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ABSTRACT Recently, latent vector embedding has become a research hotspot, with its great representative
ability to measure the latent relationships among different views. However, most researches utilize the inner
product of latent vectors as the representation of relationships, and they develop some embedding models
based on this theory. In this paper, we take deep insight into the existing embedding models and find that
utilizing the inner product may increase several problems: 1) in latent space, the inner product among three
vectors may violate triangle principle; 2) the inner product cannot measure the relationships between vectors
in the same category, such as user and user and item and item; and 3) the inner product cannot catch the collab-
orative relationships (user–user and item–item) for collaborative filtering. Along with this line, we propose
a latent vector embedding model for collaborative filtering: latent dual metric embedding (LDME), which
utilizes the dual-Euclidean distance in latent space, instead of the inner product, to represent different types
of relationships (user–user, item–item, and user–item) with a uniform framework. Specifically, we design
an embedding loss function in LDME, which can measure the close and remote relationships between
entities, tackle the above problems, and achieve a more clear, well-explained embedding result. Extensive
experiments are conducted on several real-world datasets (Amazon, Yelp, Taobao, and Jingdong), where
the expiring results demonstrate that LDME can overperform some state-of-the-art user–item embedding
models and can benefit the existing collaborative filtering models.

INDEX TERMS Latent vector embedding, metric learning, collaborative filtering, recommender system.

I. INTRODUCTION
Recently latent vector embedding has become a popular
research spot, by its powerful ability to represent the com-
plex relationships, where can be applied in various areas,
such as text mining [1], POI prediction [2] and recommender
system [3]. Basically, latent vector embedding model makes
efforts to measure the non-linear relationships, by mapping
existing items (words, POIs, or users and items) into a
k-dimension latent space, then a non-linear relationship in
original space can be transferred into a relatively linear rela-
tionship in this latent space. Latent vector embedding borrows
the idea of SVM and always achieves satisfying results for
recommendation and relationship visualization.

However, traditional latent embedding models usually
utilize inner product to represent the relationship between

FIGURE 1. A stable embedding results with inner product function.

different vectors as default, which may cause some important
problems. Traditional latent embeddingmodels always utilize
inner products, which is shown in Fig.1. In this example,
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matrix R stands for the relationships between entity set U =
{u1, u2, u3} and I = {i1, i2, i3}. The relationships of u and
i can be represented as rui. rui = 1 means that there is an
implicit relationship between u and i, and rui = 0means there
is no relationship or the relationship is not observed between
u and i. We utilize inner product as loss function rui = pu • qi
and embeds all the entities U , I into a same 3-dimension
latent space, where pu stands for the latent vector of user
u and qi stands for the latent vector of item i and • stands
for inner product. The results of a latent vector embedding
with inner product loss function are shown in Fig.1.

A. INSIGHT OF TRADITIONAL EMBEDDING MODEL
When taking deep inside of this embedding with the inner
product, we notice this embedding is stable because all the
latent vectors meet the constraint of rui and inner product.
It is important for embedding with inner product that rui =
pu•qi, i ∈ I , u ∈ U . Though R can be embedded into various
P,Q, this is an exactly stable and representative one because
it meets whole constraints perfectly.

However, if we treat the matrix R as a user-item matrix
in the real world, and prepare to utilize the embedding vec-
tors to make recommendations with collaborative filtering
model [4], [5], several important issues occur. First, in latent
space, the inner product among three vectors may violate
triangle principle. We treat all the embedding entities (P,Q)
as vectors in a 3-dimension latent space. So their relationships
can be measured as ‘‘distance’’ among them. If we utilize
inner product as a metric for ‘‘distance’’, we find that in some
situation, the embedding vector does not meet the triangle
principle (the sum of any two sides of a triangle is greater
than the third side). We still utilize the example in Fig.1
(Hsieh et al. [6] have utilized 2-dimension embedding as an
example, but we believe 3-dimension is a more common
situation). We select p1, p2, q1 as three points in latent space.
p1 • p2 = 0, p1 • q1 = 1 and p2 • q1 = 0. Notice
p1 • p2 + p2 • q1 = 0 < p1 • q1 = 1, which violates
the triangle principle. This may cause chaos when we utilize
the embedding vector to calculate the relationships in latent
space.

