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Abstract
Sequential models aim to predict future interac-
tions based on users’ historical interaction se-
quences. Traditional sequential methods primarily
focus on capturing intra-historical sequence depen-
dencies, overlooking the influence of unobserved
confounders in recommendation scenarios. Recent
studies incorporate time as additional information
helps the model capture dynamic user preferences.
However, time is just the external manifestation
of the influence of confounders but not the actual
cause of the dynamic of user preference. Addi-
tionally, improperly integrating time with item em-
beddings can obstruct the model’s ability to cap-
ture sequence dependencies. To address these chal-
lenges, we first revisit the sequential recommenda-
tion problem from a causal perspective and incor-
porate confounders as a new task. We propose a
new framework—Flow-based Time-aware Causal
Structure for Sequential Recommendation (FC-
SRec)—explicitly incorporating unobserved con-
founders’ influence in the recommendation pro-
cess. Specifically, we use Normalizing Flows to
learn the causal graph of confounders and incorpo-
rate time information as conditional info to capture
confounders’ time-sensitive representations. To
balance the influence of confounders and sequence
dependencies, we introduce a classifier-free train-
ing paradigm by randomly masking the influence
of confounders during training to encourage the
model to learn both sequence dependencies and
confounders’ influence equally. We validate FC-
SRec on manifold real-world datasets, and experi-
mental results show that FCSRec outperforms sev-
eral state-of-the-art methods in recommendation
performance. Our code is available at Code-link.

1 Introduction
Sequential recommendation systems play a crucial role in
filtering and personalizing content for users on digital plat-
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Figure 1: Conventional modeling versus a more rational modeling
approach. (a) is the conventional modeling, (b) uses time as ad-
ditional information where time acts as the confounder, and (c) is
the rational modeling proposed in this work. I→Item; Y→User
feedback; T→Timestamp; ϵ→exogenous variables of confounders;
c→confounders.

forms. Sequential recommendation models provide efficient
real-time recommendations by predicting future interactions
based on users’ historical interaction sequences, item at-
tributes, and various contextual features.

Recent advancements in sequential recommendation tech-
niques have led to the development of various methods that
leverage the correlations in users’ historical interactions.
These approaches aim to effectively learn the sequence de-
pendencies within users’ interaction history to improve the
recommendation performance. Recurrent Neural Networks
(RNNs) [Hidasi and Karatzoglou, 2018; Kang and McAuley,
2018] are frequently used to capture different aspects of user
engagement and sequential dependencies. Meanwhile, Graph
Neural Networks (GNNs) [Xu et al., 2019] are employed
to identify complex co-occurrence relationships and higher-
order structural dependencies within sequential data. As il-
lustrated in Figure 1 (a), traditional sequential recommenda-
tion methods primarily focus on modeling the sequential de-
pendencies in historical interaction sequences (I → Y). As
a result, these methods often produce highly similar recom-
mendations for users with identical interaction sequences.

Several methods have been proposed that incorporate time
as additional information to improve performance in model-
ing user-item interactions [Wang et al., 2022a; Jiang et al.,
2023]. As illustrated in Figure 1 (b), time simultaneously in-
fluences both items and interactions: items may exist in dif-
ferent states at different times (T → I), and user preferences
can change over time (T → Y), where time serves as a con-
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founder. By incorporating time information, models can bet-
ter capture time-sensitive item embeddings. However, time is
just one of many observable confounders that affect user-item
interactions, and numerous unobserved confounders are yet
to be considered. Furthermore, directly combining time and
item embeddings for joint learning risks pushing the model
toward the local optimum, potentially failing to capture item
sequential dependencies and underutilizing the representa-
tion space, thus harming the model’s performance. This ap-
proach risks inadequately capturing the dependencies within
item sequences while underutilizing the representation space
for both items and time, which could negatively impact the
model’s performance.

The unobservability of confounders limits our access to
observable features, such as items or user attributes related
to them. Moreover, the causal graph between confounders is
also unknown, posing significant challenges in modeling their
influences. As shown in Figure 1 (c), confounders primarily
depend on their external variables and experience periodic or
irregular changes over time, finally influencing the interac-
tion between users and items, resulting in shifts in item states
as well as users’ long-term and short-term preferences. We
argue that time does not directly affect the state of items or
user preferences. Instead, it is the impact of confounders that
evolves over time. In other words, time information serves as
a reflection of the changing influence of confounders. Specif-
ically, time information serves as an external manifestation of
the influence of confounders.

