
Reducing AUV Energy Consumption Through Dynamic Sensor
Directions Switching via Deep Reinforcement Learning

Jiawei Liu1,2*, Yuanbo Xu1,2*, Shanshan Song2†, Lu Jiang3

1MIC Lab, College of Computer Science and Technology, Jilin University, China
2College of Computer Science and Technology, Jilin University, China

3Information Science and Technology, Dalian Maritime University, China
jiawei23@mail.jlu.edu.cn, {yuanbox, songss}@jlu.edu.cn, jiangl761@dlmu.edu.cn

Abstract

Autonomous underwater vehicle (AUV) is crucial for marine
applications such as ocean data collection, pollution monitor-
ing, and navigation. However, their limited energy resources
constrain their operational duration, posing a significant chal-
lenge for long-term operations. Due to the complex and un-
predictable nature of the underwater environment, AUVs al-
locate energy to their sensing systems to sense the surround-
ing environment and avoid obstacles. Existing methods fo-
cus on reducing energy consumption on AUV computing
and movement, neglecting sensing energy consumption and
few attempts have been made to balance the AUV energy
and sensing ability with a flexible sensing system. Along
these lines, we consider both AUV energy consumption and
flexible sensing abilities, and propose a deep reinforcement
learning-based method to Reduce Energy Consumption by
AUV Sensing system (RECS). Specifically, we build an AUV
sensing system in a 2-dimension space, with controllable 8-
direction sensing abilities to collect the environment infor-
mation dynamically. Then we divide the underwater environ-
ment into several areas and assign weights on the edges of
areas based on the AUV planned path. Additionally, we dy-
namically switch the sensors in different directions and radii
to sense the edges of the area where the AUV is located.
The Artificial Potential Field (APF) method is employed to
re-plan the AUV path to avoid obstacles and reach the tar-
get point effectively. Experimental results demonstrate that
compared to full sensors on, our method reduces energy con-
sumption by 53.48% and is capable of generalizing to varying
environments and varying sensing system radii.

Introduction
AUV, short for Autonomous Underwater Vehicle, is an un-
manned robot capable of autonomously executing missions
in underwater environments through pre-programmed pro-
gram or self-learning algorithms (Yan et al.,2023a). AUVs
perform various types of marine applications, such as ocean
data collection (Wang et al.,2023b), pollution monitoring
(Lin et al.,2022), and navigation (Vial et al.,2023). AUVs
require environmental information provided by underwater
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wireless sensor networks to plan paths for missions. How-
ever, pre-deploying underwater wireless sensor networks be-
fore each mission is not feasible due to the high deploy-
ment costs with underwater wireless sensor networks (Han
et al.,2023). It implies that AUVs typically perform missions
in unknown environments and utilize their sensing systems
to sense the surrounding environment to obtain environmen-
tal information along the path from the start point to the tar-
get point.

Batteries are the sole energy source for AUVs, and due
to the challenges of underwater recharging, AUV opera-
tional duration is limited by their energy consumption (Hou
et al.,2022). Vision-based methods (Xue et al.,2022;Sun
et al.,2023) or acoustic-based methods (Zhang et al.,2022)
are utilized to construct AUV sensing systems and each
method requires significant energy consumption. Despite
the sensing systems consuming significant energy, it is im-
perative to consume energy to sense the surrounding en-
vironment to avoid obstacles due to the complexity of the
underwater environment and the expensive AUVs (Chu
et al.,2022). The range of sensing areas is a circular sensing
area centered on the AUV with a radius r. AUVs moving
from the start point to the target point generate numerous
sensing areas, as shown in Figure 1. With full sensors on,
the AUV successfully utilized its sensing system to sense
the surrounding environment, reached the target point, and
avoided obstacles, with 26% of its energy remaining. How-
ever, it is evident that the sensed areas covered by the AUV
sensing system include some ineffective sensing areas. The
ineffective sensing areas are defined as the sensing areas
which do not sense the AUV planned path and consume ad-
ditional energy compared to the part sensors on which the
energy remaining is 50%. Thus, reducing ineffective sensing
areas can effectively reduce the AUV energy consumption.
To reduce ineffective sensing areas, we divided the sensing
system into multiple switchable sensing directions to sense
effective areas and proposed a method for dynamically con-
trolling both the sensing direction and sensing radii.