Second, utilizing inner product as embedding metric can
not represent the relationships between the different cate-
gories of entities, such as user to user, or item to item.
In recommender systems, we always want to find the latent
relationships between different users or items. The embed-
ding vectors in Fig.1 with inner product only consider the
relationships between users and items and ignore item to item,
user to user relationships. Let us focus on user u3. u3 has
relationships with i2 and i3, so there should be a relationship
between them. However, when we check the embedding q2
and q3, we find that q2 • q3 = 0, which means there is no
relationship between i2 and i3. Moreover, p1 • p2 = 0 and
p1 • p3 = 0, we cannot tell which of u3 or u2 is closer to u1.
So utilizing inner product cannot tackle relationships between
the different categories of entities well.

Finally, the inner product cannot catch the collaborative
relationships (user-user, item-item) for collaborative filtering.
If we want to choose i1 or i3 as a recommendation for u2,
we cannot decide based on latent vectors in Fig.1 because
p2 • q1 = 0 and p2 • q3 = 0. But notice that u2 and u3 both
have relationships with i2, which means that u2 shares a same
preference as u3. So i3 should be a better recommendation
than i1, and we cannot find it through embedding vectors with
inner product.

B. OUTLINES OF THIS WORK
With all the issues above, the inner product seems to be
an improper metric to measure the relationships between
different entities for collaborative filtering in recommender
system because 1) in latent space, the inner product among
three vectors may violate triangle principle. 2) inner prod-
uct cannot measure the relationships between vectors in the
same category, such as user and user, item and item. 3) The
inner product cannot catch the collaborative relationships
(user-user, item-item) for collaborative filtering. It is quite an
important issue to find a proper metric and design a proper
loss function to measure the relationship and make accurate
embeddings.

In this paper, we focus on the issues above and attempt
to utilize the idea of metric learning to measure the rela-
tionships between users and users, items and items as an
additional compensation for implicit collaborative filtering.
Metric learning is usually applied on multimedia area, such
as image and video [7]. And traditional metric learning is
designed to measure the relationship between users and items
only, which cannot meet the requirement of implicit collab-
orative filtering. Along with this line, we propose a Latent
Dual Metric Embedding (LDME), which utilizes the dual
Euclidean distance in latent space, instead of inner product,
to represent the different types of relationships (user-user,
item-item, user-item) with a uniform framework. With calcu-
lating Euclidean distance in latent space, all the entities (users
and items) can be embedded into a same latent space where
their relationships can be directly seen through distance.
In LDME, a loss function is designed for constructing the
relationships between users and users, items and items, where
LDME can follow the triangle principle, cluster users who
share the same preferences and items that consume by same
user, and benefit the implicit collaborative filtering. Extensive
experiments are conducted on real-world datasets and the
results show that LDME can achieve a superior performance
than traditional inner product embedding models and benefit
the existing state-of-the-art implicit collaborative filtering
model.

The contributions are summarized as follows:
• We notice the problems that inner product occurs in
some latent vector embedding models: 1) the inner prod-
uct among three vectors may violate triangle principle.
2) the inner product cannot measure the relationships
between vectors in the same category. 3) the inner
product cannot catch the collaborative relationships
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(user-user, item-item) for collaborative filtering. And
we propose that utilizing dual Euclidean distance can
embed the entities into the same space which can save
the problems above.

• We propose a Latent Dual Metric Embedding (LDME),
which utilizes the dual Euclidean distance in latent
space, instead of inner product, to represent the different
types of relationships (user-user, item-item, user-item)
with a uniform framework. A loss function which mea-
sures the relationships between different entities is also
proposed in LDME. This model is theoretical so it can
be applied in different scenarios.

• We apply the proposed model LDME to four large-scale
datasets. The effectiveness experiments demonstrate our
LDME model is significantly better than the baselines
for measuring relationships between users and users,
items and items. The effect experiment demonstrates
that LDME can benefit state-of-the-art implicit collab-
orative filtering.

