Hierarchical Reinforcement Learning on Multi-Channel Hypergraph Neural Network for Course Recommendation

Lu Jiang 1,4 , Yanan Xiao 1,4 , Xinxin Zhao 1,4 , Yuanbo Xu 2,5 , Shuli Hu 1,4 , **Pengyang Wang**^{3,6*} and **Minghao Yin**^{1,4*}

¹School of Computer Science and Information Technology, Northeast Normal University, China ²College of Computer Science and Technology, Jilin University, China ³Department of Computer and Information Science, University of Macau, China ⁴Key Laboratory of Applied Statistics of MOE, Northeast Normal University, China ⁵Mobile Intelligent Computing (MIC) Lab, Jilin University, China ⁶The State Key Laboratory of Internet of Things for Smart City, University of Macau, China $\{\text{jiang}$ 1761,xiaoyn117,zhaoxx767, husl903, ymh $\}$ @nenu.edu.cn, yuanbox@jlu.edu.cn, pywang@um.edu.mo

Abstract

 With the widespread popularity of massive open online courses, personalized course recommenda- tion has become increasingly important due to en- hancing users' learning efficiency. While achiev- ing promising performances, current works suffer- ing from the vary across the users and other MOOC entities. To address this problem, we propose Hierarchical reinforcement learning with a multi- channel Hypergraphs neural network for Course **Recommendation** (called **HHCoR**). Specifically, we first construct an online course hypergraph as the environment to capture the complex relation- ships and historical information by considering all entities. Then, we design a multi-channel propa- gation mechanism to aggregate embeddings in the online course hypergraph and extract user inter- est through an attention layer. Besides, we em- ploy two-level decision-making: the low-level fo- cuses on the rating courses, while the high-level integrates these considerations to finalize the de- cision. Finally, we conducted extensive experi- ments on two real-world datasets and the quantita- tive results have demonstrated the effectiveness of the proposed method.

²⁵ 1 Introduction

 The prosperity of massive open online courses (MOOCs) is due to the rapid development of online education. The over- whelming and spotty learning materials in MOOC platforms undermine users' efficiency. Against this background, accu- rately modeling user preference for learning materials offers [v](#page-8-0)aluable insights with course recommender system [\[Zhang](#page-8-0) *et al.*[, 2019\]](#page-8-0). The selection of the next course by users is influ-enced by the interplay between network interactions, which

Figure 1: The differences between a heterogeneous graph (a) and a hypergraph (b). Figure (a) shows an edge connecting two nodes, while figure (b) shows an example of users' hypergraph with 9 courses and 4 hyperedges.

echo user needs and vary. Therefore, in this paper, we pro- ³⁴ pose to develop an effective recommender system with hy- ³⁵ pergraph learning for course recommendation in MOOCs. ³⁶

Prior literature in an online course recommendation 37 method can be categorized into three aspects: (1) Collab- ³⁸ orative filtering (CF) method [\[Yang and Cai, 2022\]](#page-8-1) relies ³⁹ on user-item interaction data to predict course preferences; ⁴⁰ [\(](#page-7-1)2) Sequence-based method [Shao *et al.*[, 2021;](#page-7-0) Hou *[et al.](#page-7-1)*, ⁴¹ [2018\]](#page-7-1) uses the sequence of courses to recommend future ⁴² learning paths; (3) Graph-based method [Wang *et al.*[, 2021;](#page-7-2) ⁴³ Xu *et al.*[, 2022\]](#page-8-2) uses a complex network structure to model 44 the relationship between users and courses. There are two ⁴⁵ main challenges: (1) the interactions among users are very 46 complex and the relationships can be high-order; and (2) ⁴⁷ traditional recommendations cannot model real-time online ⁴⁸ study behavior in a continuously updated manner. Below we 49 formally introduce each challenge and how we address them 50 in our proposed framework. 51

First, graph neural network (GNN)-based [\[Wang](#page-7-2) *et al.*, ⁵² [2021\]](#page-7-2) models have shown promising performance in course 53 recommendation, due to the powerful capability in modeling 54 relationships. A limitation of these GNN-based recommen- ⁵⁵ dation methods is that exploit the pairwise relations and ig-
56

^{*}Corresponding author.

 nore the high-order relations among the entities. Although the long dependencies of relations are considered high-order, 59 which can be captured by using k -hop node neighbors, these only permit a maximum of two entities per relationship, as shown in Figure [1\(](#page-0-0)a). These heterogeneous graph structures are unable to formulate complex high-order user relations be- yond pairwise relations. Hypergraph [Fan *et al.*[, 2021\]](#page-7-3) can capture high-order relationships by allowing edges to connect more than two nodes. As shown in Figure [1\(](#page-0-0)b), it is natu- ral to think that two users who are studying the same course have a stronger relationship, we employ hypergraph to make it connect more than two nodes, to model complex high-order relations among users. We define the MOOC hypergraph to organize the multiple to multiple relationships. We utilize hy- peredges to mine high-order semantic information between various types entity to form multiple channels. And incor- porates an attention mechanism in the information transmis- sion process to ensure semantic integrity during cross per- spectives information propagation. By aggregating multiple embeddings learned through multiple channels, we can ob- tain comprehensive user representations that are considered to contain multiple types of high-order relations.

 Second, it is natural and promising to exploit reinforcement learning, a real-time learning paradigm optimized with long- term reward, to develop a course recommender system for 82 MOOCs. To achieve this goal, we reformulate the course rec- ommendation problem in MOOC as a hierarchical reinforce- ment learning task. HHCoR is built following the two-layer decision-making process: (1) the low level focuses on the rat- ing courses, and (2) the high level integrates these considera- tions to finalize the decision. To facilitate our framework with a proper environment, we propose a MOOC hypergraph to organize the multi-channel semantics of study records. The hyperedge embeddings from this MOOC hypergraph serve as the state to support the decision-making process in our method. In summary, we formulate the online course recom- mendation problem as Hierarchical reinforcement learning with multi-channel Hypergraphs neural network for Course 95 Recommendation (called HHCoR).

⁹⁶ The main contributions are as follows:

⁹⁷ • We reformulate the problem of personalized course rec-⁹⁸ ommendation as a task based on hierarchical reinforce-⁹⁹ ment learning.

