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Rethinking the Effect of Sparse Data Completion
on Sparse Mobile Crowdsensing Tasks
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Abstract—Mobile crowdsensing (MCS) is a powerful technique
that enables a variety of urban tasks, including temperature
monitoring, location-based services, and urban path recommen-
dations. However, these tasks often face the challenge of sparse
and incomplete sensing data, undermining their effectiveness and
reliability. Sparse data completion (SDC) methods have been
developed to infer missing or unobserved data by leveraging
spatio-temporal correlations to tackle this issue. This forms
the core concept of the sparse mobile crowdsensing problem
(SMCS), which aims to improve the performance of downstream
tasks through inferred data. Despite the potential benefits, most
existing SMCS methods fail to consider the trade-off between
the cost of SDC and the benefits for downstream tasks. These
methods often treat SDC and downstream tasks as independent
modules, resulting in suboptimal outcomes. In this paper, we
investigate the impact of SDC on the SMCS paradigm, both
qualitatively and quantitatively. We establish the upper bound of
performance achievable when applying SDC in SMCS under dif-
ferent levels of sensing data sparsity. Based on these studies and
findings, we propose a practical and flexible framework called
SDC-EVA, Sensing Data Completion EVAluation framework. This
framework allows for applying different SDC methods in SMCS,
considering factors such as computing complexity, storage space,
and associated costs. Our proposed framework allows researchers
to assess the necessity and feasibility of integrating SDC into
SMCS systems before designing and deploying them in real-
world scenarios. This assessment can be tailored to specific data
sparsity and contextual information. To validate the effectiveness
of our proposed evaluation framework, we conduct experiments
in various real-world scenarios involving different combinations
of SDC and downstream tasks. The results demonstrate the
superiority of our framework in improving the performance of
SMCS. By presenting these findings, we aim to contribute to
developing SMCS techniques and provide valuable insights for
researchers and practitioners.

Index Terms—Spatio-temporal analysis; Data completion;
Sparse Crowdsensing

I. INTRODUCTION

Mobile crowdsensing (MCS) has emerged as a promising
data collection paradigm in urban computing, thanks to the
widespread adoption of mobile devices equipped with various
sensors like accelerometers, gyroscopes, GPS, cameras, and
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Fig. 1. An example to illustrate the challenges in SMCS. 1) the efficiency
trade-off between the SDC computing cost and the full sensor deployment
cost, and 2) the data quality of deduced data D’ and the full sensing data D
for supporting downstream tasks.

microphones [1], [2]. MCS leverages collaboration among
users to share local knowledge, environmental context, or
traffic conditions, enabling large-scale, complex global tasks
using mobile devices for sensing, collection, and computation.
The key factors that make MCS unique are the presence of
many sensing participants and the low deployment costs [3].
These factors have made MCS a subject of exploration in
academia and industry. Compared to traditional wireless sensor
networks (WSNs) that rely on specific network architectures
and designed protocols, MCS has advantages in addressing
complex time- and space-aware downstream tasks [4]. For
example, MCS enables temperature monitoring [5], location-
based services [6], and urban recommendation tasks [4] with
its crowd flexibility and dynamic self-organization [3]. The
ability to tap into the collective power of the crowd allows
MCS to overcome the limitations of traditional WSNs and
provide efficient solutions for a wide range of urban computing
challenges.

MCS tasks can be broadly categorized into two main types:
Prediction and Sensing [7]. The Prediction task focuses on
predicting the future actions of a target based on the sensed
data. In MCS, for instance, POI recommendation can be con-
sidered as a Prediction task, where the destination location of a
mobile user can be deduced from their historical trajectory and
the trajectories of their neighbors collected by mobile devices.
On the other hand, the Sensing task aims to obtain a global
understanding of a specific area or zone. Examples of sensing
tasks in MCS include temperature monitoring and monitoring
traffic conditions. However, we notice that MCS scenarios
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usually do not consider the trade-off between the cost of SDC
and the benefits for downstream tasks. Introducing SDC may
result in more energy costs for specific tasks without ensuring
promising performance. To the best of our knowledge, there is
no prior work in MCS to formulate or explore this trade-off.

In practice, both prediction and sensing tasks face chal-
lenges related to Sensing Data Quality Issue and Energy
Cost Issue associated with sensing [8]–[10]. These challenges
have been identified as the bottlenecks of traditional MCS.
To mitigate the energy costs of sensing, a variant of MCS
called Sparse MCS (SMCS) has been proposed when facing
certain constraints. In SMCS, mobile devices collect data
only when they are in specific locations or when certain
conditions are met, reducing the amount of data that needs
to be transmitted and processed, and the energy consumption
of mobile devices. Existing research on SMCS has explored
various aspects, such as energy saving, data completion, and
privacy concerns. Researchers have noted that SMCS has the
potential to overcome the energy cost issue in traditional MCS,
and in certain tasks, the SMCS framework has demonstrated
superior performance.

