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Abstract—A common assumption in the literature is that the missing ratings are missing at random (MAR), meaning that the
probability of observing a rating does not depend on its value. However, this assumption is often violated in real-world scenarios, where
users tend to provide ratings for items they like or dislike more than average, leading to a missing not at random (MNAR) situation. To
address this problem, some researchers have proposed to use explicit MAR feedbacks to estimate the propensities of unobserved
implicit MNAR feedbacks. However, collecting explicit MAR feedbacks is costly and time-consuming and may not reflect users’ true
preferences. Moreover, most of these methods have only been tested on synthetic or small-scale datasets, and their applicability and
effectiveness in real-world settings without MAR feedbacks remain unclear. To this end, we aim to predict MNAR ratings without MAR
prior propensities by exploring the consistency between MAR and MNAR feedbacks and bridging the gap between them. From the
empirical study and preliminary experiment, we hypothesize that user preferences can be treated as the common prior propensity for
both MAR and MNAR generative processes. In this way, we extend this hypothesis to a more general MNAR scenario: user preferences
learned from MNAR can partially substitute for the prior propensities derived from MAR feedbacks for MNAR recommendation tasks.
To validate our hypothesis and approach, we develop a lightweight iterative probabilistic matrix factorization framework (lightIPMF) as a
practical method of our methodology, utilizing user preferences extracted from MNAR, not MAR, to estimate MNAR feedbacks. Finally,
the experimental results show that modeling user preferences can effectively improve MNAR feedback estimation without MAR
feedback, and our proposed lightIPMF outperforms the state-of-the-art MNAR methods in predicting MNAR feedbacks.

Index Terms—Missing-Not-At-Random, Generative Model, Recommender Systems
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1 INTRODUCTION

R ECOMMENDER systems are widely emerging in various
domains to provide personalized suggestions to users

based on their preferences and behaviors [1, 2]. However, a
major challenge in building effective recommender systems
is coping with the sparsity and incompleteness of the user-
item feedback data, where most ratings are missing. A com-
mon simplifying assumption in existing recommendation
models is that the ratings are missing at random (MAR),
meaning that the probability of observing a rating does
not depend on its value or other factors. However, this
assumption is often unrealistic and inaccurate in real-world
scenarios, where users tend to provide ratings for items that
they have strong opinions about, either positive or negative,
leading to a missing not at random (MNAR) situation[3]. For
example, consider a video website that offers two genres of
movies: comedies and tragedies. Suppose we only observe
the ratings for comedies and do not know whether the users
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have watched or rated any tragedies. Assuming MAR, we
would infer that the users are not interested in tragedies and
would only recommend comedies to them. However, this
may not be true, as some users may prefer tragedies over
comedies, but they have not rated them for specific reasons.
In this case, we may miss some potential recommendations
that satisfy users’ preferences. This illustrates that the MAR
assumption may result in a biased estimation of the user-
item preferences and a self-reinforcing feedback loop that
favors the items with more observed ratings over the ones
with less or no ratings, known as the Matthew Effect. To solve
this problem, some researchers [3–5] propose the MNAR
assumption: the missing ratings depend on their values
and other factors, such as item popularity or contextual
information. MNAR assumption is more common and ap-
plicable in real-world recommendation scenarios than the
MAR assumption (as shown in Figure 1).

In recent years, several methods have been developed
to tackle the MNAR problem in recommender systems
using various techniques, such as matrix factorization [5–
9], variational autoencoders [4], and generative adversarial
networks [10–13]. However, despite their advances and
innovations, these methods still have limitations and chal-
lenges that hinder their applicability and effectiveness in
real-world scenarios. Specifically, we identify two main is-
sues that need to be addressed: 1) Data Limitation: Most
MNAR methods require MAR data as ground truth for
supervised learning or propensity estimation (e.g., IPS [7],
DRJL [8], TPMF [9], and GINA [4]). However, collecting
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Fig. 1. A visualized example for MAR and MNAR assumption. The size of the circle denotes the rating value. The feedbacks predicted directly from
observed data are biased from ground truth in MNAR situation.

MAR data is costly and impractical in most cases, as it
involves asking users to rate items they have not interacted
with or are not interested in. Moreover, there are only a
few public datasets that provide both MAR and MNAR
data for evaluation purposes (e.g., Yahoo [3] and Coat [7]),
and they are relatively small-scale and domain-specific.
Therefore, these MNAR methods are often validated on
synthetic data or limited real-world data, which may not
reflect the true complexity and diversity of the MNAR prob-
lem. Considering that most real-world datasets are MNAR,
the lack of MAR data poses a significant challenge for
developing and testing MNAR methods. 2) Task limitation:
Existing MNAR methods formulate the problem as a binary
matrix completion task, where the goal is to predict the
implicit feedback (0/1) of users towards items based on
their observed interactions. However, this formulation is too
simplistic and restrictive for real-world applications, where
users may have different levels of preference or satisfaction
for different items, usually represented by explicit ratings
(e.g., 1-5 stars). These ratings contain more information and
nuances than binary feedbacks. Thus, they can help to rank
the items more accurately and fairly. However, most MNAR
methods ignore or discard these ratings and only focus on
the binary feedbacks, which may lead to suboptimal rec-
ommendations. The MNAR problem should be considered
on explicit ratings for a more comprehensive and realistic
recommendation task.