The rest of the paper is organized as follows: in the
next section, we give a brief introduction to the related
works. Basic definitions and problem definitions are given
in Section 3. Then, we introduce the details in Section 4.
In Section 5, we conduct experiments to evaluate our pro-
posed model. Finally, we conclude our work in Section 6.

II. RELATED WORKS
A. METRIC LEARNING
Metric learning is a research spot in recent years,
as in image recolonization, clustering and recommenda-
tion system [7]–[17]. Metric learning is delighted by the
inner product, which is a traditional way to measure the
relationships between different entities. The idea of metric
learning is to utilize different metrics (such as Euclidean
distance or other distance metrics) to represent the rela-
tionships between different entities. Metric learning first
occurred in image and computer vision area [9], [14],
where Liu et al. [14] proposed deep transfer metric learn-
ing (DTML) method to learn a set of hierarchical non-
linear transformations for cross-domain visual recognition
by transferring discriminative knowledge from the labeled
source domain to the unlabeled target domain, and Wang and
Tan [9] utilized a novel semi-supervised region metric learn-
ing method to improve person re-identification performance
under imbalanced unlabeled data.

Metric learning also can be applied in other areas,
such as traffic detection [13], classification [16] and
recommendation [15], [17]. Hu et al. [13] proposed a local-
ity constraint distance metric learning for traffic conges-
tion detection and achieved a state-of-the-art performance.
Yu et al. [16] focused on binary classification problems, for-
mulated the sub-space learning problem as a particular Burg
Matrix optimization problem that of minimizing the Burg
Matrix divergence with distance constraints, then solved the
problem with metric learning. Especially for recommender
systems, Shen et al. [17] tried to utilize metric learning and

matrix factorization to make a recommendation, which is a
good application for a traditional metric learning. However,
researchers always focus on the application of traditional
metric learning and do not consider the insights of its ability
to represent relationships, which is exactly what we want to
study in this paper.

B. EMBEDDING OF RECOMMENDER SYSTEM
The embedding model in recommender systems and the
neural network is becoming a hot research trend [18]–[25].
Researchers attempt to use neural network to measure the
relationships between users and items. He et al. [18] utilized
NLP to design a network, which is named NeuCF to tackle
implicit feedback recommendation problems. NeuCF is a
model which can cover some basic MF and CF models.
Yang et al. [23] proposed a novel concept: Serendipity and
they utilized an MLP-based network to tackle the serendipity
issues in recommender systems, also with the embedding
model NeuCF proposed. Attention vectors are also employed
by some researchers for embedding. Chen et al. [21] embed-
ded users and items with different attention layers and
achieved a good performance. Seo et al. [26] used local and
global attention vectors to optimize user embedding results
in recommender systems. These models put more attention
on the methodology of neural network itself rather than the
applications in real scenarios, which also achieve a satisfy-
ing performance on various real-world datasets. Moreover,
Bai et al. [19] embedded the relations between neighbors
and proposed a neural-network based recommender sys-
tem. Also, some researchers try to combine neural models
with traditional machine learning to make recommendations.
Yang et al. [20] combined semi-supervised and neural net-
work, bridged them and reinforced mutually.

These works have made improvement in accuracy and
efficiency, however, they almost validate their on standard
datasets like movielens [27], or yelp [28] with the inner prod-
uct as loss function, or traditional metric learning model
which does not consider to put the relations between users and
users, items and items explicitly into loss function. Therefore,
we propose LDME in this paper, which utilizes the dual
Euclidean distance in latent space, instead of inner prod-
uct, to represent the different types of relationships (user-
user, item-item, user-item) with a uniform framework. A loss
function which measures the relationships between different
entities is also proposed in LDME. This model is theoretical
so it can be applied in different scenarios.

III. PRELIMINARIES
In this section, we give some definitions about embedding
with the inner product, embedding with metric learning and
problem definitions.

A. BASIC DEFINITION
In a recommender system, let U be a set of m users U =
{u1, u2...um}, and I be a set of n items I = {i1, i2...in}.
rui means the rating user u marked for item i, and in implicit
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feedback, rui = 0, or 1. So we build a rating user-item matrix
Rm×n, whose entries are 1s for items with feedbacks, 0s for
items without feedbacks.