In SMCS, the classic framework is two-stage: sparse data
completion and downstream task (as indicated in Figure 1).
Specifically, sparse data completion is the core module for
SMCS deployment in a real-world scenario, which utilizes
the sensed/observed data to infer the unsensed/unobserved
data with the help of spatio-temporal correlations to enhance
the data quality. Because SMCS employs limited participants
or senses limited sub-zones of the global zone, it naturally
solves the energy cost issue. Thus, most existing SMCS
methods claim that using limited sensed/observed data to
deduce unsensed/unobserved data can address data quality and
energy cost issues. However, it notes that SDC consumes
computing energy in SMCS, especially when large models
such as generative and deep models are employed in the
SDC module. These models may require more computing
resources to infer data than directly sensing them. Therefore,
the energy cost issue cannot be directly tackled by employing
SDC, and enhancing prediction accuracy may require the
incorporation of supplementary prediction modules, thereby
escalating costs, and leading to two important challenges in
the SMCS framework:

• How to define the qualitative and quantitative measures
of sensed data and inferred data to support specific
downstream tasks? (Sensing Data Quality Issue)

• How to strike a balance between the energy-saving ben-
efits of utilizing the SDC module and the option of
deploying more sensors directly? (Energy Cost Issue)

To the best of our knowledge, our work is the first to explore
both challenges in mobile crowdsensing tasks, particularly
from a data quality perspective. In this study, we investigate the
various conditions that affect the performance of crowdsensing
tasks, including data sparsity and the accuracy of inferred
data. Additionally, we consider the computing costs associated
with existing SDC methods and establish a performance upper
bound for optimal performance when utilizing these methods
in SMCS. To address these challenges, we propose a practical

and flexible framework, SDC-EVA, for applying different SDC
methods in SMCS. This framework considers the computing
complexity, storage space, and structure costs, allowing re-
searchers to assess the necessity and feasibility of introducing
SDC into their SMCS systems based on their specific data
sparsity and context information. Our framework serves as a
heuristic deployment guide for SDC in SMCS. We validate the
effectiveness of our proposed framework through experiments
conducted on real-world scenarios involving various SDC
and downstream tasks, such as global monitoring and POI
recommendation. The results demonstrate the superiority of
our evaluation framework in improving SMCS.

In summary, the contributions of this paper are as follows:
• We highlight the importance of Sparse Data Completion

in sparse mobile crowdsensing scenarios, largely over-
looked by existing research. To validate the SDC module,
we establish the performance upper bound for different
SMCS situations and downstream tasks.

• We introduce a practical and flexible framework that
serves as a novel SMCS paradigm, considering the trade-
off between complexity, storage space, and structure cost.
This framework can serve as a guide for deploying SDC
in various SMCS applications.

• We validate the effectiveness of our proposed framework
through experiments conducted on real-world scenarios
involving various SDC and downstream tasks, including
global monitoring and POI recommendation. The results
demonstrate the effectiveness of our evaluation frame-
work for applying SDC in SMCS.

II. PRELIMINARIES

We introduce the basic definitions of SMCS scenarios and
the problem definitions of SMCS issues. We conducted the
pilot validation to support our motivation and solution.

A. Basic Definitions

In SMCS scenarios, we extract the collected data in a tensor
style, where we treat each geo-map as a target zone matrix
M∈ Rm×n, m,n are the scales of the indexes of longitude and
latitude, respectively. MCS tasks, like global monitoring and
POI recommendation, require the MCS framework to collect
data in a continuous time period t = {t1, t2, ...tz}, in which
z is the scale of the time dimension. Thus, the whole sensing
space can be represented as a tensor Γ∈ Rm×n×z . For each
entity dijk in Γ, there is a mask cijk ∈ {0, 1} to represent
whether the specific location in longitude i, latitude j at time k
is collected {cijk=1} or not {cijk=0}, where i ∈ {1, 2, ...,m},
j ∈ {1, 2, ..., n}, k ∈ {t1, t2, ...tz}. Specifically, we utilize the
following formulation to evaluate the collected data quality Q:

Qk =

∑
i,j

cijk

|M|
=

∑
i,j

cijk

m · n
. (1)

Q =

∑
i,j,k

cijk

|Γ|
=

∑
i,j,k

cijk

m · n · z
. (2)
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Note that |Γ| represents the scale of Γ. Qk represents the
collected data quality in time k. And Q is the global collected
data quality.