Motivated by these challenges, we propose a novel ap-
proach to predict MNAR ratings without relying on MAR
data. Our approach is based on the observation that user
preferences are consistent and independent of the missing
mechanism in both MAR and MNAR data. That is, user
preferences reflect the intrinsic interest of users towards
items, regardless of whether they rate them or not. By ana-
lyzing the data generation process of both MAR and MNAR
data, we find that user preferences influence the observation
probability and the rating value of each user-item pair.
Therefore, we hypothesize that user preferences can serve
as a common prior propensity for both MAR and MNAR
data, and we can use them to bridge the gap between them.
Based on this hypothesis, we develop a lightweight iterative
probabilistic matrix factorization framework (lightIPMF) for
the explicit rating prediction task. Our framework uses user

preferences extracted from MNAR data instead of MAR
data to estimate MNAR ratings. The model is trained,
validated, and tested on four real-world MNAR datasets
to demonstrate its effectiveness and robustness for prac-
tical MNAR scenarios. Moreover, our framework is data-
agnostic, meaning it can be applied to either MAR or MNAR
data for comparison with the state-of-the-art methods based
on either assumption.

To summarize, this work makes the following important
contributions:

• Presenting a data view of the consistency hidden in
MAR and MNAR for recommendation and utilizing
user preference for solving the MNAR problem with-
out MAR prior propensity. To the best of our knowl-
edge, it is the first work that explicitly indicates the
bridge between MAR and MNAR is user preferences.

• Proposing a data-agnostic framework and a practi-
cal model: lightIPMF that trains the recommender
model considering user preference and missing
mechanism according to MNAR or MAR data for
explicit feedbacks. lightIPMF is a realization of our
proposition with three modules, which consider user
preference as a common factor between MAR and
MNAR data generative process, thus deducing user
preference from either MNAR or MAR for explicit
rating predictions.

• Evaluating the proposed model on four real-world
datasets (with different areas, data distributions, and
scales) to demonstrate effectiveness and rationality.
We validate our proposed lightIPMF on both MAR
and MNAR situations, comparing with the specific
models utilizing MAR as the prior propensity. The
experimental results indicate that lightIPMF outper-
forms the state-of-the-art MNAR recommenders.

The organization of this paper is as follows: In section 2,
we give the basic definitions and propositions to build the
foundations. We give the methodology and extend it to a
practical solution for MNAR without MAR prior in section
3. Validations and discussions are conducted on several
MAR and MNAR datasets in section 4. Related works are
reported in section 5. We conclude our work in section 6.
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2 PRELIMINARY

To build the theoretical foundation of our proposed method,
we give basic definitions, including the MNAR-MAR prob-
lem and some propositions in this section.

2.1 Basic Definition
In a recommender system scenario with M users
U=(u1, u2, ..., um) and N items I=(i1, i2, ..., in), let Ro be the
observed user-item rating matrix Ro ∈ RM×N , whose entity
roui denotes the ratings (1,2,...,5 for explicit feedback, and
0/1 for implicit feedback) that user u rate item i. Because
the items scale N >> the user scale M and each user can
only rate a small part of items, Ro is an extremely sparse
matrix that most ratings are unobserved. Assuming there
is a ground truth, the full observed matrix R ∈ RM×N .
And there is another prediction user-item matrix Rc, where
we can predict all the unobserved ratings as rcui from
recommender models. A typical recommend task T is: for
object user u, the recommender should minimize the Loss
Lrec== 1

M×NE(rcui, rui), and then recommend the Top-k
high-feedback unobserved items (i1, i2, ...ik ∈ Rc) that u
may consume. E(rcui, rui) could be |rcui − rui| for mean
absolute error (MAE), or (rcui − rui)

2 mean square error
(MSE), or other operations for other metrics.

Then we consider the MAR and MNAR situation: Let O
be the observation indicator matrix O ∈ RM×N . For each
observed rating roui ∈ R, oui=1, and for the unobserved
rating oui=0. Let Ro and Rm denote the observed and
missing rating matrices, respectively. And Ro ∪ Rm = R.
Similar to the notation introduced by [4], we define a
probabilistic distribution p(R) on R as the rating distri-
bution we would have observed if no missing mechanism
was present. We define the conditional distribution p(O|R)
as the missing mechanism, which decides the probability
of each rui being missing. We also define the marginal
distribution for partially observed ratings, log p(Ro, O) =
log

∫
Rm p(Ro, Rm, O)dRm. The three assumptions from the

framework of [14] pertain to the specific form of this
conditional distribution: If the recommendation scenario
is MCAR, p(O|R)=p(O) without any missing mechanism;
if it is MAR, p(O|R)=p(O|Ro)=p(O|Rm); otherwise it is
MNAR, as shown in Figure 2. We treat recommend task T
as a matrix completion problem: given the observed rating
matrix Ro and the observation indicator matrix O, recover
the unobserved ratings in Rm to form an approximate rating
matrix R̂g for achieving Rg .

2.2 MNAR-MAR Problem Definition
From the ground truth R, we suppose a ground truth data
generative process pg(R

o, O) where roui, oui are partially
observed. We need to optimize the parameters (α, θ) of a
joint generative process pα,θ(Ro, Rm, O), where pα(R) is the
rating distribution and pθ(O|R) is the missing mechanism.
When missing data is MCAR or MAR, the missing mecha-
nism can be ignored when performing maximum likelihood
(ML) inference based only on the observed data, as Formula
(1):

argmax
α

E(roui,oui)∼pg(Ro,O) log pα(R
o = roui) =

argmax
α

E(roui,oui)∼pg(Ro,O) log pα(R
o = roui, O = oui).

