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Abstract

Urban region embedding, which learns dense vector repre-
sentations for urban zones, plays a foundational role in data-
driven urban intelligence. These representations are critical
for downstream applications like public safety management
and infrastructure development, requiring nuanced under-
standing of urban functionality. A core challenge remains ef-
fective fusion of multi-view data (e.g., human mobility flows
and static regional attributes) into unified zone representa-
tions. To this end, we propose MVJC, a Multi-view Joint
Learning and Contrastive Learning framework, which em-
ploys: (1) Multi-view Joint Learning (MVJL) layer to model
intra-view dependencies to extract view-specific features and
(2) Multi-view Contrastive Learning (MVCL) layer to per-
form cross-region aggregation to derive consensus represen-
tations while capturing the regional complementarity. We fur-
ther introduce a structure-aware contrastive loss that mitigates
false negatives by aligning representations through region
topology instead of instance identity. Extensive experiments
on New York City datasets demonstrate MVJC’s superiority:
it reduces crime prediction MAE by 9.1% (vs. 66.9 base-
line) and improves land use clustering F-measure by 55.6%
(vs. 0.45 baseline) over state-of-the-art method, which is at-
tributed to MVJC’s synergy of joint and contrastive learn-
ing, yielding representations that are simultaneously predic-
tive and semantically discriminative.

Code — https://github.com/MichistalLin/MVJIC

Introduction

Learning high-quality embeddings for urban regions is a
critical task in urban computing. These embeddings dis-
till complex, multi-view data to support downstream tasks
like crime prediction (Yao et al. 2018) and land use clus-
tering (Huang et al. 2018), which are essential for building
smart cities.

Methods have evolved from single-view models (Wang
and Li 2017; Yao et al. 2018) to multi-view (e.g., human
mobility, POIs, building footprints) approaches (Zhang et al.
2021; Zheng, Yuan, and Guan 2022; Sun et al. 2024; Li
et al. 2024). In practice, these heterogeneous data views are
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rarely independent. For instance, the functional characteris-
tics of a geographic area (e.g., commercial zones vs. residen-
tial zones, as defined by POIs) are a key determinant of its
pedestrian flow dynamics, including peak times and overall
patterns. Therefore, it is imperative to develop a framework
that leverages the interdependence of these views for their
mutual enhancement.

Most recently, contrastive learning has emerged as a pow-
erful self-supervised paradigm for aligning representations
from different views (Zhang et al. 2023b,a; Li et al. 2023,
2024). The standard objective, however, creates a fundamen-
tal conflict when applied to clustering. By strictly treating
any two different regions as a negative pair, it erroneously
forces the model to push apart representations of regions
that, while distinct, share the same functional role (e.g.,
two residential zones), as illustrated in Figure 1. This crit-
ical*“false negative” problem directly undermines the goal of
functional clustering by penalizing the semantic similarity
that the model is designed to capture (Yan et al. 2023).

To overcome these challenges, we propose the Multi-
view Joint learning and Contrastive learning (MVJC) frame-
work, as shown in Figure 2. MVJC’s hierarchical archi-
tecture directly addresses these limitations in two stages.
First, a Multi-view Joint Learning (MVJL) module refines
each view’s features through cross-view interaction, creat-
ing enhanced view-specific embeddings. Then, a Multi-view
Contrastive Learning (MVCL) module generates a consen-
sus representation. It employs a structure-aware objective to
mitigate the “false negative” problem by using learned struc-
tural relationships to align functionally similar regions, pre-
venting their incorrect separation. This design yields robust
and semantically discriminative urban region embeddings.

The main contributions of this paper are as follows:

* We propose MVIC, a novel hierarchical framework that
operates in two stages: it first refines view-specific em-
beddings via a Multi-view Joint Learning (MVJL) mod-
ule to enhance their quality, and then generates a ro-
bust consensus representation using a global, structure-
aware Multi-view Contrastive Learning (MVCL) mod-
ule. This design yields robust and comprehensive urban
region embeddings that are resilient to noise and view-
specific distortions.