For latent embedding, we utilize P = {p1, p2...pm} as the
users’ latent embedding vectors in latent kP dimension space,
and Q = {q1, q2...qn} as the items’ latent embedding vectors
in latent kQ dimension space. To simply the computation,
we assume users and items are embedded into a same k
dimension latent space, k = kP = kQ.

B. EMBEDDING WITH INNER PRODUCT
Given a user-itemmatrix R, the embedding models with inner
product always employ the following loss function:

argmin
P,Q

U ,I∑
P,Q

(
(rui − pu • qi)2 + θ (P,Q)

)
, (1)

where pu ∈ P, qi ∈ Q, u ∈ U , i ∈ I , rui ∈ R. θ (P,Q) is a
penalty term to avoid overfitting.

With this loss function, user u is embedded into a k dimen-
sion vector pu, and item i is embedded into qi, which is also
a k dimension vector. To explain the inner product, we can
treat every entry of pu as u’s preference on different views
of an item, and every entry of qi as item i’s distributions on
different views. Then inner product of pu and qi are treated
as the predictions. When applied with collaborative filtering,
we utilize the embedding vectors P, Q, compute the top-k
neighbors of target user or item, thenmake recommendations.

Top@k
(
minEuc
u∈U

(pu, pt )
)
. (2)

Note that whenwe compute the top-k neighbors, we always
utilize the Euclidean distance of different users and items,
which is also an illogical default because we compute the
relationships with the inner product between user and item,
but utilize Euclidean distance between user and user, item and
item.

C. EMBEDDING WITH METRIC LEARNING
Given a user-item matrix R, the embedding models with
metric learning always employ the following loss function:

argmin
P,Q

U ,I∑
P,Q

(
Lpull
rui=1

(pu, qi)− Lpush
rui=0

(pu, qi)+ θ(P,Q)

)
, (3)

where pu ∈ P, qi ∈ Q, u ∈ U , i ∈ I , rui ∈ R. θ (P,Q) is a
penalty term to avoid overfitting.

Note that there are two loss functions in metric learning:
Lpull and Lpush. The core idea for metric learning is to gather
the entities with relationships and push away the entities
without relationships. So Lpull is employed to calculate the
Euclidean distance between user u and item i, where rui = 1,
and try to pull the user and item together. And Lpush is
employed to push away the user and item where rui = 0.
Metric learning also employs Eq.2 to select neighbors and
make recommendations. However, traditional metric learning

only focuses on measuring the relationships between users
and items without considering the relationships between user
and user, item and item, which can be improved by our
proposed model.

D. PROBLEM DEFINITION
Given a user-item matrix Rwith implicit feedbacks, the prob-
lems we want to utilize the embedding model to solve are:
• Represent the relationships between different categories
(d-rel) of entities (such as user and item) in a latent space
with a uniform embedding framework.

d − rel(pu, qi) = ||pu − qi||; u ∈ U , i ∈ I . (4)

• Represent the relationships between same category
(s-rel) of entities (such as user and user, item and item)
in a latent space with a uniform embedding framework.

s− rel(pu, pt ) = ||pu − pt ||; u, t ∈ U . (5)

s− rel(qi, qw) = ||qi − qw||; i,w ∈ I . (6)

where ||p− q|| means some distance measure metric of
vector p and q.

• The loss function of metric learning to measure the
relationships should be stable enough to follow the trian-
gle principle, benefit collaborative filtering models and
make accurate Top-k recommendations.

Some important notations are shown in Table1. To solve
the problem above, we propose LDME, whose details are
introduced in the following section.

TABLE 1. Notations in this paper.

IV. PROPOSED MODEL-LDME
The above discussion highlights the fact that, the focus of
implicit collaborative filtering is no longer about estimating
a specific rating matrix but about capturing users relative
preferences for different items, and the relations between
different and same categories.