To address these challenges, we reformulate the sequen-
tial recommendation task to incorporate the influence of the
unobserved confounders. We demonstrate that we can trans-
form any acyclic causal graph into a topological causal or-
der to model confounders and learn the causal relations be-
tween them, allowing us to learn the weights of the causal
order without knowing the actual causal graph, thereby ob-
taining a usable causal graph. Specifically, we proposed a
framework based on Normalizing Flows, where we sample
the exogenous variables of confounders from a distribution
and obtain the final confounder representation using the given
causal order. Meanwhile, to capture the temporal dynamics of
confounders, we incorporate time as conditional information
to the sampler, thereby obtaining time-dependent representa-
tions of the confounders. To the best of our knowledge, we
are the first to explicitly consider the influence of unobserved
confounders on the performance of sequential recommenda-
tion models.

Furthermore, we propose a classifier-free training
paradigm to better balance the importance of confounder
influence and sequence dependencies. By randomly masking
the influence of confounders, the model is encouraged to
treat sequence dependencies and confounders’ influence as
two equally important tasks during the learning process.
Additionally, the mask conceals the confounders’ influence
on items, ensuring the model better uncovers the sequence
dependencies within the historical sequence. Finally, we
propose a new framework named Flow-based Time-aware
Causal Structure for Sequential Recommendation (FCSRec)
to learn confounders and sequence dependencies jointly.
We validate the model’s performance on eight datasets of

varying sizes and types, and experimental results show that
FCSRec attains superior recommendation performance to
several state-of-the-art methods. The contributions of our
work can be summarized as follows:

• We have reformulated the sequential recommendation
task by incorporating the influence of restocking unob-
served confounders as one of the key objectives.

• We propose a confounder modeling method based on
Normalizing Flows, which can obtain a usable causal
graph without knowing the exact causal graph of the
confounders. Additionally, we incorporate time as con-
ditional information to capture the sensitivity of con-
founders to temporal changes.

• We propose a classifier-free training paradigm that effec-
tively balances the contributions between sequence de-
pendencies and confounders. During training, it simulta-
neously models the sequence dependencies and captures
the influence of confounders.

• We validate the proposed FCSRec on eight real-world
datasets, and experimental results demonstrate that FC-
SRec outperforms several state-of-the-art methods in
recommendation performance.

2 Preliminaries
We clarify the conventional sequential recommendation prob-
lem and the sequential recommendation problem influenced
by confounders as proposed in this paper as follows:

Conventional Sequential Recommendation
Given the specific user u and his/her historical sequence X.
The sequential recommendation problem infers the dynamic
preferences and provides the top K recommendation list,
which contains K items that the user might be most likely
to interact with in the next time step. It can be formulated as
the following equation:

P (xt+1|X1:t) = f(X1:t), (1)

where f is the abstract symbol of any sequential recom-
mender, X1:t is the sequence data.

Sequential Recommendation under Confounders
Given the specific user u and his/her historical sequence
X. The sequential recommendation problem infers the dy-
namic preferences and models the influence of unobserved
confounders, provides the top K recommendation list under
the given timestamp t, which contains K items that the user
might be most likely to interact with in the next time step. It
can be formulated as the following equation:

P (xt+1|X1:t) = f(X1:t, c),

where c = F(X1:t,T1:t),
(2)

where F is the causal model to learn the causal graph and
capture the influence of confounders, c is the representation
of confounders for sequential recommendation.



3 Method
3.1 Structure Causal Model
To model the influence of confounders in sequential recom-
mendation, we first utilize a Structure Causal Model (SCM)
to learn the causal relationships between confounders. The
SCM refers to a tuple M = (f̃ , Pϵ) describing the data-
generation process that transforms a set of k exogenous vari-
ables, ϵ ∼ Pϵ, into a set of k endogenous variables (con-
founders), c, according to f̃ , we can formulated the process
as follows:

ϵ := (ϵ1, ϵ2, . . . , ϵk) ∼ Pϵ, (3)
where Pϵ represents the distribution of exogenous variables ϵ,
we use the normal Gaussian distribution in this paper. Specif-
ically, the exogenous variables ϵ are mutually independent:

p(ϵ) =

k∏
i=0

p(ϵi). (4)

Given the exogenous variable ϵi, each i-th component of f̃
maps the i-th ϵi to the i-th confounder ci:

c := (c1, c2, . . . , ck),

ci = f̃i(cpai
, ϵi) for i = 1, 2, . . . , k.