- ¹⁰⁰ We construct a MOOC hypergraph, which effectively ¹⁰¹ handles the heterogeneous nature of courses and utilizes ¹⁰² an attention mechanism to capture user preferences from ¹⁰³ multi-channel semantics.
- ¹⁰⁴ We design a policy optimization framework based on hi-¹⁰⁵ erarchical reinforcement learning and introduce reward ¹⁰⁶ function guidance mechanism to optimize the two-level ¹⁰⁷ agent's policy.
- ¹⁰⁸ We validate our method on two real datasets and the ¹⁰⁹ results demonstrate the excellent performance of our ¹¹⁰ method on the task of course recommendation.

2 Definitions and Problem Formulation 111

2.1 MOOC Hypergraph 112

In order to capture the complex relationships between the par- ¹¹³ ticipation of multiple entities on the MOOC platform, we pro- ¹¹⁴ pose to construct a hypergraph to represent historical records, ¹¹⁵ called MOOC Hypergraph. Formally, MOOC Hypergraph \mathcal{G} 116 is defined as $G = (\mathbf{V}, \mathbf{E})$, where **V** and **E** represents the vertex set and hyperedge set respectively. Each hyperedge $e \in \mathbf{E}_{118}$ connects two or more vertices. 119

Vertices. MOOC hypergraphs aim to organize MOOC ele-
120 ments while preserving multi-aspect semantics. Specifically, 121 we categorize MOOC elements into three semantic channels, 122 including (1) the course channel, denoted as c ; (2) the concept channel, denoted as k ; (3) the video channel, denoted 124 as o. In this work, we consider three types of vertices corre- ¹²⁵ sponding to three semantic channels. Then, the vertex set can 126 be denoted as $V = c \cup k \cup o$. 127

Hyperedge. We define four types of hyperedges: (1) Course 128 hyperedge, which connects to all course nodes that the user 129 has been enrolled in; (2) Concept hyperedge, which connects 130 all learned concept nodes; (3) Video hyperedge, which con- ¹³¹ nects the video nodes that the user has watched; (4) Feature 132 hyperedge, connecting user, concept, and video nodes to each 133 other. We learn user perspectives from multiple sources, and ¹³⁴ user perspectives consist of four types of hyperedge embed- ¹³⁵ dings. We utilize the Parallel Aggregated Ordered Hyper- ¹³⁶ graph [\[Valdivia](#page-7-4) et al., 2021] (PAOH) model to construct our 137 proposed MOOC hypergraph and hyperedges. 138

2.2 Problem Formulation 139

In this work, we formulate course recommendation as a 140 Markov Decision Process [\[Feinberg and Shwartz, 2012\]](#page-7-5) 141 (MDP). Users decide which course to enroll in next based on ¹⁴² a history that reflects their personal preferences under a par- ¹⁴³ ticular MOOC platform. The main components of the MDP ¹⁴⁴ are defined as (1) States S. Each state $s \in S$ represents a spe- 145 cific user context derived from the MOOC platform history, ¹⁴⁶ which is organized into a MOOC hypergraph. (2) **Actions** A . 147 Each action $a \in A$ corresponds to a potential next enrollment 148 course. (3) **Transition Probabilities** Γ . Γ (s'|s, a) denotes 149 the probability of transitioning from state s to state s' when 150 action α is taken. This probability can be estimated from the 151 user's platform history and reflects how often the user transi- ¹⁵² tions from one learning environment to another after selecting 153 a particular course. (4) **Rewards** R. $R(s, a, s')$ denotes the 154 reward received after transitioning from state s to state s' due 155 to action a . The reward can be designed to reflect user satis- 156 faction or any other metric of interest. We will introduce the 157 reward design later. (5) **Environment** E. The environment 158 consists of all participants of study events. It responds to the 159 user's action by providing a new state and a reward. The en- ¹⁶⁰ vironment's dynamics are governed by the transition proba- ¹⁶¹ bilities Γ and the reward function R. (6) **Policy** π . A policy 162 π defines how users take action. Specifically, $\pi(s)$ gives the 163 probability distribution over actions in state s. The goal of 164 the MDP is to find an optimal policy π^* that maximizes the 165 expected cumulative reward over time. 166

Figure 2: Framework Overview.

¹⁶⁷ In view of the course being studied the form of the MDP ¹⁶⁸ is recommended, our goal is to develop a hierarchical reinforcement learning framework to find the optimal policy π^* 169 ¹⁷⁰ that guides the user's decision to register for the next course.

171 **3** Method

¹⁷² In this section, we introduce the core architecture of our ¹⁷³ method HHCoR, including hypergraph representation learn-¹⁷⁴ ing, low-level policy, and high-level policy.

¹⁷⁵ 3.1 Framework Overview

 The proposed HHCoR is illustrated in Figure [2.](#page-2-0) First, we learn the state of the environment by constructing a MOOC hypergraph, we propose a multi-channel aggregating mecha- nism to propagate various information among nodes in three channels. Then, we utilize the attention layer to extract the user preferences based on different hyperedges. After that, the low-level agents take the environment state as input, and the low-level agents model the multidimensional preference representation by analyzing the importance of each historical course to the target course. Finally, the high-level agents for- mulate a course recommendation policy by receiving learning insights from the low-level agents. The two-layer agents re-inforce each other through iterative updates.

¹⁸⁹ 3.2 Hypergraph Representation Learning

¹⁹⁰ Vertex Embedding. We denote the raw features of vertex 191 $v_i \in V$ as $\mathbf{x}_i \in \mathbb{R}^d$, and \mathcal{N}_i represents vertex v_i 's neigh-¹⁹² bors that are within the hyperedges. We employ the attention mechanism to capture the interrelationship between vertices 193 and the respective neighbors in the same channel. Specif- ¹⁹⁴ ically, for the vertex v_i and its neighbor v_j ($j \in \mathcal{N}_i$), the 195 attention coefficient α_{ij} can be represented as 196

$$
\alpha_{ij} = \frac{\exp(\mathbf{v}_i \mathbf{v}_j)}{\sum_{v_j \in \{\mathcal{N}_i, i\}} \exp(\mathbf{v}_i \mathbf{v}_j)}.
$$
(1)