(1)

Note that log p(Ro) = log
∫
Rm p(Ro, Rm)dRm, and we

make realization of Ro and O: (roui, oui) ∼ pg(R
o, O). The

EM algorithm or other optimization methods can solve
this in practice. However, when considering the MNAR
situation, this argument does not hold. Check Figure (c) in 2
that R is the cause of O, which happens in most scenarios of
recommender systems. All the oui in O are conditionally
independent of each given R. To modify this generating
process by considering the missing mechanism, existing
work [14] jointly learns both rating distribution pα(R) and
missing mechanism pθ(O|R) by maximizing:

argmax
α,θ

E(roui,oui)∼ pg(Ro,O)[ log pα(R
o = roui)

+ log pθ(O = oui |Ro = roui )].
(2)

This factorization is called the selection modeling [6, 10].
There are multiple challenges for utilizing Formula (2) to
make unbiased data completion for recommendations. First,
for various MNAR scenarios, achieving the model assump-
tions consistent with pg(R

o, O) in real-world situations is
difficult. Second, some algorithm utilizes learning prior
propensity from a small MAR dataset to optimize the ob-
jective function, ignoring that collecting MAR in real-world
scenarios is complicated. Third, most researchers only focus
on MNAR matrix completion and validate their models
on synthetic MNAR datasets, limiting these algorithms’
application range.

2.3 Propositions For MNAR-MAR Problem
Different from other existing MNAR models that focus on
the model framework or optimizations directly, we first give
some propositions from data perspectives for solving the
challenges above:

Proposition 1 (Data consistency): There exists a consistency
across MAR and MNAR datasets, which can be treated as a
common prior propensity X for MAR and MNAR data generative
procedure, and benefits existing recommenders’ performance.

We first investigate MNAR and MAR datasets with the
state-of-the-art MNAR algorithm (MF-IPS [7]) to validate
the proposition. Here is a reminder for MF-IPS: this al-
gorithm learns a prior propensity pui > 0 for all u, i,
and estimates matrix factorization with IPS-estimator pui to
achieve “unbiased” data completion. We build two variants
of MF-IPS: MF-IPS-MAR and MF-IPS-MNAR, which learn
their prior propensity pui from MAR and MNAR datasets,
respectively. As shown in Figure 3, we notice that MF-
IPS-MAR and MF-IPS-MNAR can both enhance MF on
recommendation metrics, indicating that both prior propen-
sities learned simply from MAR and MNAR benefit the
recommenders’ performance. From this phenomenon, we
boldly hypothesize that there exists a common prior propen-
sity X among MAR and MNAR datasets, and utilizing
this common prior propensity from MNAR may improve
recommendation performance. Then we give the second
proposition:

Proposition 2 (Data Construction): MNAR and MAR
distributions are both based on MCAR distribution, part-
independently. MNAR can be treated as MAR with common prior
propensity X for generating observation O, and MAR can be
treated as MCAR with common prior propensity X and observed
rating Ro.
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Fig. 2. MCAR-(a), MAR-(b), and MNAR-(c). (d) illustrates heuristic supervised learning methods (MF-IPS, MF-DRJL, etc) for MNAR. (e) illustrates
our theory that user preference X generates ratings R in both MNAR and MAR, jointly with latent prior Z. Ra, Rb denote different sub-datasets
sampled from R.
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Fig. 3. AUC Score for Coat and Yahoo. The prior propensity P learned
from either MAR or MNAR can provide performance gain on both
datasets, which proves Proposition 1.

Following our proposition, the joint distribution of
p(R,O) is formulated as:

p(R,O) = p(R|Z)p(O); MCAR
p(R,O) = p(R|Z,X)p(O|Ro); MAR
p(R,O) = p(R|Z,X)p(O|Ro, X, Z); MNAR

(3)

Note that latent prior Z can be treated as natural charac-
ters or domain-specific factors affecting ratings, which could
be learned from side information. To obtain the common
prior propensity X , we analyze the construction of MNAR
and MAR datasets, including Yahoo [3] and Coat [7]. In-
spired by [2, 3], we notice that MAR is an unbiased dataset
with randomly selected items and users’ feedbacks, while
the MNAR is with user-select items and their feedbacks.
Note that user preference is the only stable character that
occurs in both MAR and MNAR data construction periods.
Thus, we give the last proposition:

Proposition 3 (User Preference in MNAR). The common
prior propensity X can be treated as user preferences, which are

stable in both MAR and MNAR.
Moreover, user preference X decides the feedbacks of

items (Ro), and it is the most critical factor for a recom-
mender system to understand users’ interactions, patterns,
and habits. With the propositions above, deducing user
preference can unify the objective functions of the MNAR
task and recommendation task. MAR data is complicated to
obtain (only Yahoo and Coat for the public), while MNAR
data is standard in real-world scenarios. Our goal is to obtain
user preference X from only the MNAR dataset to solve the
MNAR problem and achieve an accurate, explicit-rating recom-
mendation.