(5)

where the cpai
is the directly cause (causal parents) of ci rep-

resented by a adjacency matrix A of the causal graph, and
the value of aij in A can be viewed as an indicator vector,
where aij = 1 signifies that node i is the parent node of node
j, indicating that node j is influenced by node i. In contrast,
aij = 0 implies that node j and node i are unrelated.

Unfortunately, in real-world scenarios, causal graphs are
rarely directly available. The causal relationships between
nodes need to be learned through causal discovery methods.
Therefore, the main objective of Structural Causal Models
(SCM) is to learn the adjacency matrix A of the causal re-
lationships behind the nodes. Due to the unobservability of
confounders, learning the causal relationships between con-
founders becomes more challenging.

To address this challenge, we shift our perspective to learn-
ing the strength of the causal paths in a given causal graph.
Based on the acyclic property of A, we can pick a causal
order π to describe the causal relationships between con-
founders, the permutation π to be the causal ordering if the
SCM M of the confounders if and only if for every ci, that
directly cause cj , we have the πi ≤ πj . We formalize the
above content as the following theorem:
Theorem 1. For any given DAG G = (V,E), there always
exists a topological order π that satisfies both the monotonic-
ity and triangular increasing structure required by a Triangu-
lar Monotonic Increasing (TMI) map.

Theorem 1 implies that, for any number of confounders, if
an acyclic adjacency matrix can represent the causal relation-
ships between the confounders, then this adjacency matrix
can be formalized as a lower triangular causal order π. By
utilizing the theorem, we successfully transform the problem
into the task of learning the edge weight of the given causal
order π, where the πi = 1 if the row index i is greater than or

Figure 2: Example of the linear SCM {c1 := ϵ1; c2 := 2c1 +
ϵ2; c3 := 3c2 + ϵ3} written (a) without recursions with each step
made explicit; and (b) writing ϵ as a function of c. The green arrows
show the true causal influence path of ϵ1 on c3 for all equations from
ϵ to c, and the red dashed arrows show the total causal influence path
of ϵ1 on c3 for all equations from ϵ to c.

equal to the column index j, and zero otherwise, the causal
model need learns the edge weights of this causal order π.
The proof of Theorem 1 can be found in the Appendix A.2.

3.2 Time guidance Causal Normalizing Flows
Causal Normalizing Flows
Given the causal order π, we reformulate the task as learning
the weights of causal paths between confounders. Existing
research on causal discovery has proposed various methods,
including DNNs [Nasr-Esfahany et al., 2023], GANs [Xia
et al., 2022], and DDPMs [Chao et al., 2023]. However,
the high complexity of these methods makes seamless inte-
gration with recommendation system algorithms impossible.
We aim to learn the complete causal-generating process us-
ing a neural network that is as simple as possible. Normal-
izing flows (NFs) are a natural choice approximating a broad
class of causal data-generating processes [Balgi et al., 2022;
Javaloy et al., 2024], and we use Autoregressive Normalizing
flows (ANFs) in practice.

Given the observed user feedback data X and the number
of confounders k, an autoregressive normalizing flow model
T (·) is a neural network with parameters θ that takes ϵ and π
as input and outputs the representation of the confounders:

c := Tθ(ϵ, π). (6)

In ANFs the i-th output of each layer l of the network, de-
noted by zli, is computed as:

zl−1
i = T l

i (z
l−1
i ;hl−1

i ),

hl−1
i = Fi(z

l
pai

),
(7)

where Ti and Fi termed the transformer and the conditioner.
The transformer is a strictly monotonic function of zl−1

i ,

We use the “transformer” to indicate the function for establish-
ing a mapping between the source distribution (usually a simple base
distribution, such as a Gaussian distribution) and the target distribu-
tion (the more complex data distribution), and “Transformer” for
the model Transformer.



while the conditioner only takes the variables preceding zi
as input. For simplicity, we provide an example of using
ANFs to learn the confounder weights under a linear SCM,
as shown in Figure 2. The architecture shown in Figure 2
(a) defined the ANFs as a function from ϵ → c, ANFs will
learn spurious correlations due to the fully connected nature
of MLPs, which will harmful the model performance, if and
only if ANFs have extra information such as true causal graph
A to learn necessary zeroes to fulfill the causal consistency,
but we only have the causal order π.