Then, the embedding h_i of the node v_i can be represented 197 by aggregate the neighbors' define as 198

$$
\mathbf{h}_i = \sum_i \alpha_{ij} \mathbf{v}_i. \tag{2}
$$

Hyperedge Embedding. In our study, we defined four types 199 of hyperedges, including courses, videos, concepts, and fea- ²⁰⁰ tures. Among them, course, video, and concept hyperedges ²⁰¹ are homogeneous (connecting vertices within the same se- ²⁰² mantic channel) and feature hyperedges are heterogeneous ²⁰³ (connecting vertices across all semantic channels). For the ²⁰⁴ homogeneous hyperedge $e_i \in \mathbf{E}$, we denote the hyperedge 205 embedding by the set of all node embeddings within the hy- ²⁰⁶ peredge. The hyperedge embedding q_i can be represented as 207

$$
\mathbf{q}_i = \sigma\left(\sum_{j \in [e_i]} \mathbf{h}_j\right),\tag{3}
$$

where $|e_i|$ denotes all the linked nodes in e_i . ²⁰⁸

The feature hyperedges serve as a bridge to link the se- ²⁰⁹ mantics from different perspectives through the hypergraph 210 topology. We then update the hyperedge embedding \mathbf{q}_i by 211 ²¹² aggregating information from hyperedges on other perspec-

²¹³ tives that are interlinked by the same feature hyperedge:

$$
\mathbf{q}_i = \sigma \left(\sum_{k \in \Phi(e_i)} \mathbf{W}_{\Psi(e_k)} \mathbf{q}_k \right), \tag{4}
$$

214 Where σ is the sigmoid function [\[Elfwing](#page-7-6) *et al.*, 2018], $\Phi(e_i)$ ²¹⁵ denotes the query function that retrieves hyperedges from al-²¹⁶ ternate perspectives that are interconnected by the same fea-217 ture hyperedge as the given hyperedge, $\Psi(\cdot)$ is the function to 218 return the type of the given hyperedge, and $\mathbf{W}_{\Psi(e_k)}$ denotes 219 the aggregation weights for the given the type $\Psi(e_k)$.

²²⁰ 3.3 Low-level Policy

 In the initial phase of the HHCoR system, the low-level agent is responsible for meticulously rating historical courses, and this rating process is a key foundation for understanding and recognizing user decision-making patterns. Subsequent sec- tions will detail the core components and operational mecha-nisms that make up low-level decision-making.

 State. We use hyperedge embeddings as a representation of states. Specifically, for the low-level agent, states aim to cap- ture the preferences and interactions of multiple aspects of the MOOC platform. Therefore, we connect relevant hyperedge 231 embeddings to represent the state. Formally, let s^l denote the low-level agent state define as

$$
s^{l} = \text{CONCATENATE}(\mathbf{q}_{c}, \mathbf{q}_{k}, \mathbf{q}_{o})
$$

\n
$$
c = \Theta_{\mathbf{c}}(u) \& k = \Theta_{\mathbf{k}}(u) \& o = \Theta_{\mathbf{o}}(u),
$$
\n(5)

233 where $\Theta_{\bf c}(u)$, $\Theta_{\bf k}(u)$ and $\Theta_{\bf o}(u)$ denote the indexes of asso-²³⁴ ciated course hyperedge, concept hyperedge, and video hy-235 peredge for the user u , respectively.

 Low-Level Agent with DDPG. In the HHCoR framework, the low-level agent comprises two parts: the 'critic', which assesses historical courses by computing the value function $Q(s, a | \theta^Q)$ for each action, and the 'actor', which refines strategies based on these evaluations. This process involves scoring predictions to reflect the effectiveness of course ac- tions, with the output—a weight between 0 and 1—indicating each course's significance for user representation. The value function is defined as

$$
Q(s^l, a^l | \theta^Q) \approx Q^*(s^l, a^l),\tag{6}
$$

245 Where $Q^*(s^l, a^l)$ represents the optimal action-value func-²⁴⁶ tion. The critic network is trained by minimizing a defined ²⁴⁷ loss function defined as

$$
L(\theta^{Q}) = \mathbb{E}_{s^{l}, a^{l}, r^{l}, s^{l'}} [(Q(s^{l}, a^{l} | \theta^{Q}) - y)^{2}], \qquad (7)
$$

248 Where $y = r^l + \gamma Q(s^{l'}, a^{l'} | \theta^Q)$ is the target value, γ denotes ²⁴⁹ discount factor emphasizing the importance of future rewards 250 and $s^{l'}$ and $a^{l'}$ represent the next state and action respectively. ²⁵¹ In the actor component, another neural network is used to 252 approximate the policy with parameters $θ^μ$ defined as

$$
\mu(s^l|\theta^\mu) \approx {\pi^l}^*(s^l),\tag{8}
$$

253 where $\pi^*(s^l)$ is the optimal policy.

The actor-network is trained by applying the policy gradi- ²⁵⁴ ent [\[Kakade, 2001\]](#page-7-7) defined as 255

$$
\nabla_{\theta^{\mu}} J \approx \mathbb{E}_{s^{l}}[\nabla_{\theta^{\mu}} \mu(s^{l}|\theta^{\mu}) \nabla_{a^{l}} Q(s^{l}, a^{l}|\theta^{Q})]. \tag{9}
$$

Then, to enhance the exploration capabilities of our model, 256 we introduce the controllable stochasticity [\[Lapan, 2018\]](#page-7-8) 257 to promote exploration. Specifically, we use the Ornstein- ²⁵⁸ Uhlenbeck [\[Lillicrap](#page-7-9) *et al.*, 2016] process to generate tempo- 259 rally correlated noise. 260

Low-level Reward Function. The reward function for low- ²⁶¹ level agents is intended to guide learning. The reward r^l is 262 computed as the change in correlation between the target pre- ²⁶³ dicted value and the real enrolled course before and after the 264 action a^l , defined as 265

$$
r^{l} = Q(s^{l'}, a^{l'} | \theta^{Q}) - Q(s^{l}, a^{l} | \theta^{Q}), \qquad (10)
$$

where the agent's action a^l outputs a probability ranging from 266 0 to 1, indicating the current course's relevance to the user's ²⁶⁷ historical preferences. 268

If a low-level agent's action a^l improves the relevance of 269 a target course's prediction, it earns a positive reward; other- ²⁷⁰ wise, a negative reward is given for reduced relevance. This 271 incentivizes the agent to adjust the importance weights of his- ²⁷² torical courses, enhancing predictive accuracy. Continuous ²⁷³ interaction with the environment and corresponding rewards ²⁷⁴ enable the agent to develop effective course rating strategies, 275 thus aiding the decision-making of high-level agents. 276