* We apply the global and cross-view feature aggrega-
tion (GCFA) and structure-aware contrastive learning
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Figure 1: (a) Typical contrastive learning usually considers different views of the same region as positive sample pairs, and
views of different regions as negative sample pairs. (b) If two different regions actually belong to the same functional area, their

representations should also be similar.

(SACL) module to the field of urban region representa-
tion learning for the first time, and effectively integrate it
with the multi-view joint learning framework to replace
the traditional per-view fusion. This module utilizes the
structural information of the entire dataset to learn a con-
sistent representation for each region, thereby effectively
mitigating the impact of noisy views.

* We conduct a comprehensive experimental validation on
large-scale, real-world datasets from New York City. The
results demonstrate that MVJC achieves new state-of-
the-art performance on multiple challenging urban pre-
diction tasks, significantly outperforming a wide range
of baseline methods.

Preliminaries

Urban Region. A city can be partitioned into n dis-
joint urban regions by census blocks, denoted as R =
{ri,ra, ..., rn}.

Human mobility. We define urban human mobility as a set
of trip records that occur in urban areas. We denote a hu-
man mobility dataset as M and each entity in M is a tuple
consisted of source and destination of the trip:

M = {mg,my,...,mr}, mi = (rs,74,1),Ym; € M,

where r is the start region, r4 is the destination region, and
t is the trip start time.

Region attributes. The region attributes are the inherent so-
cial and geographic features of urban regions. A certain type
of attribute of regions can be denoted as A as follows:

A={ai,ds,...,an},a € RE Va; € A,

where d; is the corresponding feature of i-th region and F'
is the number of dimensions of that feature. In our work,
multiple region attributes, like POIs and check-ins, are con-
sidered.

Region Representation Learning. Given the human mobil-
ity M of a set of regions R and attribute features A of re-
gions, we aim to learn a set of low dimensional embedding
& to represent each region: £ = {e1,ea,...,e,},6; € RY,
where e; € & is the d-dimension embedding of the region
r; € R and n is the number of regions.

Methodology
Framework Overview

As shown in Figure 2, the MVJC framework comprises two
modules: (1) the Multi-view Joint Learning (MVJL) mod-
ule aims to refine and generate high-quality, view-specific
representations; (2) the Multi-view Contrastive Learning
(MVCL) module aggregates cross-region and cross-view
features to learn a global consensus representation.

Multi-view Joint Learning

To learn robust representations, we jointly consider region
correlations from multiple views, constructing graphs based
on both human mobility and static region attributes (e.g.,
POISs, check-ins).

Region Correlations Based on Human Mobility
Following the formulation in MGFN (Wu et al. 2022), we
model raw human mobility data as a sequence of directed,
weighted graphs over time. A single mobility graph at time
interval ¢ is defined as G; = (V, E;), where V is the set
of region nodes {v1,...,v,} corresponding to R. An edge
et; = (vi,vj,wl;) € E; represents the volume of flow
wfj from region 7; to region r; during interval ¢. The com-
plete human mobility dataset is a time-series multi-graph,
G = UtT;()l G. Then the multi-graphs are processed by the
encoder Multi-Graph Fusion Networks to obtain the initial
human mobility view representation &,,0p.
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Figure 2: The framework of MVJC.

Region Correlations Based on Region Attributes

The inherent region attributes are the meta-knowledge that
describes the geographic and social nature of a region. Given
a type of attributes of n regions A = {a;}™ ,, the corre-
sponding region correlations are computed as

CY =sim(d;, @;), (D

where sim(-) refers to cosine similarity. We compute region-
to-region similarity matrices Cy,; and C.py, based on the
cosine similarity of their respective TF-IDF feature vectors.
From these matrices, we construct two graphs, Gp,; and
Genk- In each graph, every region node is connected to its
k-nearest neighbors, forming a sparse graph that captures
local attribute-based similarities.