3 METHODOLOGY FOR SOLVING MNAR WITHOUT
MAR
3.1 MNAR Joint Distribution with User Preference

Inspired by the research in [4, 9], we propose a novel joint
distribution for explicit MNAR rating data by extracting
user preference as the common prior propensity of MAR
and MNAR for recommendations. We devise three genera-
tive modules in this joint distribution: 1) a rating prediction
model (RPM) to estimate R with parameter α. 2) an observa-
tion prediction model (OPM) to estimate O with parameter
θ, and 3) a user preference model (UPM) to estimate X with
parameter β. Specifically, the joint distribution of R,O,X
for MAR/MNAR with parameters α, θ, β is formulated as:

pMAR(R,O,X|Θ) = pα(R|X,Z)pθ(O|Ro)pβ(X|Ro),

pMNAR(R,O,X|Θ) = pα(R|X,Z)pθ(O|Ro, X, Z)pβ(X|Ro),

(4)
where Θ denotes the parameter space α × θ × β. The
joint distribution formulation’s motivation is that the full-
observed ratings R are first generated by RPM with latent
prior Z and user preference X , which are the common prior
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propensity of MAR and MNAR. Considering the MNAR
situation, the missing mechanism p(O|R) is extended by
OPM, where the observation is generated by observed rat-
ings Ro, X , and Z . Among this procedure, user preference
X is stable and can be deduced from Ro by UPM. Note that
this joint distribution follows the MNAR assumption that
the observation is related to ratings and considers the effect
of user preference according to the Propositions above.

The joint distribution of the three modules represents
the relations among ratings, observations, and user prefer-
ences. This generative framework is lightweight and flex-
ible because we can modify each module independently
with different restrictions or specifications, MNAR or MAR.
Or we can pre-train the three modules respectively and
combine them in different ways to achieve a self-adapting
recommendation. In the MNAR assumption, the user prefer-
ence X is shared by RPM and OPM, connecting the ratings
and observations to solve the MNAR issue without MAR
data, which is the most important improvement over other
MNAR methods.

3.2 The lightIPMF: A practical model for MNAR problem
in recommender systems
Then we instantiate a practical, specified lightweight itera-
tive probabilistic matrix factorization (lightIPMF) for tack-
ling the MNAR recommendation tasks by modeling the
three modules of the joint distribution: User Preference
Model (UPM), Observation Prediction Model (OPM), and
Rating Prediction Model (RPM), respectively.

3.2.1 User Preference Model
We factorize user preference X by the observed rating
matrix Ro. In UPM, we first utilize a user-specific threshold
tu for extracting user preference xui to build X :

xui = 1, if rui ≥ tu;

xui = 0, else,
(5)

where tu = avg(rui|rui ∈ Ro) or median(rui|rui ∈
Ro). Then we employ a probabilistic matrix factorization
on Ro and X , with latent low-rank matrices Uo, Gx ∈
Rm×k, V o, Hx ∈ Rn×k, k < min(m,n), respectively:

Ro = Uo(V o)
T
, X = Gx(Hx)

T (6)

Note that we use explicit feedback (rui from 1 to 5), not
implicit feedback (0/1) in Ro. Hence, Uo and V o follow a
zero-mean spherical Gaussian distribution. And X is a bi-
nary user preference matrix. Gx and Hx follow a truncated
standard normal distribution. We further model xui with a
Gaussian distribution:

pβ(X|Ro) =
m∏
u

n∏
i

N(xui|x̂ui, σ
2
x). (7)

x̂ui = Gx
u(H

x
i )

T + wo
u

[[
Uo
u(V

o
i )

T − tu
]]
+ bx, (8)

where [[a]] returns 1 if a ≥ 0, otherwise it returns 0;
wo

u ∈ (0, 1) is a user-specific adjustable parameter for
observed ratings, bx is a bias set, and β denotes Gx, Hx,
Uo, V o, σx, wo

u, and bx. Obviously, an item with a high
rating estimation roui is more likely to attract the users (a
high rating estimation roui denotes a high user preference
xui ).

3.2.2 Observation Prediction Model

We define user observation oui for user u on item i:

oui = 1, if rui ̸= null;

oui = 0, else,
(9)

Inspired by [15, 16], and [9], we model binary observa-
tion indicator matrix O as a Bernoulli distribution whose
mean is drawn from a Beta distribution. However, existing
methods do not consider the MAR or MNAR assumption.
Specifically, O for MAR is formulated as:

pθ(O|Ro) =
m∏
u

m∏
i

B(oui|f(roui)), (10)

where f(roui) is a linear function to map roui into a scalar
between (0,1). For the MAR assumption, we learn f(roui)
from MAR data or a Beta distribution. However, when
considering the MNAR situation, the distribution deduced
from Ro is usually biased from the real distribution. In our
proposed framework, we jointly consider user preference,
observed ratings, and latent prior propensity (i.e., X,Ro, Z).
For simplicity and to avoid overfitting, we first estimate
r̂oui with user preference X and latent prior Z, then we
formulate oui as a Gaussian distribution:

pθ(O|Ro, X, Z) =
m∏
u

n∏
i

N(oui|f(r̂oui), σ2
o), (11)

ôui = Uo
u(V

o
i )

T + wx
uG

x
u(H

x
i )

T + zi + bo, (12)

where wx
u ∈ (0, 1) is a user-specific adjustable parameter for

user preference, bo is a biased set, zi is a latent prior (it can
be treated as a scalar learned from the nature characters of
item i), and θ denotes Gx, Hx, Uo, V o, σo, wx

u, and bo. In-
tuitively, this distribution indicates that the user preference
and nature characters do affect the observation, which holds
the MNAR assumption.