We proposed a deep reinforcement learning-based
method to reduce energy consumption by AUV sensing sys-
tem (RECS). RECS reduces energy consumption utilizing
the following novel designs:

1. We define the maximum radius that the sensing system
covers as r and divide the unknown underwater envi-
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Figure 1: A comparison of the sensed areas, movement path, and remaining energy between fully activated AUV sensors
and dynamically switched sensors. Dynamically switched sensors reduce the sensed areas and consume less energy without
changing the planned path.

ronment into several square areas, with each square side
length being

√
2
2 r. This configuration guarantees that the

AUV fully senses the entire square area regardless of its
position within the square area.

2. We plan the AUV path based on the starting point and
target point. Based on the areas traversed by this path,
RECS assigns weights to the edges of all areas.

3. Before the AUV moves along the planned path, RECS
selects the edges to be sensed based on the edge weights
of the area where the AUV is located and assigns the
sensing direction and sensing radius based on the rela-
tive position of the AUV to this edge. When obstacles are
sensed, RECS re-plans the path and reassigns all edges of
area weights.

Related Work
Trajectory optimization: (Mahmoodi and Uysal,2022) opti-
mizes AUV energy usage by employing a hybrid propulsion
system, real-time trajectory adjustments, energy-efficient
operational modes, and maximizing solar energy harvesting
based on environmental conditions. (Hou et al.,2022) pro-
poses a framework for enhancing AUV energy efficiency
by optimizing their trajectories, incorporating communica-
tion resource allocation, computation offloading, and data
caching to balance energy consumption and operational re-
quirements of IoUT devices. (Yu, Zheng, and Xu,2024) pro-
poses a method that leverages ocean current data to plan
energy-efficient paths, reducing energy consumption by al-
lowing the AUVs to move with the current when possible.
The approach enhances the overall efficiency of AUV oper-
ations by optimizing the balance between energy expendi-
ture and mission success. (Choudhary et al.,2024) presents a
hybrid optimization scheme designed to improve the energy
efficiency of AUVs used for underwater data collection and
leakage detection in underwater wireless sensor networks
(UWSNs).

Communication and data transmission efficiency: (Chi
et al.,2024) investigates the efficiency and optimization
of energy consumption in underwater acoustic sensor net-
works by proposing a table forwarding-based election algo-

rithm and 3D path planning to balance energy usage and
extend network lifespan, while considering sensor mobil-
ity and offshore currents. (Yan et al.,2023b) discusses a
communication-aware motion planning strategy for AUVs
in obstructed environments to improve data transmission ef-
ficiency and reduce energy consumption.

Collaborative and energy-efficient data collection: (Han
et al.,2023) propose a selective line-of-sight technique
used to smooth paths, reducing unnecessary turns and
movements, which helps in conserving energy. (Wang
et al.,2023b) proposes a collaborative data collection method
for multiple AUVs, emphasizing energy-efficient strategies
to extend the operational duration and enhance the cov-
erage of ocean data collection missions. (Xi et al.,2022)
presents an energy-aware data collection framework that op-
timizes the trajectories of AUVs to reduce energy consump-
tion while maintaining effective data from underwater sen-
sor networks.

(Xu et al.,2024b;Jiang et al.,2024a;Wang et al.,2023a)
emphasize efficient prediction and decision-making in the
absence of precise prior knowledge. (Xu et al.,2024a;Xu
et al.,2022) provide novel approaches for task op-
timization in resource-constrained environments. (Yang
et al.,2024;Jiang et al.,2024b;Xu et al.,2022b) offer insights
into secure data processing and dynamic task optimization.

Background
Deep Reinforcement Learning
Deep reinforcement learning is typically formulated as a
Markov Decision Process (MDP), represented by a tuple
M = {S,A, P, r, γ}, where S denotes the set of states
and A denotes the set of actions A(s) associated with the
state s ∈ S. The state transition probability is denoted
by P (s′|s, a), and r represents the reward function. Addi-
tionally, γ ∈ [0, 1] is the discount factor, determining the
weight of future rewards in the value of the discounted re-
turn. The smaller γ places more emphasis on immediate re-
wards, while values closer to 1 account for rewards further
in the future. The agent follows a policy π(a|s) to select
actions a to be performed in state s. The policy π(a|s) repre-
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Figure 2: Schematic of RECS. At each step, RECS receives
states from the environment and outputs the sensing edge for
the area.