From these similarity matrices, we construct sparse k-NN
graphs (Gpoi, Geni) for each attribute view. We then employ
a standard Graph Attention Network (GAT) as an encoder to
learn representations &,,; and £, from these graphs.

Multi-View Interaction

The interaction module (Figure 2(c)) achieves cross-view in-
tegration in two steps. It first employs a self-attention mech-
anism to propagate information among all view representa-
tions. A subsequent fusion layer then adaptively combines
the resulting representations.

We employ the self-attention mechanism to propagate
information across the representations of different views.
Given the representations from M different views as {&; €
Rm*4}M . For each representation &;, we associate a key
matrix K; € R"** and a query matrix Q; € R"** with it

as follows:
K; =&Wi, Q;=&W,. ()

For each view, we then propagate information among all

views as follows:

KT M . M
Ai 11\1 = softmax |:QZ ¢ :| > 751‘ = Azgz (3)

In our case, 5} is considered as the relevant global infor-
mation for i-th view. To incorporate this information in the
learning process, we compute

& =a&i+(1-a)é

where £/ is the representation for i-th view with global in-
formation, and « is the weight of global information.

In order to make full use of the information of other views
to strengthen the representation of its own view, we employ
a fusion layer that learns adaptive weights for different views
as follows:

0<a<l, @)

M
=Y "wi&, w;=0(EWs+by), (5)

where w; is the weight of i-th view, which is learned by a
single layer MLP network with the ¢-th embeddings as in-
put. To ensure the adaptive weights in the fusion layer are
properly learned, we incorporate the fused representation £
back into each view-specific learning objective. Formally,
we update the representation of each view as:

E=(E&E+E))2. (6)

We adopt this residual-like connection to balance view-

specificity and consensus, ensuring the final representa-

tion &; incorporates shared knowledge while retaining its

uniquely enhanced characteristics. In this paper, the three
views output are é:mob, gpoi and gchk, respectively.



Learning Objectives
Following HDGE (Wang and Li 2017), we use region em-
beddings to estimate the distribution of mobility, and learn
the embedding by minimizing the difference between the
true distribution and the estimated distribution. Given the
source v;, we calculate the transition probability of the des-
tination v;:
Wij
Pu(vjlv) = =—F——. @)
e Z’uj*eN(vi) Wi

&I

Then, given the region embedding &7 ,, &7

v, v, We estimate the transition probability:

for region

ci  T&J
N €XP(Cmo gmo
Po(wslos) = Cios Emr)
Zj*EN(vi) exp(gmob gmob)

Finally, the objective function of human mobility view
can expressed as:

Lonob = Y —Pu(v5]v:) log pu, (vj]v3). ®

]

We design a correlation reconstruction task to ensure that
the learned embeddings preserve similarities between re-
gions across various attributes. Take POI attribute as an ex-
ample, the learning objective is defined as follows:

iy . N2
‘CPOi = Z (C;]oi - (g;mi)TE;oi> : (10)
2%
Similarly, we define the learning objective L. of check-
in attribute. In this way, The learning objective of the multi-
view joint learning part is:

ﬁr = »Cmob + »Cpoi + Cchk~ oy

Multi-view Contrastive Learning

This module is designed to discover complex correlation
patterns across different data views. By doing so, it identi-
fies clusters of urban regions that share similar comprehen-
sive characteristics, which facilitates the learning of more
discriminative and robust urban region representations.