3.2.3 Rating Prediction Model

First, we factorize R by two low-rank latent matrix Ur ∈
Rm×k and V r ∈ Rn×k, representing latent user attributes
and item attractions respectively. We model R with the
Gaussian distribution below:

pα(R|X,Z) =
m∏
u

n∏
i

N(rui|r̂ui, σ2
r) (13)

r̂ui = Ur
u(V

r
i )

T + cxG
x
u(H

x
i )

T
+ zi + br, (14)

Moreover, learning our proposed models from MNAR
data is an unbiased model from MAR data because the full-
observed rating matrix R is only based on X and Z, not the
observation O.

3.3 Optimization for lightIPMF

3.3.1 Loss Function for Joint Distribution Model of MNAR

With the three models (UPM, OPM, and RPM), we can
achieve ratings, user preferences, and observations by spec-
ifying Formula (2) to log joint probability:
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Fig. 4. Visualized representation of lightIPMF. It contains three models:
UPM, OPM, and RPM. roui and oui (dark circle) are partly observed,
and xui and rui (blue circle) are totally unobserved, which could be
predicted.

LMNAR =

log p(R,O,X|Θ) =
m∑
u

n∑
i

logN(rui|r̂ui, σ2
r)

+ logN(oui|f(ôui), σ2
o) + logN(xui|x̂ui, σ

2
x).

(15)

Note that the three modules share some variables and
parameters in MNAR situations.

3.3.2 Iterative Joint Learning with Explicit Feedback Rec-
ommendation
We could utilize classic Expectation-Maximization (EM) to
find the maximum posterior estimates of the parameters Θ.
However, because some parameters are shared among three
models, we devise an iterative learning procedure, which
can be treated as a variant of the EM algorithm:

E-step: Observed rating Ro and Observation indicator O
are not full observed. After initializing parameters, we 1)
calculate the missing rating r̂oui ∈ Rm, 2) use r̂oui to calculate
x̂ui, 3) use r̂oui, x̂ui to calculate ôui. Note that we update
the parameters and obtain full-observed ratings r̂ui in M-
step by using Ro as supervision. Specifically, we obtain the
expectation of unknown oui:

E(oui|r̂oui, x̂ui, zi) =
zi ·N(0|r̂oui, σ2

x) ·N(0|x̂ui, σ
2
x)

zi ·N(0|r̂oui, σ2
x) ·N(0|x̂ui, σ2

x) + (1− zi)
.

(16)
Considering the explicit feedbacks, we divide the con-

tinuous estimation r̂oui into 5 levels with function EL(r̂oui),
similar to [9]:

E(oui|r̂oui, x̂ui, zi) =
zi · EL(r̂oui) ·N(0|x̂ui, σ

2
x)

zi · EL(r̂oui)) ·N(0|x̂ui, σ2
x) + (1− zi)

.

(17)
M1-Step: while in M1-step, we first calculate full-

observed rating r̂ui with r̂o, x̂, ô. Because all the parameters
are involved in Formula (17), we set qui=E(oui|r̂oui, x̂ui, zi),
and update the parameters of xui as below:

Gx
u ← (σx

n∑
i

quiG
x
u(G

x
u)

T
+ σGx

u
Ik)

−1(
n∑
i

σxquixuiH
x
i );

Hx
i ← (σx

m∑
u

quiH
x
i (H

x
i )

T
+ σHx

i
Ik)

−1(
m∑
u

σxquixuiG
x
u),

(18)
where σGx

u
, σHx

i
are the parameters of Gx

u and Hx
i .

M2-Step: We fix the parameters in M1-Step, calculate qui,
and update the parameters of roui:
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o
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o
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(19)
where σUo

u
, σV o

i
are the parameters of Uo

u and V o
i . Note

that we should utilize M1-step and M2-step iteratively, so
the optimization should be E → M1 → M2 → M1... →
convergence. Then we achieve the parameter set Θ, and
achieve a full user-item explicit rating matrix R.

4 VALIDATIONS AND DISCUSSIONS

In this section, we conduct extensive experiments to answer
the following research questions:

• RQ1: Does lightIPMF outperform existing MNAR
algorithms, including some methods with MAR data
as priors?

• RQ2: How does user preference X solve the MNAR
problem without any MAR data as the ground-truth
prior propensity for training?

• RQ3: How do different components in lightIPMF
contribute to the recommendation performance?

• RQ4: How do different parameter settings affect
the recommendation performance? Is lightIPMF an
efficient model?

4.1 Experiment Settings

4.1.1 Datasets

The comprehensive evaluation should be verified on dif-
ferent data assumptions (MAR or MNAR). Two real-world
datasets with MAR ratings are considered: 1) Yahoo R3
(denoted Yahoo) [3] collects 311, 704 MNAR ratings and
45, 000 MAR ratings from 15,400 users on 1, 000 songs.
2) The Coat (Coat) [8] has 6, 960 MNAR ratings and 4,
640 MAR ratings of 290 users to 300 coats. Additionally,
we use two widely-used datasets ML10M1 and Amazon
Beauty (Amazon for short) 2. Note that 1) Yahoo and Coat
are the only public datasets with MAR and MNAR. 2)
Movielens and Amazon only contain MNAR ratings. All
the datasets above are publicly available and vary in terms
of domain, size, and sparsity. The statistics of these datasets
are summarized in Table 2.

1. http://grouplens.org/datasets/movielens/
2. http://jmcauley.ucsd.edu/data/amazon/links.html
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TABLE 1
Comparison between different MNAR models.