Based on the definitions above, we first introduce the
details about LDME, including the loss function and the
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embedding structures, considering how to measure the rela-
tionships between different categories (user-item) and same
category (user-user, item-item). Then we discuss the similar-
ity and difference among our proposed model and traditional
inner-product basedmodels andmetric basedmodels. Finally,
we discuss how LDME can benefit the implicit collaborative
filtering and the extension ability of LDME to be applied on
other models.

A. LATENT DUAL METRIC EMBEDDING-LDME
1) EMBEDDING LOSS FUNCTION
We propose LDME, which utilizes dual-metric learning to
measure the relationships between different users and items.
First, we decide to utilize the Euclidean distance to measure
the relationships among entities (users and items), where the
embedding results will follow the triangle principle and easy
to explain. The relationship functions are shown as follows:

d − rel(pu, qi) = ||pu − qi||e; u ∈ U , i ∈ I . (7)

s− rel(pu, pt ) = ||pu − pt ||e; u, t ∈ U . (8)

s− rel(qi, qw) = ||qi − qw||e; i,w ∈ I . (9)

where ||p− q||e means Euclidean distance of vector p and q.
Traditional metric learning models only consider the rela-

tionship between different categories, for example, users and
reviews. While in our proposed model LDME, we not only
consider the relations as traditional metric learning model
does, but also take the relationships between entities in same
category into consideration. So the style of our embedding
loss function is as follows:

LLDME =
U ,I∑
P,Q

(α1LD(pu,qi)+ α2LS (pu,pt )

+α3LS (qi,qw))+ θpen, (10)

where u, t ∈ U , i,w ∈ I , p, q ∈ P,Q and LD stands for the
relationships between different categories and LS stands for
the relationships between same categories. α stands for the
weights and θpen stands for the penalty term.

We define LD following the traditional metric learning
style, which is composed with two components: Lpush and
Lpull as follows:

LD(pu,qi)=
U ,I∑
P,Q

(
λd1 Lpull

rui=1
(pu, qi)+ λd2 Lpush

rui=0
(pu, qi)+ 1

)
,

(11)

where Lpull
rui=1

(pu, qi) = d − rel(pu, qi), Lpush
rui=0

(pu, qi) = −(d −

rel(pu, qi)). Lpull gathers the items around the user if rui = 1
and Lpush tries to add the distance between users and items if
rui = 0. λd1, λd2 are scalar hyper parameters ranging in (0,1).
We add 1 at the end to avoid overfitting and chaos noise.

The major difference between our proposed model and
traditional metric learning models is that we take the rela-
tionships among the same category into consideration, which

is represented by Ls. In implicit collaborative filtering scenar-
ios, we have two categories: users and reviews. So we design
two similar sets: similar user pair setU+ and similar item pair
set I+, which are defined as follows:
Definition U+: The similar user pair < u, t > is in the

similar user pair set U+, if and only if δu,t = 1, where
δu,t is an indicator which is predefined to restrict the user’s
similarity.
Definition I+: The similar user pair < i,w > is in the

similar user pair set I+, if and only if δi,w = 1, where δi,w is an
indicator which is predefined to restrict the item’s similarity.

And based on U+ and I+, we define LS (pu,pt ) and
LS (qi,qw) as follows:

LS (pu,pt ) =
U ,I∑
P,Q

(
λs1 Lpull

<u,t>∈U+
(pu, pt )

+ λs2 Lpush
<u,t>/∈U+

(pu, pt )+1

)
, (12)

LS (qi,qw) =
U ,I∑
P,Q

(
λs3 Lpull

<i,w>∈I+
(qi, qw)

+ λs4 Lpush
<i,w>/∈I+

(qi, qw)+ 1

)
, (13)

where Lpull(pu, pt ) = s− rel(pi, pt ), and Lpush(pu, pt ) = s−
rel(pi, pt ). So do Lpull(qi, qw) and Lpush(qi, qw). So our pro-
posed model LDME’s embedding goal is shown as follows:

arg
P,Q

min (LLDME |α, λ, δ,) (14)

