of user behavior in
POI recommendation. This point highlights how the reward
mechanism affects attention allocation in different models
and how this allocation significantly affects the overall rec-
ommendation effectiveness.

4.5 The Study of Case Performance (Q4)

As shown in Table 2, the 2 cases of profiles corrected by the
proposed HRL-PRP. The cases show that HRL-PRP is effec-
tive in removing spurious interest points that are not related to
the target interest points. In contrast, while NAIS assigns high
attention to contributing historical points of interest, some ir-
relevant points of interest do not receive significantly differ-
ent or even higher attention than relevant points of interest,
resulting in a weakened effect of truly contributing points of
interest when aggregating all historical points of interest. As
a result, the performance of recommendation models based
on such differentiated revised profiles is improved.

4.6 The Study of Hyperparameters (Q5)

In reinforcement learning, experimental performance is ex-
tremely sensitive to parameter selection. As shown in Fig-
ure 6, we conducted an extensive learning rate analysis,
scru-tinizing the effects of varying embedding dimensions
andtraining batch sizes. Furthermore, the impact of dif-
ferentlearning rates on joint training was also meticulously
exam-ined. This analytical approach allowed us to precisely
iden-tify optimal parameter configurations, thereby enhanc-
ing therobustness and reliability of our model’s performance.

5 Related Work

POI Recommendation. Point of Interest (POI) recom-
mender systems aim to recommend geographic locations,
such as restaurants, museums, etc., based on a user’s his-
torical behavior and preferences. Current research focuses
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Figure 6: An Ablation study of hyperparameters embedding sizes,
batch sizes, and learning rates. Sphere size corresponds to HR@5
indicator size. Blue to orange color indicates a gradual improvement
in recommendation performance.

on the utilization of time-series data, employing a range of
methods including content-based filtering [Xu et al., 2017,
Hu er al., 2023; Wang et al., 2019b; Wang et al., 2019al,
collaborative filtering [Yin er al., 2021; Wang et al., 2018;
Liu et al., 2018], and location-based recommendation algo-
rithms [Chen et al., 2021; Kuanr and Mohanty, 2020]. These
approaches incorporate user behavioral pattern analysis, ge-
olocation data, and in some cases social network informa-
tion [Liu, 2022] to enhance the accuracy and level of person-
alization of recommendation results. While these approaches
perform well, existing POI recommendation techniques are
unable to extract key signals from a user’s complex historical
behavior, which limits their potential and accuracy for per-
sonalized recommendations.

Reinforcement Learning. Reinforcement learning centers
on learning strategies through environmental interaction and
feedback [Mnih et al., 2015; Jiang et al., 2023; Sanz-Cruzado
et al., 2019; Wang et al., 2023a; Wang et al., 2020]. The du-
ality of exploration and exploitation in this learning model
appropriately captures changing user preferences. Hierar-
chical Reinforcement Learning (HRL) extends it to a vari-
ety of comprehensive recommendation domains [Zhang et
al., 2019; Yu et al., 2020; Xie et al., 2021; Du et al., 2022;
Wang et al., 2022; Zhang et al., 2024] has a wide range of
applications. Our research applies HRL to POI recommenda-
tion preprocessing by streamlining user profiles through task-
independent partitioning.

6 Conclusion

This study proposes a hierarchical reinforcement learning
preprocessing framework (HRL-PRP). We categorize the
tasks into a two-level decision-making process: the high-level
task is responsible for determining whether or not the current
user’s profile needs to be modified; the low-level task focuses
on deciding which POIs to modify specifically. By jointly
training the user profile modifier and the underlying recom-
mendation model, we aim to improve the overall recommen-
dation accuracy. The model simplifies the complexity of the
recommendation process by effectively filtering irrelevant in-
formation while focusing on key content without explicitly
supervising the signal. In the future, we plan to apply this
model to other recommendation domains, to explore its po-
tential for processing key items in users’ historical data.
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