Regions that receive human flows from the same sources
or send human flows to the same targets usually play similar
roles and are considered close to each other from the hu-
man mobility view (Yao et al. 2018). In this module, we de-
fine the source and destination context of a region based on
inter-region interactions. Given a set of human mobility M,
the interaction weight from region r; to region r; is com-
puted as: wyt = [{(rs,7a) € M|rs = ri,rg = 1;}|, where
|.| counts the set size. Then the source and destination con-
texts of a region r; are described by distributions p(r|r;)
and pg(r|r;) as follows:

ps(r|ri) = Z :Lr ) pd(rh‘i) = Z T:Z,Uri ° (12)

T4 r

Based on the source and destination context of each re-
gion, we define two types of correlations as follows,

CY = sim(p,(r|r;), ps(r|r;)), (13)

CY = sim(pq(r|r;), pa(r|r;)), (14)
where C¥ is the source correlation and CY represents the
destination correlation. We still follow the previous method
to construct graphs G, Gg, Gpoi and G.py based on re-
gion correlations Cg, Cq4, Cpo; and Cepy. Then apply the
GAT encoder to obtain view representation Z, Z4, Zp0;

and Z.p; and concatenate them together, denoted as Z =
[Z1, Za,..., Zar), where Z; € R"*4, Z ¢ RPxMd,

Global and Cross-view Feature Aggregation
Conventional fusion methods generate a region’s represen-
tation using only its own multi-view data, which is consid-
ered a suboptimal approach. Our approach enhances a re-
gion’s consensus representation by aggregating information
not just from its own views, but also from other structurally
similar regions across the entire dataset. This is achieved by
learning a global structure relationship matrix to guide the
aggregation, as shown in Figure 2(d).

Inspired by the idea of the transformer attention mecha-
nism (Vaswani et al. 2017), we map Z into different feature
spaces by the Wx to achieve the cross-view fusion of all
views, i.e.,

) 1,2 M .

Rl : Z% A Z}M WRl :

R : zy z3 - 1z} Wkgs:
= . ) . ,(15)

. 1,2 M ;o

R, : zb z2 ..z Whrar:

thatis R; := Zkle z"W gy, . Similarity, the Q; and Q; is
obtained by W, WJQQ, ie.,
Q1 =2Wgi, Q2=ZWg, (16)

where Q; € R"*? Q, € R"*< Here, we use the matrix
Wz = {Wg1, Wga, Wr} to denote the parameters.

The structure relationship among samples is denoted as:

Q:Qf )

Vd

The learned representation matrix R is enhanced by the
global structure relationship matrix S. Conceptually, the rep-
resentation of each sample is updated by aggregating infor-
mation from other highly correlated samples. This process

pulls the representations of samples from the same cluster
closer together, thereby increasing their similarity.

S = softmax < (17)

where R; € R*4 i the j-th row elements of R, denotes
the j-th sample representation, S;; denotes the relationship
between the i-th sample and the j-th sample, Z e R4,
Since Z is learnt from the concatenation of all views Z, it
usually contains redundancy information. Next, the output
is passed through the fully connected nonlinear and linear
layer to eliminate the redundancy information. The expres-
sion is described as the following equation:

=W, (max(07 (Z+ 2)W; +b)W, + bg) +bs.
(19)



Structure-aware Contrastive Learning

The learnt consensus representation # is enhanced by global
structure relationship of all samples in a batch, these data
consensus representations from different views of samples
in the same cluster are similar. Hence, the consensus repre-
sentation ‘H and view-specific representation H" from the
same cluster should be mapped close together. Inspired by
contrastive learning methods (Chen et al. 2020), we set the
consensus representation and view-specific representation
from the same sample as positive pairs. However, designat-
ing all other pairs as negative can lead to inconsistencies
among the representations of different samples within the
same cluster, which conflicts with the clustering objective.
Hence, we employ a structure-aware multi-view contrastive
learning module (Yan et al. 2023). Specifically, we introduce
cosine distance to compute the similarity between consensus

presentation # and view-specific presentation H":
. HIHY
C (T 1Y) = ot 20)
[HAHT

The loss function of structure-aware multi-view con-
trastive learning can be defined as:

]_ N 14 ec(}zi,:vH;})/T
Le= 9N Z Zlog 3 p(1=8i7)C(Ha s 1Y) [r—el/ T
7j=1

i=1v=1
(2D
where 7 denotes the temperature parameter, S;; is from Eq.
(17). This equation implies that a smaller value of S;; results

in a larger value of C'(H, ., H). In other words, when the
structure relationship S;; between the i-th and j-th sample
is low (not from the same cluster), their corresponding rep-
resentations are inconsistent; otherwise, their correspond-
ing representations are consistent, which solves the prob-
lem caused by other contrastive learning methods that dis-
tinguish positive and negative pairs at the sample level.