To mitigate this issue and enhance the stability of our
model, we adopt an alternative architecture as shown in Fig-
ure 2 (b), building a causal ANFs from c → ϵ, this architec-
ture is capable of capturing all indirect dependencies of c on
ϵ, because ANFs compute the inverse sequentially enhanced
the indirect influence of ϵ1 on c3 via c2 has to generate c2 first
necessarily. Based on the architecture discussion above, we
rewrite the computed of ANFs as follows:

zli = T l
i (z

l
i;h

l
i),

hl
i = Fi(z

l−1
pai

).
(8)

Time guidance
In the sequential recommendation scenario, the user’s inter-
action environment continuously evolves over time, meaning
that the influence of confounders should not remain the same
at different timestamps. Additionally, the intrinsic character-
istics of the confounders influence their time-varying nature,
such as the variations in temperature at different timestamps.

To model the varying influence of confounders over time,
we incorporate time as conditional information to guide the
generation of confounders. We categorize the timestamp t
into three levels: month, day, and hour, represented as a
triple tuple t = (tmonth, tday, thour) to capture changes in con-
founders over different periods effectively. We fed time-
based information into a multi-layer perceptron (MLP). By
inputting different levels of temporal information into an
MLP, we can integrate the influences of various time gran-
ularities, thus obtaining time-conditioned information of the
confounders. Specifically, we formalize the generation of
time-conditioned information as follows:

Infot = MLP(tmonth ∥ tday ∥ thour). (9)

In this formulation, Infot represents the time-conditioned
information of confounders. Based on the obtained time-
conditioned information, we have rewritten the conditioner
in the formula 8, incorporating the temporal information as a
prior condition for the generation of confounders:

hl
i = Fi(z

l−1
pai

, Infot). (10)

This approach enables the model to capture the confounders’
time-sensitive representation under any specific timestamp t,
which helps the model learn item representation under the
influence of confounders at the timestamp t more accurately.

3.3 Item-specific causal strength
We can drive the mixed item representation of feedback data
at a specific timestamp with the reconstructed causal time-
sensitive representation of confounders c. For k confounders,

Figure 3: The architecture of our framework FCSRec.

an item may be influenced by some rather than all. To main-
tain this characteristic, we utilize the attention mechanism to
capture how different confounders influence various items.
Specifically, we calculate the attention score as follows:

Q = f (Norm(I)), K = g(Norm(ct)),

V = q(ct), score = Softmax(
QK⊤
√
d

),

ctI = score ·V ,

(11)

where f , g and q are learnable linear layers, Norm(·) means
normalization, d is the latent embedding size, ct is the time-
sensitive representation of confounders, I is the embedding
of items and ctI is the representation of confounders various
influence on items.

We use a Transformer encoder to capture the sequential
dependencies of items, which can be formalized as follows:

sI = encoder(X, I). (12)

Then we mix the sI and ctI to get the reconstructed mixed
item representation of feedback data as follows:

z = FFN(sI + ctI), (13)

where FFN(·) denotes the feed-forward layer, but in practice,
we found that simply adding sI and ctI is enough. z integrates
item embeddings with causal representations of confounders,
producing an item representation that reflects the influence of
confounders at a specific timestamp t. This item representa-
tion is then input into the decoder or classifier to calculate the
log-probability of the user u interacting with the item:

yi,t = decoder(z). (14)



Identification
4 Training and Prediction
4.1 Training process
Classifier-free Guidance Paradigm
We propose a classifier-free variant method for recommenda-
tion systems to better balance the importance of confounders
and item sequential dependencies, inspired by work in the im-
age domain [Ho, 2022]. Specifically, we introduce a control
factor, α, to regulate the strength relationship between con-
founders and sequential dependencies. The paradigm can be
formalized as follows:

ẑ = (1− α) · FFN(sI ) + α · FFN(sI + ctI),

α = I(·),
(15)

where I is an indicator function, which equals 1 if a value ran-
domly sampled from a normal distribution is greater than 0.5;
otherwise, it equals 0. When α = 0, the model considers only
the sequential dependencies of the items, while when α = 1,
the model equally considers both the confounders and the se-
quential dependencies. It is important to emphasize that the
same operation is applied to each item in the sequence during
the forward process. The randomness in the missing con-
founders brings the following benefits. During the forward
process, the model learns both pure sequential dependencies
and those influenced by confounders. The relevant proof can
be found in Appendix A.3.

Objective function
During the training processing, we employ the standard au-
toregressive fashion. Specifically, FCSRec takes the histori-
cal sequence that excludes the last token as the source, and
the sequence excludes the first token as a target. At each time
step i, FCSRec aims at predicting the i+1 th token, i.e., maxi-
mizing the probability of the i + 1 th interacted item.

LCE = −
N∑
i=1

log(yi,t), (16)

where yi,t is the probability of target item at step i in time t.

4.2 Prediction process
During the recommendation stage, FCSRec first extracts the
last row yn,t ∈ R|I| from P which contains the information of
all interacted items in the historical sequence. Then, it ranks
all candidate items according to the probabilities and retrieves
K items as the top-K recommendation list.

5 Experiments and Discussions
5.1 Experimental Settings
Datasets
To comprehensively and fairly evaluate the models’ effective-
ness, we conducted experiments using nine publicly avail-
able datasets encompassing a variety of recommendation
scenarios (such as movies and pois) and different densi-
ties. We select five datasets of varying sizes ranging from
100k to 10M: Beauty, ML-100K, NYC, TKY, ML-1M, Gowalla
and ML-10M to evaluate the robustness of the model to the

Dataset Scale # Users # Items # Interactioons Sparsity
ML-100K Tiny 932 1,152 97,746 90.90%
Beauty 1,664 36,938 56,558 99.91%

NYC Small 1,031 5,135 142,237 97.31%
TKY 2,267 7,873 444,183 97.51%

ML-1M Base 6,034 3,260 998,428 94.92%
Brightkite 5,714 48,181 1,765,247 99.36%

Gowalla Large 42,461 101,269 2,199,786 99.95%
ML-10M 69,865 9,708 9,995,230 98.53%

Table 1: Data Statistics (after pre-processed). The eight datasets
are categorized into 4 scales Tiny, Small, Base, and Large which
contain 50K 100K, 150K 500K, 1M 2M, and 2M 10M user-item
interactions, respectively.

dataset size. Following prior works [Jiang et al., 2024;
Xu et al., 2024], we remove the ”inactive” users who inter-
act with fewer than 20 items and the ”unpopular” items who
have interacted with users less than 10 times. We set the max-
imum sequence length l of each dataset according to the av-
erage one. Towards the data partition, we select each user’s
last previously un-interacted item as the target during the rec-
ommendation procedure and all the prior items for training.

Baselines
A range of advanced models have been proposed to en-
hance sequential recommendation by capturing temporal pat-
terns and user preferences. GRU4Rec [Hidasi, 2015] uti-
lizes RNNs to model dynamic user behavior, while Nex-
tItNet [Yuan et al., 2019] adopts a CNN-based archi-
tecture to capture both short- and long-range dependen-
cies. Transformer-based methods like SASRec [Kang and
McAuley, 2018] and its time-aware variants TiSASRec [Li et
al., 2020] and TiCoSeRec [Dang et al., 2023] model sequen-
tial dependencies with attention mechanisms and incorporate
temporal dynamics. CLS4Rec [Xie et al., 2022] leverages
contrastive learning to better distinguish positive and negative
interactions. CD-SASRec [Chen and Li, 2024] introduces a
causality-driven framework to improve user modeling from a
causal inference perspective.