Model MNAR Prior Propensity User Preference Estimated Bias Train/Test set Basic Model

PMF × × × × MAR/MAR Matrix Factorization
MF-MNAR ✓ × × × MAR/MNAR Matrix Factorization

MF-IPS ✓ ✓ × × MAR/MNAR Matrix Factorization
MF-DRJL ✓ ✓ × ✓ MAR/MNAR Matrix Factorization

TPMF ✓ × ✓ × MAR/MNAR Matrix Factorization

PVAE × × × ✓ MNAR/MAR Variational Autoencoders
not-MIWAE ✓ × ✓ × MNAR/MAR Variational Autoencoders

GINA ✓ × × ✓ MNAR/MAR Variational Autoencoders

lightIPMF ✓ ✓ ✓ × MNAR/MNAR Matrix Factorization

TABLE 2
Datasets Statistics of four different datasets.

Datasets #Users #Items #MNAR #MAR
Yahoo 15, 400 1, 000 311, 704 45, 000
Coat 290 300 6, 960 4, 640

ML10M 69, 166 8, 790 5, 000, 415 -
Amazon 6, 403, 006 1, 660, 119 14, 771, 988 -

4.1.2 Evaluation
We report all ranking performance w.r.t. three widely used
metrics: MSE, AUC, and Normalized Discounted Cumu-
lative Gain NDCG cut at K (we set K=10 without addi-
tional explanation). Note that the conventional evaluation
strategy of the MNAR model focuses on implicit feedback,
not explicit feedbacks. Consequently, the test model can
perform well over 0/1 with the MSE metric. Moreover, we
use explicit feedback directly (rating 1 to 5), not implicit
feedback (0/1), for validation. Following the [4, 9], we
randomly leave 10% feedbacks as validation data, 10% as
test data, and all the others as training data. Specifically,
in the MNAR situation, we set oui = 1 for observed items
with feedbacks, otherwise oui = 0; xui = 1 for the items
with rui ≥ tu, otherwise xui=0. We set tu as the average
ratings of user u. For the datasets (ML10M and Amazon)
without MAR data, we treat its training set or test set
as the MAR data to meet the data requirement listed in
Table 1. We tune the hyperparameters on validation sets by
grid search for a fair comparison and obtain the best for
testing. We implement GS2-RS based on Pytorch accelerated
by NVIDIA RTX 3090 GPU. The core code is available at
https://github.com/uuthx/bias exeperiment code.git.

4.1.3 Baselines
We compare our proposed method with the following base-
lines:

• PMF [17]: PMF is the representative, classical model
for recommendations.

• MF-MNAR [5]: MF-MNAR is the first viable matrix
factorization method considering the MNAR data
assumption.

• MF-IPS [7]: MF-IPS adds the standard Inverse
Propensity Weight to reweight samples for unbiased
recommendations.

• MF-DRJL [8]: MF-DRJL proposes a more robust un-
biased estimator by integrating inverse propensity

score and estimated imputed errors for the MNAR
rating data.

• TPMF [9]: TPMF considers MNAR ratings by explor-
ing the complex dependencies between item observ-
ability, user selection, and ratings.

• PVAE [4]: PVAE is a probabilistic model to build
a generative model for recommendation with MAR
assumption.

• Not-MIWAE [10]: Not-MIWAE is a deep latent vari-
able model (DLVM) proposed for inference and im-
putation in missing data problems where the missing
mechanism is MNAR.

• GINA [4]: GINA is a state-of-the-art practical algo-
rithm model based on VAEs, which applies flexible
deep generative models in a principled way for
MNAR problems.

Most MF-based MNAR models consider prior propen-
sity or user preference separately and utilize MAR for cal-
culating the prior propensity of MNAR. VAE-based models
directly generate the MNAR feedbacks to deduce MAR
feedbacks. The comparison between different MNAR mod-
els is summarized in Table 1.

4.2 Experimental Results

4.2.1 Overall Performance (RQ1)

To analyze the effectiveness of lightIPMF, we evaluate light-
IPMF on the four real-world datasets compared with the
baselines. The results are reported in Table 3. The observa-
tion and analysis are:

• Our proposed lightIPMF outperforms all the base-
lines under all the metrics on all the datasets. Specif-
ically, we notice that some methods which require
MAR as the prior propensity (PMF, MF-MNAR, MF-
IPS, MF-DRJL, and TPMF) perform well on Ya-
hoo and Coat. Nevertheless, without MAR prior
propensity (ML10M and Amazon), the prediction
accuracy of ratings are declining (MSE and AUC)
more than VAE-based methods (PVAE, not-MIWAE,
and GINA). The results are well explainable: MF-
based models cannot estimate accurate ratings with-
out the propensity in MAR (or a biased prediction
for the propensity from MNAR). In comparison, the
VAE-based methods can implicitly obtain the knowl-
edge hidden in MNAR to enhance recommendations.
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TABLE 3
MSE, AUC and NDCG on real-world datasets, where the best ones are in bold. We evaluate the method with top-10 recommended items, and

IMP(%) denotes the performance gain upon best baselines (underline).