3.4 High-level Policy 277

The high-level decision-making process employs a special- ²⁷⁸ ized agent to amalgamate insights garnered from lower-level 279 agents, effectively merging these insights with platform fac- ²⁸⁰ tors within the MOOC hypergraph framework. This integra- ²⁸¹ tion facilitates the formulation of a comprehensive course rec- ²⁸² ommendation decision. This section delineates the principal ²⁸³ components of the high-level agent and provides an overview ²⁸⁴ of its operational workflow. ²⁸⁵

State. In order to encapsulate the low-level agent's under- ²⁸⁶ standing of the user's preference, the state of the high-level 287 agent is defined by the updated low-level agent state defined ²⁸⁸ $\frac{1}{289}$

$$
\mathbf{s}^{h} = \text{CONCATENATE}(\mathbf{q}'_{c}, \mathbf{q}'_{k}, \mathbf{q}'_{o})
$$

\n
$$
\mathbf{c} = \Theta_{\mathbf{c}}(u) \& \mathbf{k} = \Theta_{\mathbf{k}}(u) \& \mathbf{o} = \Theta_{\mathbf{o}}(u), \tag{11}
$$

where \mathbf{q}'_{c} , \mathbf{q}'_{k} and \mathbf{q}'_{o} denote the relevant course hyperedge, 290 concept hyperedge, and video hyperedge embeddings of user ²⁹¹ u after the low-level agent update. 292

High-Level Agent with REINFORCE. The high-level agent 293 implements the REINFORCE algorithm [\[Williams, 1992\]](#page-7-10), ²⁹⁴ utilizing feedback from the low-level agent and environmen- ²⁹⁵ tal data for prediction guidance. This agent adopts a stochas- ²⁹⁶ tic policy $\pi^h(s^h, a^h | \theta^{\pi^h})$, with s^h and a^h denoting the state 297 and action, respectively, aimed at forecasting the user's next ²⁹⁸ likely course selection. The policy parameters θ^{π^h} are refined 299 through gradient ascent define as 300

$$
\nabla_{\theta^{\pi^h}} J \approx \mathbb{E}_{s^h, a^h} [\nabla_{\theta^{\pi^h}} \log \pi^h(s^h, a^h | \theta^{\pi^h})
$$

$$
\cdot (Q^h(s^h, a^h) - b(s^h))],
$$
 (12)

Datasets	MOOCCube							MOOCCourse				
Metrics		HR			NDCG			HR			NDCG	
Baselines	@5	@10	@20	@5	@10	@20	@5	@10	@20	@5	@10	@20
FISM	0.1254	0.2001	0.3187	0.0800	0.1039	0.1336	0.2584	0.3925	0.5779	0.1758	0.2189	0.2655
MLP	0.1939	0.3006	0.4498	0.1233	0.1576	0.1951	0.4874	0.6306	0.7790	0.3532	0.3994	0.4370
NAIS	0.1194	0.1956	0.3123	0.0758	0.1004	0.1296	0.2642	0.4042	0.5875	0.1753	0.2202	0.2664
HRL	0.2580	0.4027	0.6116	0.1609	0.2075	0.2600	0.6543	0.8061	0.8796	0.4717	0.5216	0.5403
SR-GNN	0.0881	0.1360	0.2386	0.0636	0.0788	0.1041	0.2441	0.3024	0.3759	0.1792	0.2179	0.2364
LightGCN	0.1488	0.2024	0.3411	0.0822	0.0933	0.2422	0.2704	0.4412	0.6645	0.1994	0.2645	0.2933
COTREC	0.0823	0.1336	0.1960	0.0440	0.0605	0.0762	0.2046	0.2623	0.3392	0.1017	0.1201	0.1395
DHCN	0.1272	0.1856	0.2508	0.0927	0.1115	0.1279	0.1973	0.2416	0.3139	0.1463	0.1604	0.1786
CoHHN	0.2776	0.4316	0.6355	0.2230	0.2370	0.2460	0.5514	0.6837	0.7991	0.4236	0.4931	0.5525
HHCoR	0.3477	0.5140	0.7420	0.2241	0.2816	0.3135	0.6985	0.8351	0.8932	0.5041	0.5635	0.5830

Table 1: Overall Performance Comparison.

301 Where $Q^h(s^h, a^h)$ is the action-value function as estimated 302 by the high-level agent and $b(s^h)$ is a baseline function for variance reduction. We adopt the mean of the action-value function as this baseline function. The high-level agent pro- cesses the output of the low-level agent along with the envi-ronmental information to make its decisions.

³⁰⁷ Exploring Deterministic and Stochastic Policies. We ex-³⁰⁸ plore two policies for the high-level agent: a deterministic ³⁰⁹ policy and a stochastic policy.

 • Stochastic Policy: By employing the REINFORCE al- gorithm, Advanced Agents adopt a random strategy to introduce a certain degree of randomness in course se- lection. This approach facilitates deeper exploration of the course catalog to uncover hidden preferences or in-terests of users.

 • Deterministic Policy: Conversely, we implement a de- terministic policy for the high-level agent where it con- sistently recommends the same courses in response to specific user profiles or behaviors. This approach en- sures stability and efficiency, focusing on optimizing user satisfaction with highly relevant courses, although it may limit the variety of courses explored.

 High-level Reward Function. We developed a reward func- tion r^h for the high-level agent, aimed at enhancing its decision-making accuracy. This function comprises three 326 components: (1) Concept similarity r_k between the target and 327 predicted courses, ; (2) Video content similarity r_o between the target and predicted courses; and (3) The probability of 329 recommending the target course r_p . The overall reward is a combination of these elements defined as

$$
r^h = w_k \cdot r_k + w_o \cdot r_o + w_p \cdot r_p,\tag{13}
$$

331 where w_k , w_o , and w_p denote the weights for balancing the 332 influence of r_k , r_o , r_p , respectively.

 This weighting allows for fine-tuning of the recommenda- tion process, ensuring that each aspect of the user's prefer- ences is appropriately considered, leading to highly personal-ized and effective course recommendations.