sents the probability of selecting action a given state s. The
agent objective is to solve the Bellman optimality equation
as shown in Equation 1.

v(s) = max
π

∑
a

π(a|s)

[∑
r

p(r|s, a)r + γ
∑
s′

p(s′|s, a)vπ(s′)

]
(1)

Q-learning, a classic reinforcement learning algorithm,
is a transformation of the Bellman optimality equation
(Watkins and Dayan,1992). Deep Q-Network (DQN) inte-
grates neural networks into reinforcement learning (Mnih
et al.,2013). There is a main network and a target network in
DQN. The main network is used to select actions and com-
pute Q-values, with its parameters updated at every training
step. The target network is introduced to ensure greater sta-
bility in the DQN training process, preventing sharp fluctua-
tions and overestimation of target values, thereby improving
convergence and overall training effectiveness. The experi-
ence replay mechanism is employed due to the bias caused
by the non-uniform distribution of samples. By employing
experience replay, DQN mitigates the correlation in the sam-
pling process, thereby enhancing the stability and efficiency
of the training process. RECS utilizes DQN as the core to
dynamically control the AUV sensing system.

Artificial Potential Field
The concept of artificial potential fields creates a simu-
lated potential field within the environment, where attractive
forces draw the agent towards the target point, and repulsive
forces push the agent away from obstacles (Khatib,1986).
By calculating the resultant force within the field, the agent
gradually moves toward the target point while simultane-
ously avoiding obstacles (Pang, Zhu, and Sun,2023). This
potential field is usually formulated as a function of the dis-
tance to the target point and obstacles, and the agent navi-
gates by moving in the direction of the steepest descent in

this potential field. Therefore, the AUV successfully navi-
gates to the target point while dynamically avoiding obsta-
cles, even in the absence of a detailed environmental map by
the APF algorithm. RECS utilizes APF to help AUVs plan
the path and avoid obstacles in unknown environments.

Method
RECS is shown in Figure 2. We divide the environment into
several areas based on the sensing radius, and plan the path
according to the AUV position and the target point position,
and assign each edge weight according to the planned path
when the AUV enters a new environment. Next, RECS in-
puts the state information and outputs the action which edges
the AUV selects to sense and dynamically switches sens-
ing directions and optimizes sensing radii to sense the edge.
RECS returned to the path planning stage when the AUV
sensed obstacles. The AUV moves along the planned path
to an edge of its current area and continues sensing until it
reaches the target point when no obstacle is sensed.

To switch the sensing directions, we divide the sensing
system into eight 45◦ segments: upper-right, right-upper,
right-lower, lower-right, lower-left, left-lower, left-upper,
and upper-left, as shown in Figure 3a. We define the energy
consumption with all sensors fully activated in the maximum
sensing radius as Ef and the energy consumption for each
exploration direction is Ed =

Ef

8 . The distance the AUV
travels along the shortest path to reach the target point is de-
noted as ds and the maximum sensing radius as r. In a no
obstacle environment with all sensors fully activated, the to-
tal energy consumption required is Et =

dsEf

max(r) . In RECS
Et refers to the energy consumed by sensing systems. The
initial energy for the AUV is defined based on the distance
to the target point in RECS, but it does not represent the to-
tal real available energy of the AUV. The total real available
energy required for the AUV is distributed among various
systems, including the propulsion system, communication
system, and other subsystems (Chang et al.,2022). There-
fore, if Et exceeds the pre-defined energy, it will not result
in mission failure. The AUV can reallocate energy from the
allocations of other systems to the sensing system.

It is essential to understand the actual sensing system en-
ergy consumption and establish the relationship between
sensing radii and energy consumption to simulate a real-
world environment. We refer to the settings in (Danielis
et al.,2022), and the energy consumption formula for the
sensing system is as Equation 2:

Ef =


80W, 3.5km < r,

35W, 2.0km < r ≤ 3.5km,

8W, 1.0km < r ≤ 2.0km,

2.5W, r ≤ 1.0km.

(2)

With the r increasing, energy consumption grows exponen-
tially. Therefore, in RECS, the maximum range of r is set to
be less than 1.0 km. Additionally, the setting is implemented
so that when the r increases or decreases, Ef changes lin-
early with the r in RECS.
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and avoiding obstacles illustrate RECS sensed edges, avoids obstacles, and reassigns edge weights.