For the SDC module, the input of SDC could be the tensor
Γ, or several specific subsets of it. The purpose of the SDC
model is to utilize the limited collected data to deduce the
unobserved ones, which could be formulated as follows:

{
d̂ijk|cijk = 0

}
= SDC(INITIAL(Γ,Q), αSDC), (3)

where the
{
d̂ijk|cijk = 0

}
are the predicted values for un-

observed locations, and INITIAL() is the proper function to
tackle tensor Γ for input. αSDC is the hyper-parameters of
SDC. In this work, we focus on the efficiency of the SDC
module. Thus, we need to calculate SDC’s storage cost SSTC,
computing complexity SCC, and the correlations between
them and energy E. To make the trade-off more reasonable,
we also need to link these metrics to the performance of
downstream tasks Ptask, as follows:

EVASDC ∼ {Ptask,ESSTC,ESCC}. (4)

where ESSTC is the storage energy cost, ESCC is the computing
complexity energy cost, and EVASDC is the overall evaluation
for a SDC method. To apply SDC in SMCS scenarios, we
should understand the most important problems: 1) whether
the energy saving from collecting limited data can cover the
energy cost of SDC. And 2) whether the collected data (sensed
by sensors) or predicted data (calculated by SDC) can support
the downstream tasks.

B. Problem Definitions

Problem Definition 1: Global sensing vs Sparse Data
Completion (Trade-Off problem): Given downstream tasks
TASK, we can either utilize global sensing to obtain the whole
data sensor Γ, which may consume sensing energy EGSSC and
storage cost EGSTC, or utilize SDC to predict the whole data
with the limited collected data (with different Q). Note that
for global sensing, Q∗=1 and Q=1, which means that at each
time t∗, all the data are collected by sensors. Moreover, we
divide the trade-off into two aspects: energy and performance.
From an energy aspect, we should consider EGSSC and EGSTC
of global sensing, and the ESSSC, ESSTC and ESCC of SDC:

EGSSC,EGSTC ∼ ESCC,ESSSC,ESSTC. (5)

Note that the SMCS framework utilizing SDC needs to be
able to sense and store limited data. Thus, the cost comparison
can be treated as the linear formulation with Q as the weight:

ESSSC ∼ EGSSC · Q;

ESSTC ∼ EGSTC · Q.
(6)

Considering real-world situations, including time and space,
more details about the Trade-Off problem are given in the
following sections.

Problem Definition 2: Effect of SDC module on down-
stream tasks (Effectiveness problem): Given the SDC module,

TABLE I
NOTATION LIST.

Notation Description
SDC Sparse data completion
SMCS Sparse mobile crowdsensing
M collected data in the target zone (matrix)
Γ collected data in the target zone (tensor)
m,n geo-scales of the target zone
z time-scale of the collected data
dijk collected data at location (i, j) at time k
cijk data indicator at location (i, j) at time k
Qk collected data quality at time k, calculated by Eq. (1)
Q collected data quality (sparsity), calculated by Eq. (2)
Q0, Q1 collected data quality thresholds
d̂ijk predicted data by SDC
EGSSC,EGSTC global sensing cost and storage cost
ESSSC,ESSTC SDC sensing cost and storage cost
ESCC SDC computing cost
θSDC accuracy of SDC for predicting data, calculated by Eq. (7)
Ptask performance of downstream task task
α, τ, β hyper-parameters of SDC

the predicted unobserved data d̂ijk|cijk = 0 has the bias from
the real collected data dijk|cijk = 0, which may affect the
performance of downstream tasks. Specifically, the predicted
accuracy of SDC modules can measure this bias:

θSDC = 1−
∑
i,j,k

∣∣∣{d̂ijk|cijk = 0} − {dijk|cijk = 0}
∣∣∣∣∣∣{d̂ijk|cijk = 0}

∣∣∣ (i · j · k) . (7)

From a performance aspect, the bias may affect the down-
stream tasks. In this paper, we aim to find the correlations
between the SDC performance and the downstream tasks,
formulated as follows:

Ptask ∼ Q, θSDC, (8)

which means that the Ptask may be affected by the data quality
and the predicted accuracy of SDC, respectively. Note that
there are different downstream tasks in SMCS scenarios. We
aim to propose a general analysis method to give practical and
theoretical insurance for applying SDC.

With the above definitions, we summarize our key problem
with considerations about the Trade-off problem and Effec-
tiveness problem: we aim to design an analysis methodology
to give a practical framework for evaluating the necessity
of applying SDC in SMCS scenarios and assessing SDC
(EVASDC). Important notations are listed in Table I.