2) REGULARIZATION AND MODEL TRAINING
a: REGULARIZATION
A proper regularization is quite crucial to the feasibility of the
proposed model. Our model LDME essentially projects users
and items to a same joint k-dimensional latent space. The
number of dimensions determines the representational capac-
ity of the model. However, an embedding model like what
we propose is known to be ineffective in a high-dimensional
space if the data points spread too widely (i.e., the curse
of dimensionality) [6], [29]. Therefore, we bound all the
user/item latent vectors within a unit sphere, i.e.,

‖pu‖ ≤ 1, ‖qi‖ ≤ 1, u, i ∈ U , I ; p, q ∈ P,Q. (15)

to ensure the robustness.
Another important point of LDME is the parameter α, λ

and the indicator δ. We need to make sure that the different
relationships play same roles in LDME. However, we notice
that the relationships between users and items always overaf-
fect the other relations, so we utilize α, λ to make limitations
as follows:

α1 ≤ α2 + α3, α1 + α2 + α3 = 1. (16)

λd1 + λd2 = λs1 + λs2 = λs3 + λs4 = 1. (17)
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Then we take consideration of threshold δ, we define the
threshold with the scale of users and items, which are shown
as follows:{

δu,t = 1| (Iu ⊆ It) or (It ⊆ Iu)

or
|Iu ∩ It |
|Iu ∪ It |

>
|Iavg|
|I |

}
, (18){

δi,w = 1| (Ui ⊆ Uw) or (Uw ⊆ Ui)

or
|Ui ∩ Uw|
|Ui ∪ Uw|

>
|Uavg|

|U |

}
, (19)

where Iavg,Uavg stands for the average items/users that
rui = 1. It means that only when a user’s feedbacks are
covered by another user, or they share a similar preference
over average level, we put them into the similar user set U+,
so does I+.

b: MODEL TRAINING
The object function of our proposedmodel is show as follows:

min
θ,P,Q

{LLDME |α, λ, δ}

s.t. Eq.16, Eq.17, Eq.18, Eq.19.

According to this object function, we should minimize this
constrained objective function with Mini-Batch Stochastic
Gradient Descent (SGD), achieve the latent embedding vec-
tors P,Q and control the learning rating using AdaGrad [30],
as suggested in [31].The details are introduces in experimen-
tal section. Our training procedure is as follows:

1) Randomly select negative samples to set rui = 0;
2) Predefine α, λ and calculate δ;
3)Hold the negative items and form amini-batch of size N;
4) Compute gradients and update parameters with

AdaGrad;
5) Repeat with regularizations until convergence.

3) RECOMMENDATION
After the computation about latent vectors P̂, Q̂, we can easily
compute the relations between different users and items,
then we can apply this embedding results to make a better
recommendation.

scoreui = ||̂pu − q̂i||e

V. EXPERIMENTAL RESULTS
A. DATASETS
To validate the effectiveness of LDME, we conduct abundant
experiments on Amazon.com dataset1 and Yelp for RecSys.2

Amazon and Yelp datasets are two public datasets. Moreover,
we also collect two real-world datasets from Taobao3 and
Jindong.4 And we use 5-cross validation to divide the

1https://jmcauley.ucsd.edu/data/amazon
2https://www.kaggle.com/c/yelp-recsys-2013
3https://www.taobao.com
4https://www.jd.com

datasets, with 80% as training set, 10% as test set and 10%
as validation set. The details of datasets are shown in Table 2.
From Table 2, we can see that these datasets are extremely
sparse. We set rui = 1 if there is a rating that user u rated
item i.

TABLE 2. The datasets’ characteristics.

B. BASELINES
We compare our model with the following baselines:

1) Weighted Regularized Matrix Factorization
(WRMF) [32]: the implicit MF model that uses an additional
case weight to model unobserved interactions, which utilizes
inner products.

2) Attentive Collaborative Filtering (A-CF) [21]: A-CF
utilizes item- and component-level attention models to assign
attentive weights for inferring the underlying users prefer-
ences encoded in the implicit user feedback. And A-CF can
achieve a superior performance over traditional collaborative
filtering methods, which utilizes inner products.

3) Adaptive Matrix Factorization (A-MF) [33]: A-MF is
designed to learn personal models based on adapting the
popular gradient descent optimization techniques. AndA-MF
can achieve a superior performance over traditional matrix
factorization methods, which utilizes inner products.