Dataset Metric PMF MF-MNAR MF-IPS MF-DRJL TPMF PVAE not-MIWAE GINA lightIPMF IMP.(%)

Yahoo
MSE↓ 1.495 1.433 1.476 1.391 1.381 1.411 1.372 1.360 1.295 4.78
AUC↑ 0.677 0.673 0.679 0.689 0.690 0.694 0.699 0.701 0.721 2.86
NDCG↑ 0.644 0.649 0.760 0.770 0.773 0.764 0.774 0.781 0.830 6.41

Coat
MSE↓ 0.872 0.808 0.859 0.804 0.799 0.812 0.739 0.744 0.714 4.03
AUC↑ 0.702 0.708 0.715 0.691 0.711 0.709 0.732 0.801 0.844 4.12
NDCG↑ 0.684 0.688 0.689 0.679 0.691 0.688 0.711 0.734 0.754 2.72

ML10M
MSE↓ 1.898 1.746 1.766 1.713 1.721 1.689 1.701 1.674 1.623 3.04
AUC↑ 0.567 0.579 0.581 0.574 0.583 0.581 0.591 0.589 0.621 5.07
NDCG↑ 0.533 0.545 0.543 0.561 0.555 0.562 0.566 0.569 0.651 14.6

Amazon
MSE↓ 2.141 2.008 1.974 1.964 1.954 1.875 1.846 1.833 1.801 1.74
AUC↑ 0.541 0.534 0.543 0.551 0.567 0.571 0.601 0.599 0.661 10.4
NDCG↑ 0.504 0.513 0.521 0.524 0.531 0.534 0.547 0.561 0.613 9.27

However, these VAE-based methods can not explic-
itly model the knowledge in MNAR introduced by
our proposed framework.

• Moreover, we can compare the different methods
across different datasets. We notice that even using
MNAR as MAR for computing prior propensity,
performance gain still exists (compare PMF with
MF-MNAR, MF-IPS, and MF-DRJL on ML10M and
Amazon). The performance gain is not as evident as
they occur on Yahoo and Coat, but it still indicates
that the prior propensity in MAR and MNAR have
some similarities, and utilizing the prior propen-
sity does improve the recommendation performance.
Combining with the former experiment result shown
in Figure 3, it proves the fact that user preference
is the common prior propensity in both MAR and
MNAR. Finally, as we explicitly consider modeling
user preference X for ratings, lightIPMF can predict
accurate ratings, enhancing NDCG with an average
of 10%

4.2.2 Preference Study (RQ2)

We study user preference for solving MNAR problems.
We set three user preferences: Noisy preference XNOISE ,
generated from a standard Gaussian distribution. Two user
preferences, XMAR and XMNAR, are generated from MAR
and MNAR, respectively. We combine user preference with
three classical methods: PMF, MF-IPS, and not-MIWAE.
We conduct experiments on Yahoo and Coat with MSE,
AUC, and NDCG, as shown in Figure 5 and Figure 6. The
observation and analysis are:

• The results indicate that considering user preference
X can enhance the recommendation performance
comprehensively. In detail, we notice that on larger
data set Yahoo, using XMAR does improve the MSE,
AUC, and NDCG over using XMNAR, XNOISE , or
original models. The reason is that MAR offers unbi-
ased user preferences for a recommendation. Specifi-
cally, for not-MIWAE, XNOISE hurts its performance
worse than other models. It reveals a situation that
for a VAE-based model, an inaccurate prior propen-
sity may lead to a vital performance reduction.

• Obviously, models with XNOISE may hurt their
performance. Models with XMAR achieve their best
performance because the user preference is modeled
accurately. However, although XMNAR cannot be as
accurate as XMAR, it still improves the performance,
validating user preference’s effect for MNAR recom-
mendation tasks.

4.2.3 Ablation Study (RQ3)
In this section, we first study each model’s effect in light-
IPMF (UPM, OPM, and RPM). We build three variants
of lightIPMF: NUlightIPMF: original model without user
preference model; NOlightIPMF: original model without
observation prediction model; and NRlightIPMF: original
model without rating prediction model. Also, we build a
variant whose user preference X is learned from MAR:
MAlightIPMF. The ablation study results are reported in
Table 4. The observation and analysis are:

• From the results of two MNAR/MAR benchmark
datasets Coat and Yahoo, we notice that lightIPMF
and MAlightIPMF perform better than other vari-
ants. Specifically, MAlightIPMF utilizes unbiased
MAR for extracting user preferences, which obtains
the performance gain on the Coat dataset. How-
ever, it performs worse than lightIPMF on Yahoo,
which is an interesting phenomenon. We consider
it as an over-clean situation. In the MAR dataset,
we consider all the biases are removed. However,
as our final goal, the recommendation should be
proposed by considering multiple factors, including
user preferences and even some bias, especially for
large datasets [18, 19]. These factors exist in MNAR
rather than MAR datasets. Our lightIPMF extracts
user preference from MNAR, where these user pref-
erences X may contain some helpful bias for recom-
mendations, thus leading to better performance.

• Note that the original lightIPMF achieves the best
performance among its variants except MAlight-
IPMF. Especially, NUlightIPMF can be treated as a
traditional IPS-based method, while NOlightIPMF
can be treated as a basic PMF method. Also, MA-
lightIPMF has a better performance on Coat lightly
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Fig. 5. Preference Study on Yahoo, validated with MSE↓, AUC↑, and NDCG↑
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Fig. 6. Preference Study on Coat, validated with MSE↓, AUC↑, and NDCG↑

over lightIPMF. Considering the trade-off between
the difficulty of obtaining MAR datasets and recom-
mendation accuracy, we claim lightIPMF can tackle
the MNAR situation properly.