4 Experiment 337

In our study, we carried out a comprehensive series of exper-
338 iments on two real-world MOOC datasets to address five key 339 research questions: 340

- Q1: How is the performance of our proposed HHCoR in 341 the course recommendation task? 342
- Q2: How does the MOOC hypergraph affect HHCoR 343 recommendation performance? 344
- Q3: How does the MOOC hyperedge affect HHCoR 345 recommendation performance? 346
- **Q4:** How do different components of the agent con- 347 tribute to decision-making in our model? 348
- **Q5:** How do different reward designs impact course rec- 349 ommendation performance? 350

4.1 Experiment Settings 351

Datasets. We evaluate the model performance using two 352 datasets: the MOOCCube [Yu *et al.*[, 2020\]](#page-8-3) and the MOOC- ³⁵³ Course [\[Zhang](#page-8-0) *et al.*, 2019; Lin *et al.*[, 2022\]](#page-7-11). The samples ³⁵⁴ in the training and test sets consist of a sequence of historical 355 courses with the target course. For training, the last course ³⁵⁶ in the sequence is the target course and the rest are history ³⁵⁷ courses. Each positive sample corresponds to the construc- ³⁵⁸ tion of four negative samples that replace the target course. ³⁵⁹ For testing, the course in the test set was used as the target 360 and paired with 99 random negative samples. 361

Baselines. We compare our proposed method with the fol- ³⁶² [l](#page-7-12)owing baseline algorithms, including (1) FISM [\[Kabbur](#page-7-12) *et* ³⁶³ *[a](#page-7-14)l.*[, 2013\]](#page-7-12); (2) MLP [He *et al.*[, 2017\]](#page-7-13); (3) NAIS [He *[et al.](#page-7-14)*, ³⁶⁴ [2018\]](#page-7-14); (4) HRL [Zhang *et al.*[, 2019\]](#page-8-0); (5) SR-GNN [\[Wu](#page-7-15) *et* ³⁶⁵ *[a](#page-7-17)l.*[, 2019\]](#page-7-15); (6) LightGCN [He *et al.*[, 2020\]](#page-7-16); (7) DHCN [\[Xia](#page-7-17) ³⁶⁶ *et al.*[, 2021b\]](#page-7-17); (8) COTREC [Xia *et al.*[, 2021a\]](#page-7-18) and (9) Co- ³⁶⁷ **HHN** [\[Zhang](#page-8-4) *et al.*, 2022]. 368

Evaluation Metrics. We evaluate the course recommenda- ³⁶⁹ tion accuracy in terms of the widely used metrics, including 370 hit ratio (HR@N) and normalized discounted cumulative gain 371 (NDCG@N). Evaluation was performed with $N = 5$, 10, 20. 372

Figure 3: An ablation study on hypergraph.

373 Hyperparameter Settings. For the hypergraph representa- tion, the dimensionality of the node embeddings was set to 64 and we utilized 8 attention heads in the attention mech- anism. The DDPG agent and the REINFORCE agent were 377 optimized with a discount factor (γ) set to 0.99. Both the agents employed Adam optimizers, with the learning rates set to 0.001.

³⁸⁰ 4.2 Overall Performance (Q1)

 In this section, we compare the overall performance of all models on real datasets. Overall, as Table [1](#page-4-0) indicates, our model outperforms other baselines in HR and NDCG met- rics. Compared with MLP representing node attributes, item- based collaborative filtering methods (FISM, NAIS), rein- forcement learning-based methods (HRL), and graph neu- ral network-based methods (SR-GNN, LightGCN, COTREC, DHCN, CoHHN), Our proposed method incorporates course- related auxiliary information, which is more comprehensive and performs better in capturing users' interests. Com- pared with item-based collaborative filtering methods and reinforcement learning-based methods, our proposed frame- work also considers heterogeneous hypergraph embeddings and high-order semantic relations between heterogeneous in- formation. Compared to graph neural network-based meth- ods, our proposed method analyzes the degree to which each historical course of a user represents that user's interests. In conclusion, the results validate that our model is beneficial for course recommendation, which can help to better infer users' interests and improve recommendation accuracy.

⁴⁰¹ 4.3 The Study of MOOC Hypergraph (Q2)

 We conducted an experiment to verify the necessity of the hypergraph structure. In this experiment, we designed a vari- ant of HHCoR, called (HHCoR', which directly takes the user's sequence as input without using the hypergraph struc- ture. Beyond that, we replaced the hypergraph representation with other well-known graph representations such as Graph Convolutional Network (GCN) and Graph Attention Network (GAT). As shown in Figure [3,](#page-5-0) HHCoR exhibits a significant performance advantage. The superiority of HHCoR over its variants underscores the unique ability of hypergraph archi- tectures to model complex relationships and higher-order in- teractions among data points, which standard graph models like GCN and GAT might miss.

Figure 4: An ablation study on hyperedge types.

Figure 5: An ablation study of the low-level agent.

4.4 The Study of MOOC Hyperedges (Q3) 415

In the MOOCCube dataset, we conducted experiments to as-
416 sess hyperedge types' impact, including the removal of con- ⁴¹⁷ cept (e_1) , video (e_2) , feature (e_3) hyperedges individually, 418 and removing all except the course hyperedge (e_4) . For the 419 MOOCCourse dataset, experiments involved removing field 420 (e_1) and feature (e_2) hyperedges, and a combined removal 421 of field and feature (e_3) . As shown in Figure [4,](#page-5-1) the perfor- 422 mance of different hyperedge combinations varies, highlight- 423 ing their importance in capturing the multi-semantics of users 424 on MOOC platforms. HHCoR achieves optimal performance ⁴²⁵ when it incorporates all types of hyperedges. 426

4.5 The Study of Agent Architecture $(Q4)$ 427

The design of Low-level Agent. The results from HHCoR- ⁴²⁸ L, where the low-level agent is omitted, indicate a marked 429 reduction in the system's capacity for precise user preference ⁴³⁰ analysis, highlighting the agent's integral role in processing ⁴³¹ course-related data. In the case of HHCoR-S, restricting the ⁴³² agent's exploration scope leads to a diminished ability to gen- ⁴³³ erate innovative recommendations, crucial for adaptive learn- ⁴³⁴ ing. As Figure [5,](#page-5-2) these outcomes not only validate the es- ⁴³⁵ sential role of the low-level agent in the HHCoR framework 436 but also underscore its contribution to the sophistication and 437 reliability of the course recommendation process. 438

The design of High-level Agent. Our study examined 439 the significance of the high-level agent in our hierarchi- ⁴⁴⁰ cal reinforcement learning model through two experiments: ⁴⁴¹ HHCoR-H, which omits the high-level agent's explicit pre- ⁴⁴² dictive function, and HHCoR-D, employing a deterministic ⁴⁴³ policy for the high-level agent. These tests, results of which ⁴⁴⁴ are depicted in Figure [6,](#page-6-0) aimed to assess the influence of the ⁴⁴⁵ high-level agent's predictive capacity and policy randomness 446

Figure 6: An ablation study of the high-level agent.

 on model performance. The findings confirm that the high- level agent's explicit prediction, stochastic policy, and col- laborative reward mechanism are integral to the overall effec-tiveness and robustness of our model.