Dividing Environments
It is necessary to divide the underwater environment into
several areas, due to the uncertainty of underwater environ-
ments and the necessity for the AUV to control the sensing
directions and radii based on its current position. Therefore,
a square modeling method is adopted to divide the environ-
ment into several square areas. The mission allocation uses
square modeling, where the side length of each square is√

2
2 r according to the AUV sensing radius. It ensures that

when the AUV is at one vertex of the square, it can sense the
entire square, as shown in Figure 3c. (Han et al.,2023) sug-
gests that existing local path planning algorithms often gen-
erate paths that are too close to obstacles, thereby increasing
the risk of collision, it is necessary to designate infeasible
areas and mark the cells containing obstacles as off-limits
for the AUV. However, this method may result in the AUV
being unable to reach its destination. For example, if the tar-
get point is surrounded by obstacles marked as impassable
areas for the AUV, the AUV will be unable to reach the tar-
get point. In the real environment, there might be sufficient
space for the AUV to pass through. Therefore, RECS does
not designate impassable areas but instead employs APF to
maintain a safe distance from obstacles.

Assigning Weights
After dividing environments into several areas, RECS plans
a path based on the positions of the starting point and the
target point and assigns different weights to the edges of
each area according to the planned path. Assigning weights
helps RECS obtain rewards in DQN when sensing edges.
Each time the AUV senses an edge, its current position and
the sensed edge are recorded in a database to prevent re-

peat sensing. Therefore, the weight assignment represents
only the weight for the AUV to sense the target edge from
its current position and does not apply to sensing the same
edge from other positions. The process from determining the
AUV movement path to the partitioning of the environment
and the assignment of weights to different areas are pre-
sented in Figure 3b. Colored edges indicate higher weights
have been assigned to them. It can be observed that the edges
with higher weights are all situated along the AUV planned
path. Before introducing the specifics of the weight design,
it is necessary to define the energy required to sense an edge
as shown in Equation 3.

Eedge =

n∑
i=1

Ed × ri
max(r)

, (3)

where Eedge represents the energy required to sense an edge;
the ri represents the sensing radius in the i-th direction.

We assign the weights into three weight categories: high-
weight, medium-weight, and low-weight. The low-weight
edges are marked in black in Figure 3b. The AUV will be
penalized for sensing low-weight edges as Equation 4, due
to its planned path does not pass through these edges. Sens-
ing low-weight edges merely increases energy consumption
without helping the AVU complete its missions.

Wlow = −Eedge ×Nedges, (4)

where Nedges represents the total number of edges sensed in
this action, with a maximum of 4 and a minimum of 1.

The medium weights are marked in orange in Figure 3b
as Equation 5. The medium-weight edges can be selectively
sensed based on the current energy consumption. There are
two scenarios for assigning medium-weight to edges: one is



the edge closest to a high-weight edge within the same area,
and the other is all edges within an area sensing an obstacle.

Wmedium =

{
Wlow, ifEedge >= Ea,

−Eedge, otherwise,
(5)

where Ea represents the average energy consumption for the
AUV to sense edges in this action. When Eedge ≥ Ea, it rep-
resents that the energy consumption for sensing a medium-
weight edge is high, and the edge is regarded as a low-weight
edge. Otherwise, it represents the energy required to sense
the edge is low, only a minor penalty is applied.

The high weights are marked in red in Figure 3b as Equa-
tion 6. The edges traversed by the planned path are as-
signed high weight. RECS forbids the AUV movement until
it senses a high-weight edge. When the AUV reaches the
high-weight edge, it is regarded as a low-weight edge. In an
environment without obstacles, the AUV reaches the target
point by sensing only the high-value edges. Therefore, the
AUV will receive a reward for sensing high-weight edges.

Whigh = (
n∑

i=1

Ed,i − Eedge)× (5−Nedges), (6)

where
∑n

i=1 Ed,i represents the energy required to sense an
edge when the sensing radius is at its maximum; 5−Nedges
represents that the fewer edges sensed during this action,
RECS will get the greater reward.