Overall Learning Objectives

In the proposed framework, the loss in our network consists
of two parts:
L=L+L.. (22)
We use simple concatenation for the final fusion to
preserve the rich information from both the enhanced
view-specific representations(£) and the global consensus
representation(?—l) without loss. This combined embedding
is then fed to downstream task heads, allowing them to learn
the optimal way to utilize these concatenated features.

H= concat(Emobs Epois Echios 7:[) (23)

Experiments
Experimental Settings

Dataset We utilize a variety of real-world data from NYC
Open Data specific for the Manhattan, New York area, where
Taxi trips are used as human mobility. We divide the Man-
hattan area into 180 regions based on the community boards.
The detailed description of datasets is shown in Table 1. pub-
lication.

Dataset Description
Regions 180 regions in Manhattan.
Taxi trips 10M taxi trips during one month.
POI data 20K POIs with 13 categories.
Check-in data 100K check-in records.
Crime data 40K crime records during one year.

Table 1: Data description(K = 103, M = 106).

Crime Prediction Land Use
MAE| RMSE| R?+ NMI{ ARIt FM{t

node2vec  75.09 10497 0.49 0.58 0.35 0.10
HDGE 72.65 9636  0.58 0.59 0.29 0.11
ZE-Mob 101.98 132.16 0.20 0.61 0.39 0.09
MV-PN 9230 12396 0.30 0.38 0.16 0.07
MVURE 6928 9651 0.57 0.78 0.62 0.41
MGFN 7021  89.60  0.63 0.68 0.58 0.43
HREP 67.40 86.29  0.65 0.75 0.45 0.43

ReCP 66.90 86.13  0.65 0.78 0.48 0.45
MV]JC 60.80 80.72 070 0.82 0.72 0.70
Impr. 912% 6.28% 7.69% 5.13% 16.13% 55.55%

Table 2: Performance comparison of different methods on
two tasks.The indicator FM stands for F-measure.

Baseline Solutions We compare the performance of
MVIC with several state-of-the-art region embedding meth-
ods. Our baselines cover single-view approaches that rely on
mobility data, such as HDGE (Wang and Li 2017), which
learns from flow and spatial graphs, and ZE-Mob (Yao
et al. 2018), which models regional co-occurrence patterns.
We also include a range of multi-view methods: node2vec
uses multi-view graphs of regions and concatenate the em-
beddings of each view (Grover and Leskovec 2016); MV-
PN (Fu et al. 2019) focuses on POI and spatial struc-
tures; MVURE (Zhang et al. 2021) and MGFN (Wu et al.
2022) utilizes attention-based fusion for mobility and at-
tributes; and HREP (Zhou et al. 2023) employs relation-
aware heterogeneous graph embedding. Finally, we bench-
mark against ReCP (Li et al. 2024), a strong contemporary
method based on multi-view contrastive learning.

Main Performance Comparison

To comprehensively evaluate the effectiveness of our pro-
posed MVIJC model, we compared it with several state-of-
the-art baseline methods on two challenging downstream
tasks: crime prediction and land use clustering. The experi-
mental results are shown in Table 2.

From the results in Table 2, we can observe the following:

1. Limitations of Single-View Methods: Methods that use
only a single data source (e.g., human mobility), such as
HDGE and ZE-Mob, perform relatively poorly on both
tasks. This result supports the premise that a single data
source is insufficient to capture the multifaceted func-
tions and semantics of urban regions, underscoring the



necessity of multi-view approaches.