451 4.6 The Study of Reward Design $(Q5)$

 We consider combinations of weight settings for high-level agents and different reward functions to test the performance of HHCoR. The low-level reward is automatically learned and cannot be manually adjusted. Therefore, we only analyze the reward settings of the high-level agent. In our analysis, 457 MOOCCube considers three components: w_k , w_o , and w_p , 458 while MOOCCourse involves two components: w_t and w_p . We mapped the performance of various combinations (where $w_k + w_o + w_p = 1$ for MOOCCube, and $w_t + w_p = 1$ for MOOCCourse) onto 3D and 2D spaces, respectively. As shown in Figure [7,](#page-6-1) the better the performance, the darker the ⁴⁶³ color.

⁴⁶⁴ 5 Related Work

⁴⁶⁵ 5.1 Personalized Course Recommendation

 Personalized course recommendation has advanced from traditional content-based and collaborative filtering, which struggles with scalability and capturing dynamic user pref- erences, to more sophisticated machine learning techniques. These include matrix factorization, factorization machines, and deep learning methods like autoencoders and RNNs, which better handle complex user-course interactions. Stud- ies like [Hou *et al.*[, 2018;](#page-7-1) Xu *et al.*[, 2024;](#page-8-5) Xu *et al.*[, 2022;](#page-8-2) [Yang and Jiang, 2019\]](#page-8-6) have made notable contributions, uti- lizing course clusters and combined user-course networks, re- spectively. Despite improvements, these methods still face challenges in adapting to the evolving and varied preferences of online learning users.

⁴⁷⁹ 5.2 Graph-based Methods in Course ⁴⁸⁰ Recommendation

 Graph-based methods like GCN have been increasingly ap- plied in personalized course recommendation to address its challenges. Studies like [Wang *et al.*[, 2021;](#page-7-2) Zhu *et al.*[, 2023a;](#page-8-7) Wang *et al.*[, 2022\]](#page-7-19) effectively utilize these techniques for cap- turing intricate user-course relationships, with the latter view- ing user embeddings as hyperedges in a learning hypergraph. Such methods excel in identifying complex, high-order re-lationships, a feat traditional methods often miss. However,

Figure 7: The analysis of reward of the high-level agent.

they typically assume a homogeneous graph structure, which 489 doesn't align with the heterogeneous nature of MOOCs. To ⁴⁹⁰ address this, [Fan *et al.*[, 2021;](#page-7-3) Xia *et al.*[, 2022\]](#page-8-8) have explored 491 the use of heterogeneous hypergraphs and hypergraph trans- ⁴⁹² former networks, respectively, offering a more fitting solution 493 for modeling the diverse and complex relationships prevalent 494 in MOOC platform. ⁴⁹⁵

5.3 Reinforcement Learning in Course 496 Recommendation 497

Reinforcement learning (RL) in course recommendation ⁴⁹⁸ treats it as a sequential decision-making problem, adept at ⁴⁹⁹ handling dynamic user behavior for optimized long-term sug- 500 [g](#page-8-10)estions. [Gong *et al.*[, 2022;](#page-7-20) Zhu *et al.*[, 2020;](#page-8-9) [Zhu](#page-8-10) *et* ⁵⁰¹ *al.*[, 2023b\]](#page-8-10) approached MOOC recommendations using RL, ⁵⁰² employing meta-paths on HIN and a heterogeneous graph 503 attention network. Similarly, [Jiang *et al.*[, 2023\]](#page-7-21) used a ⁵⁰⁴ MOOC knowledge graph to guide interpretable recommen- ⁵⁰⁵ dation paths. Traditional RL, however, struggles with large, ⁵⁰⁶ complex action spaces typical in course recommendations, ⁵⁰⁷ necessitating the use of Hierarchical Reinforcement Learn- ⁵⁰⁸ [i](#page-8-13)ng (HRL). [Xie *et al.*[, 2021;](#page-8-11) [Zhang](#page-8-12) *et al.*, 2024; [Zhao](#page-8-13) *et al.*, ⁵⁰⁹ [2020\]](#page-8-13) tackled this by dividing the recommendation process 510 into multiple tasks, with agents operating at different abstrac- ⁵¹¹ tion levels, thereby effectively managing personalized and 512 multi-objective recommendations. 513

6 Conclusion 514

In this paper, we study the problem of personalized course 515 recommendation with a MOOC hypergraph and propose ⁵¹⁶ a hierarchical reinforcement learning framework for multi- ⁵¹⁷ channel hypergraph neural networks for online course rec- ⁵¹⁸ ommendation. Specifically, we first formulate the MOOC 519 personalized recommendation problem as a task based on hi- ⁵²⁰ erarchical reinforcement learning. Secondly, we construct a 521 MOOC hypergraph and propose to use the attention mech- ⁵²² anism to extract the multi-channel semantics of MOOC en- ⁵²³ tity relationships in different channels and capture user pref- ⁵²⁴ erences. Third, we design a policy optimization framework 525 based on hierarchical reinforcement learning and introduce 526 reward function guidance mechanism to optimize the two- ⁵²⁷ level agent's policy. Finally, we conduct extensive experi- ⁵²⁸ ments on two real-world MOOC datasets to verify the effec- 529 tiveness of our proposed method. 530

⁵³¹ Acknowledgments

 This work is supported by NSFC(under Grant No. 62106040, 61976050) , Jilin Province Science and Technology De- partment Project (under Grant No. YDZJ202201ZYTS415, 20240602005RC), Jilin Education Department Project un- der Grant No.JJKH20231319KJ, Jilin Science and Tech- nology Association under Grant No. QT202320, and the Fundamental Research Funds for the Central Universities No.2412022ZD016, JLU. This work is surported by the Sci- ence and Technology Development Fund (FDCT), Macau SAR (file no. 0123/2023/RIA2, 001/2024/SKL), the Start-up Research Grant of University of Macau (File no. SRG2021- 00017-IOTSC).