Setups
We implement FCSRec and baselines in PyTorch. All mod-
els are trained with the Adam optimizer with early stopping
at patience = 10. We set the learning rate to 1e-3 and the
l2-regularization weight to 1e-6. For FCSRec, we tune the
hyper-parameter concepts k in the range of [1, 8] for different
datasets. To detect significant differences in FCSRec and the
best baseline on each dataset, we repeated their experiments
five times by varying the random seeds. We choose the aver-
age performance to report. All ranking metrics are computed
at cutoffs K=[10,20] for the Top-K recommendation. Our im-
plementation of the baselines is based on the original papers
or the open-source codebase Recbole [Zhao et al., 2021].

5.2 Overall Performance Comparison
The comparison between FCSRec and various baselines is
shown in Table 2. The best results (compared across two



Datasets Scale Model GRU4Rec NextItNet SASRec TiSASRec CLS4Rec TiCoSeRec CD-SASRec FCSRec

Beauty
Tiny

R@10 ↑ 0.00919 0.00919 0.00854 0.00948 0.00826 0.00853 0.00824 0.01138
N@10 ↑ 0.00592 0.00584 0.00546 0.00589 0.00595 0.00531 0.00533 0.00688

ML-100K R@10 ↑ 0.06178 0.06821 0.04753 0.05339 0.05143 0.04805 0.04572 0.09752
N@10 ↑ 0.03161 0.02420 0.02093 0.02694 0.02414 0.02435 0.02047 0.04137

NYC
Small

R@10 ↑ 0.03124 0.03940 0.04774 0.04838 0.04904 0.04354 0.04562 0.05273
N@10 ↑ 0.01682 0.02136 0.02416 0.02300 0.02471 0.02105 0.02374 0.02565

TKY R@10 ↑ 0.04603 0.04237 0.04961 0.04787 0.05063 0.04307 0.04783 0.05087
N@10 ↑ 0.02314 0.02186 0.02513 0.02411 0.02526 0.02209 0.02462 0.02542

Brightkite
Base

R@10 ↑ 0.04431 0.04622 0.07189 0.07094 0.07268 0.02654 0.06943 0.07551
N@10 ↑ 0.02826 0.03288 0.05737 0.05308 0.05667 0.04813 0.05591 0.05935

ML-1M R@10 ↑ 0.13061 0.13582 0.14137 0.12240 0.14122 0.11343 0.13430 0.14967
N@10 ↑ 0.06095 0.06848 0.06520 0.05595 0.06002 0.05316 0.06113 0.07678

Gowalla
Large

R@10 ↑ 0.05966 0.07689 0.07330 0.05262 0.05871 0.04774 0.07146 0.08066
N@10 ↑ 0.02494 0.03370 0.03306 0.02323 0.02918 0.02109 0.03224 0.03707

ML-10M R@10 ↑ 0.09126 0.09034 0.09281 0.09269 0.09269 0.09033 0.09064 0.09818
N@10 ↑ 0.03492 0.03643 0.03525 0.03567 0.03608 0.03646 0.03686 0.03881

Table 2: The overall performance comparison results of applying our model and baselines on eight real-world datasets. We evaluated the
recommendation performance as a ranking task, underlined the best baseline result in each line, and put the best result in each line in bold;
Higher Recall and NDCG mean better model performance. The arrow ‘↑’ (or ‘↓’) denotes that the higher (or lower) value means better
performance on the metric. The result is calculated based on the mean of five repetitions with different random seeds for all models on each
metric.

(a) ML-100K (a) Beauty

Figure 4: Ablation study of FCSRec on ML-100K and Beauty: none (without the confounders and classifier guidance paradigm, equivalent to
SASRec); + cons (add the influence of confounders but without time guidance); + cons, time (without the classifier-free guidance paradigm);
and + cons, time, cfp (full version of FCSRec).

classes) are shown in bold, and the runner-ups are underlined.
In summary, we have the following observations:

• The result demonstrates that the FCSRec model consis-
tently outperforms the baselines regarding Recall and
NDCG across various datasets and evaluation metrics,
indicating its superior ability to recommend relevant
next items to users. Remarkably, FCSRec substantially
improves Recall and NDCG compared to the baselines.

• Traditional sequential recommendation algorithms, such
as SASRec, achieve competitive results across all
datasets by capturing the sequential dependencies be-
tween items in the historical interaction sequences.
However, time-based methods like TiSASRec are some-
times hindered by the interference of time information
when modeling item sequential dependencies, leading
to worse performance on specific datasets than methods
that do not incorporate time information.