2. Superiority of Multi-View Methods: Methods that in-
tegrate multiple information sources (e.g., POIs, check-
ins data, and mobility), such as MVURE, MGFN, HREP,
and ReCP, generally outperform single-view methods.
This validates that fusing multi-dimensional data can
generate more comprehensive and robust region repre-
sentations. Among them, models employing more ad-
vanced fusion strategies (like attention mechanisms or
contrastive learning), such as MVURE, HREP, and
ReCP, typically perform better than those with simple
concatenation or weighted averaging, like MV-PN.

3. Exceptional Performance of MVJC: Our model,
MVIC, establishes a new state-of-the-art. For crime pre-
diction, it reduces MAE by 9.12% compared to the best
baseline ReCP. For land use clustering, it notably im-
proves the F-measure by 55.6%. This substantial 55.6%
F-measure improvement on a clustering-oriented task
provides the strongest evidence for our central claim:
the structure-aware module effectively resolves the “false
negative” issue, enabling the model to correctly group
regions by their underlying function rather than pushing
them apart based on instance identity.

The superiority of MVIC is primarily attributed to its
unique framework design. The Multi-View Joint Learn-
ing module effectively enhances the quality of each
view-specific representation through inter-view interactions.
Meanwhile, the structure-aware contrastive learning mod-
ule learns a high-quality consensus representation that con-
tains both view-common and view-specific characteristics
through global structure aggregation and alignment. This
effectively addresses the “false negative” problem in tradi-
tional contrastive learning, enabling it to achieve leading
performance in both regression and clustering tasks.

Ablation Study and Parameter Analysis

Ablation Study of Modules To validate the effectiveness
of the key modules in the MVJC model, we designed an
ablation study. We compared the performance of the full
MVIC model with two of its variants:

e w/o JL: This variant removes the Multi-view Joint
Learning (JL) module. The encoders for each view learn
independently, and their initial representations are di-
rectly fed into the subsequent structure-aware contrastive
learning module.

e w/o CL: This variant removes the Multi-view Con-
trastive Learning (CL) module and uses only the output
of the multi-view joint learning module for representa-
tion fusion.

The results of the ablation study are shown in Figure 3.
From the analysis, we can draw the following conclusions:

1. Effectiveness of Joint Learning (JL): Removing JL
causes a sharp decline in crime prediction (R? drops
from 0.70 to 0.33), underscoring the importance of early
cross-view interaction. While w/o JL yields a slight, co-
incidental gain in clustering due to aggressive contrastive
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Figure 3: Performance comparison of different modules.

Crime Prediction Land Use
MAE| RMSE] R?*{ NMIt ARIT FM?t

MVURE  69.28 96.51 057 078 0.62 041
ReCP 66.90 86.13 065 0.78 048 045
w/o-Mob  96.75 13484 042 054 046 042
w/o-POI  78.19 9548 061 0.68 057 059
w/o-Chk  64.35 8554 068 078 0.68 0.65

MV]JC 60.80 80.72 070 082 0.72 0.70

Table 3: Impact of various input views.

focus, the substantial loss in prediction highlights the
module’s necessity for model generalizability.

. Effectiveness of Contrastive Learning (CL): Remov-
ing CL degrades performance across tasks, most notably
in land use clustering (ARI decreases by 45.8%). This
confirms that structure-aware contrastive learning is cru-
cial for generating discriminative representations by ef-
fectively grouping functionally similar regions in the em-
bedding space.

In summary, the results of the ablation study strongly
demonstrate the indispensability and effectiveness of the two
core modules of the MVJC model. It is the synergy of these
two modules that enables MVJC to learn high-quality urban
region representations.