Deep Reinforcement Learning
We utilize DQN as our core algorithm, which necessitates
defining the state space, action space, and reward feedback.
The state space is S = {se; so; sp; sc; st} as shown as Figure
2 State S. State values within the state space will change af-
ter an action is executed. The components of the state space
are defined as follows:
• se: The AUV sensing system energy consumption.
• so: Obstacles are sensed within the area.
• sp: Four points in the area where the AUV is in.
• sc: The AUV current position.
• st: The target position.

The action space is defined by the four edges of the area
where the AUV is located: A = {au; al; ad; ar}. au repre-
sents the upper edge, al represents the left edge, ad repre-
sents the lower edge, and ar represents the right edge of the
area. It does not mean that each action senses only one edge
at a time. By combining all actions, there are a total of 14
possible actions. When an edge to be sensed is selected, the
sensing direction is automatically configured based on the
relative positions of the AUV and the edge. The sensing di-
rection radius is set according to the position of the edge to
be sensed and the edge is fully covered by the sensing area,
as shown in Figure 2 Action A. After the edges are sensed,
any straight-line path from the AUV position to the edge will
be covered. It results in two possible scenarios: one where no
obstacle is sensed and one where an obstacle is sensed.

When no obstacle is sensed, the AUV moves along the
planned path until it reaches the sensed edge. The new po-
sition of the AUV and the sensing radius for each sensing

direction are input into the environment, which updates the
state space. When an obstacle is sensed, the planned path
may collide with the obstacle, and it is essential to re-plan
the path to avoid obstacles. However, re-planning the path
means RECS returns to the assigning weights stage due to
the AUV new path altering the traversal edges.

We set rewards as positive and negative feedback to help
train the RECS more effectively. Positive feedback includes
the AUV reaching the target point, sensing the high-weight
edge, sensing obstacles, and remaining energy when the
AUV reaches the target point. Negative feedback includes
the AUV sensing the low-weight edge and medium-weight
edge, remaining energy less than zero, colliding with obsta-
cles, and the energy consumed during each sensing.

Avoiding Obstacles
When an obstacle is sensed and it blocks the planned path,
the AUV can not move along the planned path. In this
case, RECS re-plans the path and reassigns edge weights,
as shown in Figure 3c. Without designating impassable ar-
eas, the APF method is employed to avoid obstacles in the
sensed obstacles area. We employ the attractive field and the
repulsive field in APF to reach the target point and avoid
obstacles, as shown in Equation 7 and Equation 8.

Fatt(q) = −katt(q − qgoal), (7)

Frep(q) =

{
krep

(
1

∥∆q∥ − 1
d0

)
1

∥∆q∥2∆q, if ∥∆q∥ ≤ d0,

0, if ∥∆q∥ > d0,
(8)

where Fatt(q) and Frep(q) represent the attractive and repul-
sive forces on position q; −katt and krep represent the attrac-
tive and repulsive force constants; 1

d0
represents the distance

threshold for the influence range of the repulsive force; ∆q
represents the gradient of the distance from the sensed ob-
stacle to the AUV; However, APF may fall into the local
minimum problem when the attractive and repulsive forces
are equal in special cases. The local minimum problem is
sometimes inevitable when an object moves in unknown en-
vironments because the object can not predict local minima
before it detects obstacles forming the local minima (Park
and Lee,2003). We resolved the local minimum problem by
introducing random perturbations to both the attractive and
repulsive forces in the APF.

Experiment
Experiment Settings
Simulations in a virtual environment inherently differ from
the real-world environment. RECS primarily focuses on re-
ducing energy consumption rather than path planning and
AUV trajectory movement. Therefore, a series of constraints
are introduced to address these limitations.

• All obstacles are regarded as static objects, such as reefs
or other immovable objects.

• The AUV is treated as a point, with a collision only con-
sidered if it overlaps with an obstacle.



• The AUV movement speed is kept constant, ensuring that
acceleration or deceleration does not cause the AUV to
deviate from the planned path.

• The AUV sensing system energy can exceed the initially
allocated energy.