• FCSRec ensures the model can learn both sequence de-
pendencies and confounders’ influence equally through

the Classifier-free Guidance Paradigm and leverages
time information by modeling confounders. As a re-
sult, it achieves superior recommendation performance
compared to traditional sequence-based and time-aware
recommendation methods.

5.3 Ablation Study
The Figure 4 presents results for different variants of FC-
SRec: none (without the confounders and classifier-free
guidance paradigm, equivalent to SASRec); + cons (add
the influence of confounders but without time guidance); +
cons, time (without the classifier guidance paradigm); and +
cons, time, cfp (full version of FCSRec). we have the fol-
lowing observations:

• Modeling confounders is essential for the performance of
the model. After incorporating the influence of confounders,
the model’s performance improved, demonstrating that the
influence of confounders is indeed significant. Furthermore,
by utilizing time information to explore the sensitivity of con-



Figure 5: Sensitivity of FCSRec with different confounders number
k on ML-100K, Beauty, NYC and TKY. The horizontal axes of all
sub-figures are the variable k.

founders to time further, the model becomes more suitable
for sequential recommendation scenarios, leading to an addi-
tional performance enhancement.

• The classifier-free guidance paradigm is essential for the
model’s joint modeling of sequential dependencies and con-
founders. Through this approach, the model can complete
two tasks during training: pure sequence modeling and se-
quence modeling under the influence of confounders, ensur-
ing that the model can better capture item relationships, mit-
igate the negative impact of confounders, and ultimately lead
to further performance improvement.

5.4 Effect of different number of Confounders
We experimented with various values of k on the ML-100k,
Beauty, NYC, and TKY datasets to verify the influence of the
number of confounders. As shown in Figure 5, we made the
following observations:

• Performance improvement with more confounders:
As the number of confounders increases, the model’s recom-
mendation performance improves. A larger number of con-
founders allows the model to capture more influences from
these confounders. Additionally, the increase in confounders
leads to a finer granularity in the captured influences, which
enhances model performance.

• Diminishing returns after a certain point: When the
number of confounders exceeds a certain threshold, the im-
provement in model performance becomes less pronounced.
The increase in confounders introduces challenges in learn-
ing the underlying causal graph. Specifically, the number of
new edges between confounders grows exponentially, which
limits further performance gains.

5.5 Visualizing item representation on different
Time

We use T-SNE to visualize the items’ embedding before and
after fusion of the influence of confounders on ML-100k in

(a) Items without confounders (b) Items with confounders

Figure 6: Visualization of the items’ embedding pure and after fu-
sion influence of confounders on ML-100k in the month level.

the month level, with k = 4. From Figure 6, We have the
following observations:

• FCSRec learns item representations more comprehen-
sively through training. As shown in Figure 6 (a), the item
representations are not concentrated in a single center but are
spread throughout the entire representation space, indicating
that FCSRec can fully explore the item representation space,
resulting in more comprehensive and effective item represen-
tations.

• FCSRec successfully captures the sensitivity of con-
founders to time. As shown in Figure 6 (b), items are clus-
tered into 12 distinct groups based on different months after
incorporating the mixed influence of confounders, indicating
that the model effectively captures the time-sensitivity of con-
founders. The figure also validates the sensitivity of items to
time, further demonstrating the superiority of FCSRec in cap-
turing both confounder and time effects.

6 Conclusions and Future Work
In this work, we proposed FCSRec, a novel framework in-
corporating unobserved confounders and their temporal dy-
namics into sequential recommendation systems. Our model,
based on Normalizing Flows and a classifier-free training
paradigm, demonstrates significant improvements in recom-
mendation performance compared to existing state-of-the-art
methods. In future work, we aim to enhance the interpretabil-
ity of confounder modeling by incorporating more advanced
techniques for causal inference and providing more precise
explanations of the learned causal structures. Additionally,
we will explore methods to improve the model’s capability
to infer complex causal relationships, which could further re-
fine the recommendations and offer deeper insights into the
underlying processes driving user behavior.
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A Appendix
A.1 Background
Sequential Recommendation
Sequential recommendation methods leverage users’ histori-
cal interactions to model sequence dependencies, often using
RNNs [Hidasi and Karatzoglou, 2018; Kang and McAuley,
2018] for sequential patterns and GNNs [Xu et al., 2019] for
structural relationships. Traditional approaches (Figure 1 (a))
focus on direct dependencies, leading to overly similar rec-
ommendations for users with identical histories. Time-aware
models incorporate temporal information to enhance perfor-
mance [Wang et al., 2022a; Jiang et al., 2023], but often over-
look unobserved confounders. Moreover, directly merging
time and item embeddings risks underutilizing representation
spaces and missing key dependencies. There are also some
works that improve the performance of sequence recommen-
dation models by introducing information such as POI [Wang
et al., 2022b], . Existing methods often overlook unobserved
confounders and their temporal dynamics, leading to subop-
timal modeling of dependencies and underutilization of rep-
resentation spaces.