4) Neural Collaborative Filtering (NeuCF) [18]: NeuCF
borrows the idea fromMatrix Decomposition to build a neural
network. It generalizes a framework of neural networks to
cover basic collaborative filtering, which utilizes direct com-
bination and MLP.

5) Collaborative Metric Learning (CMF) [6]: Collabora-
tiveMetric Learning (CML) which learns a joint metric space
to encode not only users preferences but also the user-user and
item-item similarity. But CMF doesn’t consider the fact that
the similarity should also be measured in the loss function
and make effects in the training process like LDME does.

C. PARAMETER SETTING
We initialize some parameters: Word Embedding Dimension
k = 32, learning rate = 0.0001 with optimizer AdaGrad.
To make the experiment simply, we set α1 = α2 + α3 =

0.5, which means that the importance of user-item is the
same as the sum of user-user and item-item. Then we set
parameter λ = 0.5 and threshold δ = 0.3. We also set the
parameters of baselines as [6], [21], [32], and [33] to make a
plain comparison. Our experiments are operated with Pytorch
running on GPU: GeForce GTX TITAN X with mini-batch
N = 60. If we do not introduce specifically, we utilize the
default parameters.
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D. EXPERIMENTAL RESULTS AND DISCUSSIONS
1) RECOMMENDATION ACCURACY
We employ hitting ratio (HR) and Normalized Discounted
Cumulative Gain (NDCG) [34] as the evaluation metric for
recommendation list. The following figure shows the results
of HR and NDCG on different datasets with different embed-
ding dimensions (4, 8, 16, 32, 64).

FIGURE 2. Performance of HR@10 w.r.t the number of latent dimension k.
(a) HR@10 with Amazon. (b) HR@10 with Yelp. (c) HR@10 with Taobao.
(d) HR@10 with Jingdong.

From Fig.2, we can clearly see the models perform bet-
ter in small and dense datasets (Taobao and Jingdong) than
in big and sparse datasets (Amazon and Yelp). Moreover,
our proposed model overperforms the baselines across four
datasets with different embedding latent dimensions. Note
that when the latent dimension increases, HR performance
also increases. The reason is that the number of latent dimen-
sion means the ability of the latent vector to express the
latent relationships of users and items. Meanwhile, we find
that because WRMF, A-CF, A-MF utilize the inner product
as their loss function and make recommendations, they per-
form not as well as the other baselines and our proposed
model LDME. The results also show that the inner product is
not a good metric and loss function for user-item embedding.
NeuCF employs a raw direct of user and item latent vectors
and utilizes MLP to make the embedding, which is a smart
idea. However, as the output of NeuCF is the feedback (rui),
which cannot measure the importance of different entities.
So it can be a result of inner product style, or Euclidean dis-
tance style, which makes the NeuCF’s performance unstable,
especially on big and sparse datasets (Amazon and Yelp).
CML is a state-of-the-art metric learningmodel for collabora-
tive filtering. However, because CML doesn’t take user-user
and item-item relationship explicitly in the loss function and
control the importance through a predefined weight, the mul-
tiple relationships may affect the embedding results weaker
than our proposed model, which leads to a low performance.

From Fig.3, the results of NDCG also show us some
interesting phenomena. First, we can clearly see the models
perform better of NDCG in small and dense datasets (Taobao

FIGURE 3. Performance of NDCG@10 w.r.t the number of latent
dimension k. (a) NDCG@10 with Amazon. (b) NDCG@10 with Yelp.
(c) NDCG@10 with Taobao. (d) NDCG@10 with Jingdong.

and Jingdong) than in big and sparse datasets (Amazon and
Yelp), like HR. Moreover, our proposed model also over-
performs the baselines across four datasets with different
embedding latent dimensions. However, the distance between
LDME and baselines is not so far like HR. The reason is
that NDCG is a metric of evaluating a rank or a list, while in
implicit feedbacks, we focus on HR better than NDCG. Even
though, our proposed model LDME is still average 7% over
other baselines, which also demonstrates the accuracy of our
proposed model.