4.2.4 Parameter and Efficiency Analysis (RQ4)
We study latent dimension k and user-specific threshold tu
in lightIPMF. We validate k from (8, 16, 32, 64) and tu from
(random,median, avg,mode) on Yahoo and Coat on NDCG
and MSE. Specifically, random selects a rating randomly
from user u’s ratings as tu, median, avg,mode denotes user
u’s rating’s median rating, average rating, and mode rating,
respectively. The parameter analysis results are reported in
Figure 7. The observation and analysis are:

• We notice that the latent dimension of lightIPMF
affects the performance lightly after increasing over
16. Different tu affects our model’s performance
(random worst, median best). Because the dataset is
sparse, median properly represents the user’s pref-
erence. When the dataset is dense, we think avg and
median may perform similarly.

• Note that lightIPMF achieves best NDCG when k =
16 and tu=median. A too small or large k may result
in underfitting or overfitting. And median can well-
model user’s preferences on an item, which benefits
lightIPMF.

5 RELATED WORK

Several related approaches address the MNAR problem
[2, 20, 21]. Among these, one of the most prominent ap-
proaches is a counterfactual technique that reweighs the col-
lected data for expectation-unbiased learning using inverse
propensity score (IPS) [7]. The IPS estimator can unbiasedly
estimate the loss function of interest using the biased rating

feedback by weighting each sample by the inverse of its
propensity score. MF-MNAR [5] is an MF model for binary
matrices that models the observation probability of a matrix
entry as a function of the entry’s value. MF-DRJL [8] com-
bines the EIB and IPS estimators by using both imputed er-
rors and propensities. Some researchers focus on estimation
methods and PPCA under an MNAR missing mechanism
has been studied by [22]. Low-rank models are employed
for estimation and imputation in MNAR settings by [23] and
[6]. [9] propose a tripartite CF (TCF) framework that jointly
models the triple aspects of rating generation and estimates
the MNAR rating. The advantages of these methods are
theoretically justified and empirically verified to outperform
naive methods based on the unrealistic MCAR assumption.
Besides, these methods also demonstrate the diversity and
complexity of the MNAR problem and the challenges of
developing effective and efficient models for learning from
incomplete data.

Having a model that can learn from incomplete data
expands the application range of deep learning algorithms
and facilitates downstream tasks such as data imputation,
which is still an active and challenging research area [24–
26]. CPT-v [3] is a simple missing data model that assumes
that the probability of observing a rating depends solely on
the underlying rating value. [27] proposes an information-
theoretic counterfactual variational information bottleneck
(CVIB) as an alternative method for debiasing learning
without MAR data. Deep latent variable models (DLVMs)
are generative models that can map complex raw input
to a flexible latent representation and have recently at-
tracted attention in handling partially-observed data due to
the advantages of generative modeling and representation
learning. To overcome the intractable posterior of DLVMs,
variational autoencoder (VAE) employs deep neural net-
works to approximate the posterior and maximizes the
variational evidence lower bound (ELBO). Scalable methods
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TABLE 4
Ablation study of lightIPMF, where the best performance is in bold.

Model Yahoo Coat ML10M Amazon
MSE↓ AUC↑ NDCG↑ MSE↓ AUC↑ NDCG↑ MSE↓ AUC↑ NDCG↑ MSE↓ AUC↑ NDCG↑

NUlightIPMF 1.380 0.690 0.771 0.800 0.721 0.695 1.821 0.595 0.543 1.965 0.554 0.521

NOlightIPMF 1.488 0.664 0.641 0.887 0.712 0.690 1.990 0.569 0.544 1.979 0.544 0.510

NRlightIPMF 1.401 0.701 0.746 0.814 0.713 0.690 1.699 0.594 0.574 1.901 0.561 0.531

MAlightIPMF 1.301 0.719 0.829 0.722 0.849 0.758 - - - - - -

lightIPMF 1.295 0.721 0.830 0.714 0.844 0.754 1.623 0.621 0.651 1.801 0.661 0.613
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Fig. 7. Paremeter Analysis with NDCG↑.
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Fig. 8. Paremeter Analysis with MSE↓.

for training VAEs under MNAR have been developed. The
not-MIWAE [10], which handles MNAR data by explicitly
modeling the conditional distribution of the missing mask,
is inspired by MIWAE. The VSAE [28], which uses a selec-
tive proposal distribution, effectively learns representations
from partially-observed heterogeneous data. An identifi-
able model for MNAR called GINA is presented by [4].
These methods illustrate the diversity and complexity of the
MNAR problem and the challenges of developing effective
and efficient models for learning from incomplete data.
However, there are still some open issues and limitations
(the data limitation and the task limitation we propose in the
Introduction) that need to be addressed in future research.
Due to the complicated recommender scenarios [29–32],
MNAR situation should be taken back to the research spot.

6 CONCLUDING REMARKS

We present a novel lightweight framework that can
tackle missing-not-at-random (MNAR) recommendation
tasks without resorting to missing-at-random (MAR) prior
propensity, a common assumption in existing MNAR mod-
els. Our key insight is that user preference is the underlying
prior propensity that governs both MAR and MNAR data,
and we leverage this insight to design a unified model that
can learn from both types of data. We conduct extensive ex-
periments on public datasets and show that our framework
outperforms state-of-the-art MNAR models in various real-
world scenarios. Our work bridges the gap between MAR

and MNAR data and enables existing MNAR models to
benefit from real-world MNAR data without incurring high
data collection costs of MAR data.

In future work, we plan to explore the applicability and
adaptability of our MNAR-MAR data framework to other
domains, especially those that involve data-sensitive, data-
expensive tasks, such as computer vision, sequential data
analysis, and pre-training model construction. We also aim
to investigate our framework’s theoretical properties and
limitations, such as convergence, robustness, and general-
ization ability.
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