Causal Structure Learning
We refer to causal representations constructed by causal
graphs as causal representations. Over the past few decades,
discovering causal graphs from purely observational data has
garnered significant attention. [Zheng et al., 2018] pro-
posed NOTEARs with a fully differentiable DAG constraint
for causal structure learning, [Tillman and Spirtes, 2011;
Xu et al., 2025]show the identifiability of learned causal
structure from interventional data. The community has raised
interest in combining causality and disentangled representa-
tion, and [Kocaoglu et al., 2017] proposed a method called
CausalGAN, which supports ”do-operation” on images, but
it requires the causal graph given as a prior. We draw on
key ideas from causal structure learning to enhance the ap-
plication of latent structure learning in recommendations and
successfully deployed in the sequential recommendation sce-
nario.

A.2 Proof of Theorem 1
Proof. A Directed Acyclic Graph (DAG) is a directed graph
with no cycles.
A TMI map (Triangular Monotonic Increasing map) refers
to a node ordering that satisfies two conditions: The order-
ing is monotonically increasing, i.e., nodes are arranged in
non-decreasing order of their values; The ordering respects
the triangular structure of dependencies, meaning that for any
directed path u → v → w, we have σ(u) < σ(v) < σ(w).

Let G = (V,E) be a DAG, where V is the set of nodes
and E is the set of directed edges. We aim to show that there
exists a topological ordering σ of G such that σ is a TMI map.

A topological sort of a DAG is a linear ordering of the
nodes such that for every directed edge (u, v) ∈ E, u appears
before v in the ordering. This can be formalized as:

∀(u, v) ∈ E, σ(u) < σ(v),

where σ(u) and σ(v) represent the positions of nodes u and
v in the ordering σ. A topological sort inherently respects
the monotonicity condition. Since for every edge (u, v), we
have σ(u) < σ(v), the order is monotonically increasing with
respect to the directed edges. Therefore, the first condition of
a TMI map (monotonicity) is satisfied. Consider any directed
path u → v → w in G. In a topological sort, the ordering
satisfies:

σ(u) < σ(v) < σ(w).
This is because the topological sort respects all dependencies,
including transitive dependencies, ensuring that if u → v →
w, then u appears before v, and v appears before w.

Thus, the second condition of a TMI map (triangular struc-
ture) is also satisfied.

A.3 Proof of Classifier-free Guidance Paradigm
The Classifier-free Guidance Paradigm is defined as:

ẑi = (1− α) · FFN(sIi ) + α · FFN(sIi + ctI),
where sIi is the sequential information for item i, and ctI is the
confounder at time t. α is a binary random factor defined as:

α = I(x > 0.5),
where x ∼ N (0, 1) is a standard normal variable. Hence, α
is randomly chosen between 0 and 1, controlling the model’s
reliance on sequential information (α = 0) versus both se-
quential and confounding information (α = 1).

Proof. Let L0 be the loss when only sequential dependencies
are considered (α = 0) and L1 be the loss when both sequen-
tial dependencies and confounders are considered (α = 1).
The expected loss function is:

E[L(θ, α)] = (1− E[α])L0 + E[α]L1.
Since E[α] = 0.5, we have:

E[L(θ, α)] = 0.5L0 + 0.5L1.
Thus, the model’s training objective is to minimize the com-
bined expected loss over both sequential dependencies and
confounders. This forces the model to learn a balance be-
tween the two, preventing it from overfitting to just one de-
pendency type.
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