⁵⁴⁴ References

⁵⁴⁵ [Elfwing *et al.*, 2018] Stefan Elfwing, Eiji Uchibe, and Kenji ⁵⁴⁶ Doya. Sigmoid-weighted linear units for neural network ⁵⁴⁷ function approximation in reinforcement learning. *Neural*

⁵⁴⁸ *Networks*, 107:3–11, 2018.

- ⁵⁴⁹ [Fan *et al.*, 2021] Haoyi Fan, Fengbin Zhang, Yuxuan Wei, ⁵⁵⁰ Zuoyong Li, Changqing Zou, Yue Gao, and Qionghai ⁵⁵¹ Dai. Heterogeneous hypergraph variational autoencoder ⁵⁵² for link prediction. *IEEE Trans. Pattern Anal. Mach. In-*⁵⁵³ *tell.*, 44(8):4125–4138, 2021.
- ⁵⁵⁴ [Feinberg and Shwartz, 2012] Eugene A Feinberg and Adam ⁵⁵⁵ Shwartz. *Handbook of Markov decision processes: meth-*⁵⁵⁶ *ods and applications*, volume 40. Springer Science Busi-⁵⁵⁷ ness Media, 2012.
- ⁵⁵⁸ [Gong *et al.*, 2022] Jibing Gong, Yao Wan, Ye Liu, Xuewen ⁵⁵⁹ Li, Yi Zhao, Cheng Wang, Yuting Lin, Xiaohan Fang, ⁵⁶⁰ Wenzheng Feng, Jingyi Zhang, et al. Reinforced moocs ⁵⁶¹ concept recommendation in heterogeneous information ⁵⁶² networks. *ACM Trans. Web*, 2022.
- ⁵⁶³ [He *et al.*, 2017] Xiangnan He, Lizi Liao, Hanwang Zhang, ⁵⁶⁴ Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural collabo-⁵⁶⁵ rative filtering. In *WWW*, pages 173–182, 2017.
- ⁵⁶⁶ [He *et al.*, 2018] Xiangnan He, Zhankui He, Jingkuan Song, ⁵⁶⁷ Zhenguang Liu, Yu-Gang Jiang, and Tat-Seng Chua. Nais: ⁵⁶⁸ Neural attentive item similarity model for recommenda-⁵⁶⁹ tion. *IEEE Trans. Knowl. Data Eng.*, 30(12):2354–2366, ⁵⁷⁰ 2018.
- ⁵⁷¹ [He *et al.*, 2020] Xiangnan He, Kuan Deng, Xiang Wang, ⁵⁷² Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn: ⁵⁷³ Simplifying and powering graph convolution network for ⁵⁷⁴ recommendation. In *SIGIR*, pages 639–648, 2020.
- ⁵⁷⁵ [Hou *et al.*, 2018] Yifan Hou, Pan Zhou, Jie Xu, and ⁵⁷⁶ Dapeng Oliver Wu. Course recommendation of mooc with ⁵⁷⁷ big data support: A contextual online learning approach.
- ⁵⁷⁸ In *INFOCOM WKSHPS*, pages 106–111. IEEE, 2018.
- ⁵⁷⁹ [Jiang *et al.*, 2023] Lu Jiang, Kunpeng Liu, Yibin Wang, ⁵⁸⁰ Dongjie Wang, Pengyang Wang, Yanjie Fu, and Minghao ⁵⁸¹ Yin. Reinforced explainable knowledge concept recom-⁵⁸² mendation in moocs. *ACM Trans. Intell. Syst. Technol.*, ⁵⁸³ 14(3):1–20, 2023.
- [Kabbur *et al.*, 2013] Santosh Kabbur, Xia Ning, and George 584 Karypis. Fism: Factored item similarity models for top-n 585 recommender systems. In *KDD*, pages 659–667, 2013. 586
- [Kakade, 2001] Sham M Kakade. A natural policy gradi- ⁵⁸⁷ ent. *Advances in neural information processing systems*, ⁵⁸⁸ 14, 2001. 589
- [Lapan, 2018] Maxim Lapan. *Deep Reinforcement Learn-* ⁵⁹⁰ *ing Hands-On: Apply modern RL methods, with deep* ⁵⁹¹ *Q-networks, value iteration, policy gradients, TRPO, Al-* ⁵⁹² *phaGo Zero and more.* Packt Publishing Ltd, 2018. 593
- [Lillicrap *et al.*, 2016] T Lillicrap, J Hunt, Alexander Pritzel, 594 N Hess, Tom Erez, D Silver, Y Tassa, and D Wiestra. Con- ⁵⁹⁵ tinuous control with deep reinforcement learning. In *ICRL*, ⁵⁹⁶ $2016.$ 597
- [Lin *et al.*, 2022] Yuanguo Lin, Fan Lin, Lvqing Yang, Wen- 598 hua Zeng, Yong Liu, and Pengcheng Wu. Context-aware 599 reinforcement learning for course recommendation. Ap- 600 *plied Soft Computing*, 125:109189, 2022.
- [Shao *et al.*, 2021] Erzhuo Shao, Shiyuan Guo, and 602 Zachary A Pardos. Degree planning with plan-bert: ⁶⁰³ Multi-semester recommendation using future courses of 604 interest. In *AAAI*, volume 35, pages 14920–14929, 2021. 605
- [Valdivia et al., 2021] Paola Valdivia, Paolo Buono, Cather- 606 ine Plaisant, Nicole Dufournaud, and Jean-Daniel Fekete. ⁶⁰⁷ Analyzing dynamic hypergraphs with parallel aggregated 608 ordered hypergraph visualization. *IEEE Trans. Vis. Com-* ⁶⁰⁹ *put. Graph.*, 27(1):1–13, 2021. 610
- [Wang *et al.*, 2021] Jingjing Wang, Haoran Xie, Fu Lee 611 Wang, Lap-Kei Lee, and Oliver Tat Sheung Au. Top-n per- ⁶¹² sonalized recommendation with graph neural networks in 613 moocs. *Computers and Education: Artificial Intelligence*, ⁶¹⁴ 2:100010, 2021. ⁶¹⁵
- [Wang *et al.*, 2022] Xinhua Wang, Wenyun Ma, Lei Guo, ⁶¹⁶ Haoran Jiang, Fangai Liu, and Changdi Xu. Hgnn: ⁶¹⁷ Hyperedge-based graph neural network for mooc course 618 recommendation. *Inf. Process. Manag.*, 59(3):102938, ⁶¹⁹ 2022. ⁶²⁰