The training environment features a map with dimensions
of 100x100 units, with four different-sized obstacles ran-
domly placed within the map. We randomly selected 64 dif-
ferent start and target point pairs on this map as the start
and target locations for the AUV during training. A vector-
ized environment configuration was employed to improve
the training process efficiency. The episode will terminate
if any of the following conditions are met: (1) the AUV col-
lides with obstacles; (2) the AUV reaches the target point. To
facilitate calculations and visualization in the training envi-
ronment, we set the maximum sensing radius r to 7.07, en-
abling RECS to divide the environment using a factor of 5.
At this point, the side length of the square region is 5. The
configuration can be proportionally scaled up or down in dif-
ferent environments or different AUV configuration without
affecting the performance of RECS. We set the Ef at the
maximum sensing radius r to 8. The energy consumption is
a linear function of the sensing radius, with Ed ranging from
0 to 1. Since sensing is conducted edge-by-edge, this setting
allows for precise determination of energy consumption for
each action. The step size for each AUV movement is set
to 0.5, facilitating precise calculation of the AUV travel dis-
tance and enhancing the accuracy of result visualization.

The training was conducted on an Ubuntu 22.04 machine
with 128 GB of RAM and an Nvidia 4090Ti GPU.

The training process starts with the initialization of neural
network parameters, specifically the weights, which serve
as the foundation for learning during subsequent iterations.
The batch size is set to 64 and the learning rate of 0.001.
The epsilon value is initialized at 0.99, with an epsilon de-
cay rate of 0.995, and a minimum epsilon value of 0.1. The
Adam optimizer is utilized to update the weight parameters
throughout the training process.

Prioritized experience replay is employed to disrupt the
correlation in the training data, with a buffer size of 10,000
and a minimum size of 1,000. Prioritized experience re-
play samples experiences based on their importance (Schaul
et al.,2016). The importance of an experience is typically
determined by its Temporal Difference (TD) error, which
quantifies the discrepancy between the predicted Q-value
and the target Q-value. A larger TD error represents that the
experience contributes to the network learning, and makes it
more probable to be sampled during replay.

In each episode, RECS collects tuples (s,a,r,s′,d) and
stores them in its prioritized experience replay buffer. s and
s′ represent the AUV state information before and after ex-
ecuting an action, a is the action, r is the reward, and d
represents the done or termination condition. To process
subsequent data and ensure that RECS can be effectively
applied to various scenarios and AUV configurations, the
data in these tuples is normalized (Ioffe and Szegedy,2015).
All data values are greater than -1 and less than 1 after
normalization. During the training phase, soft updates are

Distance Energy

Size Full RECS Full RECS SD SE ER

100*100 49.6 50.1 58.8 25.2 2.3 1.2 57.1%
100*100 64.6 64.9 79.2 34.0 2.3 1.3 57.0%
100*100 78.5 79.0 93.2 45.8 2.4 1.4 50.8%

200*200 100.7 101.1 118.8 57.4 2.5 1.5 51.9%
200*200 129.8 130.1 150.8 73.7 2.5 1.4 51.1%
200*200 148.2 148.7 172.4 80.9 2.5 1.4 53.0%

Table 1: The comparative results show the differences in
travel distance and energy consumption between RECS and
full sensors on across various environments.

employed to gradually align the parameters of the target
network with the main network. This method guarantees
smoother changes in the target network, thereby avoiding
abrupt fluctuations in the target values (Zhao et al.,2024).

Performance Comparison
To validate the performance of RECS and guarantee that
RECS can generalize well in various environments, we uti-
lized two different map sizes and conducted performance
evaluations across 64 points using three different mission
execution distances on each map. Specific performance eval-
uation metrics are employed to measure the performance of
RECS. These metrics include the reduced energy consump-
tion rate (ER) and the average number of sensed edges per
step (SE). ER refers to the percentage of reducing energy
reduction when utilizing RECS compared to full sensors on
and directly measures RECS ability to reduce energy con-
sumption relative to the full sensors on. SE represents the
average number of sensed edges per step before the AUV
reaches the target point and indirectly validates that the AUV
can successfully reach the target point by sensing only the
high-weight edges.