Ablation Study of Input Views To assess the contribu-
tion of each view, we evaluated variants excluding Mobility
(w/o-Mob), POI (w/0-POI), and Check-ins (w/0-Chk), com-
paring them against the full model and baselines (MVURE,
ReCP). Results in Table 3 indicate that mobility is the
most critical view, particularly for crime prediction, fol-
lowed by POI. Notably, even the w/o-Chk variant outper-
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Figure 5: Districts in Manhattan and region clusters.

forms MVURE and ReCP across all tasks (e.g., improv-
ing clustering F-measure by 44.44% over the best baseline),
demonstrating MVJC’s robust feature extraction capability
even with reduced inputs.

Parameter Analysis K is the number of neighbors when
graphs construct, and the temperature parameter describes
the consistency-tolerance dilemma of contrast loss. We vary
the parameter K from 5 to 40 in increments of 5, and the
temperature parameter from 0.2 to 0.8 in increments of 0.1.
The evaluation indicators R? and F-measure change accord-
ingly as shown in Figure 4. When setting K=20 and temper-
ature=0.6, MVJC achieves satisfactory performance.

Case Study

To intuitively evaluate our model, we visualize the land
use clustering results in Figure 5. The visualization con-
firms that MVIJC’s identified clusters align significantly bet-
ter with ground-truth districts than the baselines. For in-
stance, MVJC correctly groups large, functionally coher-
ent zones, such as commercial hubs, which other methods
tend to fragment. This is primarily due to our structure-
aware mechanism that mitigates the “false negative” prob-

lem. Unlike standard contrastive learning that separates all
distinct instances, MVJC preserves the similarity between
functionally-alike regions, preventing their incorrect sepa-
ration. This capability is the key driver behind the 55.6%
F-measure improvement in the land use clustering task.

Related Work
Urban Region Representation Learning

Early efforts in urban region representation focused on
single-view mobility data, using flow or co-occurrence
graphs (Wang and Li 2017; Yao et al. 2018). Subsequent
research shifted to multi-view learning, integrating static at-
tributes like POIs (Fu et al. 2019; Zhang et al. 2021) and
semantic mobility patterns (Wu et al. 2022). Recent works
have further diversified data sources by incorporating urban
imagery (Li et al. 2022; Chen et al. 2024) or proposing ad-
vanced graph-based aggregation methods (Velickovi¢ et al.
2018; Huang et al. 2023; Zhao et al. 2023; Kim and Yoon
2025). Moreover, sophisticated techniques such as prompt
learning (Zhou et al. 2023) and information-theoretic con-
trastive prediction (Li et al. 2024) have been introduced to
enhance representation quality.

Multi-view Contrastive Learning

Contrastive learning has become a dominant paradigm for
self-supervised representation learning (Chen et al. 2020).
The core idea is to learn an embedding space where different
views of the same instance are pulled together, while views
of different instances are pushed apart. This has been applied
to multi-view data (Lin et al. 2021; Yan et al. 2023; Sun et al.
2024; Li et al. 2024), where the different data modalities
of a single region are treated as multiple views. However,
as previously discussed, this standard formulation presents
a “false negative” problem for clustering tasks, as it incor-
rectly tries to separate all distinct instances. GCFAgg (Yan
et al. 2023) introduced the concept of structure-guided con-
trastive learning to solve this. By first learning a global sim-
ilarity structure among all samples and then using this struc-
ture to downweight the repulsive force between “false neg-
ative” pairs, it aligns the contrastive objective with the clus-
tering objective. MVJC adopts and integrates this advanced
contrastive mechanism, which is a primary reason for its su-
perior performance in the land use clustering task, as it en-
ables the model to learn representations that are not only
discriminative but also form coherent clusters.

Conclusion

In this paper, we propose MVIJC, a framework that addresses
key challenges in urban region representation, including
sub-optimal fusion and the “false negative” problem in con-
trastive learning. By synergizing multi-view joint learn-
ing with a structure-aware contrastive mechanism, MVJC
achieves state-of-the-art performance. The core principles
are generalizable and could be extended in future work by
incorporating more data modalities or adapting the embed-
dings for specific tasks.
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