- [Williams, 1992] Ronald J Williams. Simple statistical ⁶²¹ gradient-following algorithms for connectionist reinforce- ⁶²² ment learning. *Machine Learning*, 8:229–256, 1992. 623
- [Wu *et al.*, 2019] Shu Wu, Yuyuan Tang, Yanqiao Zhu, ⁶²⁴ Liang Wang, Xing Xie, and Tieniu Tan. Session-based 625 recommendation with graph neural networks. In *AAAI*, ⁶²⁶ volume 33, pages 346–353, 2019.
- [Xia *et al.*, 2021a] Xin Xia, Hongzhi Yin, Junliang Yu, ⁶²⁸ Yingxia Shao, and Lizhen Cui. Self-supervised graph co- ⁶²⁹ training for session-based recommendation. In *CIKM '21*, ⁶³⁰ page 2180–2190, New York, NY, USA, 2021. ACM. 631
- [Xia *et al.*, 2021b] Xin Xia, Hongzhi Yin, Junliang Yu, ⁶³² Qinyong Wang, Lizhen Cui, and Xiangliang Zhang. ⁶³³ Self-supervised hypergraph convolutional networks for ⁶³⁴ session-based recommendation. In *AAAI*, volume 35, ⁶³⁵ pages 4503–4511, 2021. 636
- [Xia *et al.*, 2022] Lianghao Xia, Chao Huang, and Chuxu
- Zhang. Self-supervised hypergraph transformer for rec-ommender systems. In *KDD*, pages 2100–2109, 2022.
- [Xie *et al.*, 2021] Ruobing Xie, Shaoliang Zhang, Rui Wang, Feng Xia, and Leyu Lin. Hierarchical reinforcement learn-
- ing for integrated recommendation. In *AAAI*, volume 35, pages 4521–4528, 2021.
- [Xu *et al.*, 2022] Yuanbo Xu, En Wang, Yongjian Yang, and Yi Chang. A unified collaborative representation learn-ing for neural-network based recommender systems. *IEEE*
- *Trans. Knowl. Data Eng.*, 34(11):5126–5139, 2022.
- [Xu *et al.*, 2024] Yuanbo Xu, En Wang, Yongjian Yang, and Hui Xiong. GS-RS: A generative approach for alleviat- ing cold start and filter bubbles in recommender systems. *IEEE Trans. Knowl. Data Eng.*, 36(2):668–681, 2024.
- [Yang and Cai, 2022] Shuang Yang and Xuesong Cai. Bilat- eral knowledge graph enhanced online course recommen-dation. *Information Systems*, 107:102000, 2022.
- [Yang and Jiang, 2019] Xixi Yang and Wenjun Jiang. Dy- namic online course recommendation based on course net- work and user network. In *iSCI*, pages 180–196. Springer, 2019.
- [Yu *et al.*, 2020] Jifan Yu, Gan Luo, Tong Xiao, Qingyang Zhong, Yuquan Wang, Wenzheng Feng, Junyi Luo, Chenyu Wang, Lei Hou, Juanzi Li, et al. Mooccube: a large-scale data repository for nlp applications in moocs. In *ACL*, pages 3135–3142, 2020.
- [Zhang *et al.*, 2019] Jing Zhang, Bowen Hao, Bo Chen, Cuiping Li, Hong Chen, and Jimeng Sun. Hierarchi- cal reinforcement learning for course recommendation in moocs. In *AAAI*, volume 33, pages 435–442, 2019.
- [Zhang *et al.*, 2022] Xiaokun Zhang, Bo Xu, Liang Yang, Chenliang Li, Fenglong Ma, Haifeng Liu, and Hongfei Lin. Price does matter! modeling price and interest prefer-ences in session-based recommendation. In *SIGIR*, pages
- 1684–1693, 2022. [Zhang *et al.*, 2024] Zhaofan Zhang, Yanan Xiao, Lu Jiang, Dingqi Yang, Minghao Yin, and Pengyang Wang. Spatial-
- temporal interplay in human mobility: A hierarchical re- inforcement learning approach with hypergraph represen-tation. pages 9396–9404. AAAI Press, 2024.
- [Zhao *et al.*, 2020] Dongyang Zhao, Liang Zhang, Bo Zhang, Lizhou Zheng, Yongjun Bao, and Weipeng Yan. Mahrl: Multi-goals abstraction based deep hierar- chical reinforcement learning for recommendations. In *SIGIR*, pages 871–880, 2020.
- [Zhu *et al.*, 2020] Yifan Zhu, Hao Lu, Ping Qiu, Kaize Shi, James Chambua, and Zhendong Niu. Heterogeneous teaching evaluation network based offline course recom- mendation with graph learning and tensor factorization. *Neurocomputing*, 415:84–95, 2020.
- [Zhu *et al.*, 2023a] Yifan Zhu, Fangpeng Cong, Dan Zhang,
- Wenwen Gong, Qika Lin, Wenzheng Feng, Yuxiao Dong,
- and Jie Tang. WinGNN: dynamic graph neural networks
- with random gradient aggregation window. In *The 29th*

ACM SIGKDD Conference on Knowledge Discovery and ⁶⁹² *Data Mining, KDD 2023*. ACM, 2023. ⁶⁹³

[Zhu *et al.*, 2023b] Yifan Zhu, Qika Lin, Hao Lu, Kaize Shi, ⁶⁹⁴ Donglei Liu, James Chambua, Shanshan Wan, and Zhen- ⁶⁹⁵ dong Niu. Recommending learning objects through atten- ⁶⁹⁶ tive heterogeneous graph convolution and operation-aware 697 neural network. *IEEE Transactions on Knowledge and* ⁶⁹⁸ *Data Engineering*, 35(4):4178–4189, 2023. 699