The comparison results of energy consumption between
full sensors on and RECS are presented in Table 1. Full rep-
resents the full sensors on compared to RECS; SD represents
the average number of sensing directions that are activated
during each action; distance represents the movement dis-
tance of the AUV from the start point to the target point;
energy represents the total energy consumption when the
AUV reaches the target point. In Table 1, the energy con-
sumption of RECS is lower than full sensors on in all envi-
ronments. The minimum ER is 50.8%, with an average ER
of 53.4%, indicating that RECS effectively reduces the en-
ergy consumption of the AUV sensing system. It helps ex-
tend AUV operational duration for missions. It is important
to note that, since the start and target points are randomly
selected, ER will exhibit slight variations due to the num-
ber of obstacles encountered by the AUV will vary. Con-
sequently, differences in ER across different environments
are expected and considered normal. In different map sizes
and distances, the SE is consistently less than 2. It indicates
that RECS successfully implements the assignment weights
strategy, where the AUV primarily senses high-weight edges



Distance Energy

Radius Full RECS Full RECS SD SE ER

7.07 78.3 79.8 91.8 44.8 2.4 1.3 51.2%
14.1 78.7 79.5 95.2 44.5 2.5 1.3 53.2%

Table 2: Comparing the impact of different sensing radii on
RECS.

and selectively senses medium-value edges without sensing
low-value edges. Additionally, an SD of 2.4 confirms that
each sensing cycle utilizes a minimal number of sensing di-
rections, further contributing to the reduction of the AUV
energy consumption. With the movement distance increas-
ing, RECS achieves greater energy savings compared to full
sensors on, indicating that RECS offers a significant advan-
tage in long-distance missions. With the map size chang-
ing, ER does not exhibit significant variation, indicating that
RECS possesses strong robustness and maintains its perfor-
mance regardless of changes in map size. Although the dis-
tance to the target point increases slightly compared to the
full sensors on, the increase is less than 1% compared to all
distances. It indicates that the impact on the path is mini-
mal and does not significantly increase the AUV travel cost.
Overall, RECS successfully reduces the energy consumption
of the sensing system without significantly increasing other
system costs for the AUV.

Analysis on Transferability
To ensure that RECS performs effectively under different
exploration radii, we tested 64 points with varying radii on
a 200x200 map. The ER and SE values for these tests are
presented in Table 2. The tested radii were 7.07 and 14.14,
and the sensing system corresponding energy consumption
of 8 and 16. It can be seen that both ER and SE show no sig-
nificant changes compared to Table 1, indicating that RECS
remains stable and effective under varying sensing radii. Al-
though an increase in sensing radius leads to higher energy
requirements for each sensing operation, the environment
partitioning we use results in a corresponding increase in the
size of the areas, leading to a relative reduction in the num-
ber of sensing operations required. The generalization ca-
pability of RECS across different sensing radii of the AUV
sensing system is presented in Table 2.

Visualization
To compare the RECS sensing effectiveness with full sen-
sors on, we placed four obstacles on a 100 × 100 map and
visualized the path and sensing directions of the AUV with a
sensing radius of 7.07, moving from the start point [53,21] to
the target point [76,75] as Figure 4a and Figure 4b, and mov-
ing from the start point [26,54] to the target point [78,25] as
Figure 4c and Figure 4d. The green point is the start point
and the red point is the target point. The blue areas are the
sensed areas. The red line on the obstacles represents the
edges sensed by the sensing system. RECS performed se-
lective edge sensing during its operation, with each action

(a) (b)

(c) (d)

Figure 4: Visualization of movement paths and sensing areas
in the simulated environment with RECS and full sensors on.

typically sensing only one or two edges. When sensed obsta-
cles, the AUV successfully re-plans the path, avoids the ob-
stacles, and successfully reaches the target point. Compared
to full sensors on, RECS not only reduced energy consump-
tion but also safely avoided obstacles RECS movement path
is nearly identical to full sensors on.

The experimental results demonstrate that RECS can gen-
eralize effectively across various environments and various
AUV configurations. RECS can adapt efficiently to various
environments and mission distances presented in Table 1.
RECS maintains similar performance across different AUV
sensing radii presented in Table 2. These findings validate
that RECS can effectively reduce the energy consumption
of AUV sensing systems and can be successfully applied to
various environments or AUV configurations.

Conclusion
This paper discusses a method-based deep reinforcement
learning to address the challenge of reducing energy con-
sumption in AUV sensing systems. It emphasizes how to
divide the entire sensing system into different sensing di-
rections and how the AUV selects the directions to sense.
To address the challenge, we propose the RECS method,
which divides the environment into different areas and as-
signs weights to each edge of areas. RECS selects the edges
to be sensed based on their weights, and re-plans the path,
and reassigns weights if obstacles are sensed. RECS uses
DQN to select the edges to sense. In future work, we plan to
set the simulated environment to a 3D space to ensure more
realistic simulations and include movable obstacles.
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