Then we conduct some performance to evaluate the accu-
racy of our proposed model with changing the recommenda-
tion list number K (HR@K). We change K from 1 to 10 on
a big dataset Amazon and a small dataset Taobao. And the
results are shown in Fig.4:

Because we focus on HR better than NDCG, Fig.4 shows
the performance of Top-K recommendation lists, where theK
ranges from 1 to 10. Tomake the results more clear and direct,
we show the performance of all different baselines models.
As we can point out that, LDME demonstrates consistent
improvements over other models across different recommen-
dation list lengths. This is consistent with the results shown
in Fig.2, Fig.3, demonstrating that LDME can achieve a
strong performance for recommendations.

2) PARAMETER DECISION
Aswe introduced before, there are three important parameters
in our proposed model LDME α, λ and δ. For a simple
description, α is for the weight of use-item relationships, and
1 − α stands for other relationships, λ is the weight of pull
function and 1 − λ stands for push function. δ is a threshold
to control the similarity user and item sets. So we need to
find out the best parameters according to the experiments.
We utilize HR@10 as the performance metric and conduct
our experiment on two datasets Amazon and Taobao.Without
any exception, if we change one of the three parameters,
we fix the other parameters. The results are shown in Fig.5.

From the results, we can clearly see that different param-
eters make different efforts on the results. First, we think
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FIGURE 4. Performance of HR@K w.r.t the number of recommendation list K. (a) HR@K with Amazon. (b) HR@K with Taobao.

FIGURE 5. Performance of HR@10 w.r.t parameter α, θ, δ. (a) HR@10 of LDME with Amazon. (b) HR@10 of LDME with Taobao.

TABLE 3. Effect of LDME.

about α, which controls the weight of user-item relationship.
When α is too small, we lose the ability to embed user-item
relationship, which leads to a bad performance. If it is too
close to 1, LDME fades to CML and achieves the same level
performance as CML, worse than LDME. The same situation
happens to θ . When θ is close to 0, the push function makes
sense and tries to overperform the pull function, so LDME
achieves its best performance when pull and push function
both work.

Finally, we consider threshold δ, which controls the set of
similar user set and item set. If the threshold is too small,

it loses the ability to control the scale. Meanwhile, if it is too
close to 1, almost all the item and user will not be put into
the similar set, which makes LDME fade to traditional CF
model. According to the parameter decision, we finally set
default parameter that α = 0.5, θ = 0.5 and δ = 0.5.

3) EFFECT OF LDME
To validate the embedding vector of LDME, we feed
the embedding results P∗,Q∗ of LDME and traditional
inner product embedding results into different CF models
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(Item-based CF, User-based CF, and NeuCF). The results are
shown in Table 3:

From the results, we can clearly see that our proposed
model LDME’s results P∗,Q∗ can improve the performance
of traditional CF models (user-based CF, item-based CF, and
NeuCF). Across all the different datasets, our embedding
results can improve the performance about average 18.9% of
HR, which proves the effectiveness of our proposed model.

VI. CONCLUSION
Many researchers of the recommendation area have focused
on embedding user and item with considering only the rela-
tionships between them and employing inner product as the
metric. But they always failed because of ignoring the rep-
resentation limitation of inner product and the importance of
the relationships between user and user, item and item. In this
study, we provide insights into the metric used in embedding
models: inner product and Euclidean distance. Moreover,
we point out the weakness of inner product when applying for
collaborative filtering, and the limitation of traditional metric
learning.

Along with this line, we proposed a latent vector embed-
ding model for collaborative filtering: Latent Dual Metric
Embedding (LDME), which utilizes the dual-Euclidean dis-
tance in latent space, instead of inner product, to represent
the different types of relationships (user-user, item-item, user-
item) with a uniform framework. Specifically, we design
an embedding loss function in LDME, which can measure
the close and remote relationships between entities across
different categories. Finally, extensive experiments are con-
ducted to demonstrate that our proposed model can make an
excellent trade-off performance compared with state-of-the-
art baselines, especially with sparse and large-scale datasets.
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