C. Pilot Validation

We conduct two pilot validations to validate our proposed
method: First, we select different data sparsity as the input
to the downstream tasks/SDC methods. This validation aims
to indicate the effect of limited data on the performance of
downstream tasks/SDC methods. Without loss of generality,
we utilize POI recommendation [11] and Global monitoring
[12] as the downstream tasks, DMF [13] and basic MF [14]
as the SDC methods. Then we randomly select sensed data
(Changchun City Traffic Data) as the downstream
tasks’ input. Note that it means that the Q is the indicator of
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TABLE II
DESCRIPTION OF SPARSITY OF CHANGCHUN CITY TRAFFIC DATA

Data sensor data 1 sensor data 2 GPS points
Data Quality Q 0.64 0.57 0.87

data sparsity. We select different evaluation metrics, MAPE for
the global monitoring, HR@10 for the POI recommendation,
and θSDC for SDC methods, respectively.

First of all, without loss of generality, we list the statistics
of the data quality Q of (Changchun City Traffic
Data), including sensed GPS points and sensor data 1 and
2 (Table II). Note that the data quality Q is not similar to
data sparsity, which is calculated by Formulation 2. From the
statistics, we notice that in SMCS scenarios, low data quality is
a common situation. The pilot validation 1 is reported in Figure
2. We notice that when the data is relatively sparse (Q< 0.4),
the performance of both downstream tasks is unacceptable.
When the Q rises to 0.7, the POI recommendation and
global monitoring are close to the state-of-the-art performance.
Besides, the performance of the SDC methods is also affected
by the different Qs. Thus, we validate the first intuition:

Proposition 1: the data sparsity affects both downstream
tasks and SDC methods’ performance.

For the second validation, we aim to explore the effect
of the SDC’s prediction accuracy (data inference quality) on
the downstream task’s performance. However, because of the
accuracy limitations of the SDC methods, we cannot cover
all the situations with some specific SDC methods. Without
loss of generality, we add random bias N(µ, σ) to the ground
truth collected global data to simulate the inaccurate prediction
of SDC, where µ is the average value of data and σ is
the controllable parameter. We utilize θbias (calculated as the
Eq. (7)) as the metric to evaluate the data accuracy.

The pilot validation 2 is reported in Figure 3. We notice
that when the data inference quality is low, especially below
0.5 of θbias, the performance of downstream tasks is severely
damaged. In the extreme situation, when the θbias=0.1, all the
downstream tasks are down. Considering that the traditional
SMCS framework utilizes the SDC’s results as the input of
downstream tasks as an end-to-end solution and validates the
whole framework with the accuracy of the downstream tasks.
They omit analyzing the effect of SDC methods’ performance
on the downstream tasks. From Figure 3, we conclude that
if the SDC’s accuracy is low, the performance of the whole
SMCS framework cannot be ensured.

Based on the above two pilot validations, to achieve an ex-
plainable and efficient SMCS framework, we should consider
both SDC’s accuracy and the data quality. Hence, we have the
second proposition:

Proposition 2: SDC’s performance accuracy should be
considered for ensuring SMCS’s performance.

III. METHODOLOGY FOR APPLYING SDC IN SMCS

A. Qualitative and Quantitative Analysis

We should pay attention to the fact that the performance
of the SMCS framework is related to 1) the data quality and

2) if utilizing SDC, SDC’s output accuracy, as we indicate in
Eq. (8) qualitatively. Thus, we analyze it quantitatively from
both performance and energy perspectives. Without loss of
generality, for applying SDC, we should consider the following
two extreme situations:

• the collected data is too sparse that even if we utilize the
SDC methods, the performance of SDC for supporting
the downstream tasks cannot be guaranteed.

• the collected data is so dense that even if we utilize the
SDC methods, the contribution of SDC for enhancing
SMCS performance and the energy cost that SDC intro-
duces are not quantitatively calculated.

To derive the upper performance bound of utilizing SDC,
we define the optimal performance of SMCS, which utilizes
the global sensed data (Q=1), is Popt. So, the SDC’s upper
performance bound can be formulated as follows:

P =λPPopt = θSDC · β

1 + e−αQQ
· Popt, (9)

where β is the model-specific parameter of SDC, which can
be calculated by AIC (Akaike Information Criterion) and BIC
(Bayesian Information Criterion) [15]:

AIC = 2k − 2ln(LLSDC);

BIC =ln(Q · |Γ|)− 2ln(LLSDC),
(10)

where k is the parameter number of SDC, which is related
to ESCC; LLSDC is the likelihood function. Note that when
Q=1, SDC is unnecessary for SMCS framework, so we
set β=1+e−αQ and θSDC=1, to ensure P=POPT. Though the
performance upper bound is formulated explicitly, it cannot
be easily achieved according to the other factors, including
structural risk and empirical risk, which is inevitable. Thus, we
introduce αQ=2 to consider both risks’ effects on performance.
We follow the classic proof of [15], [16], and we conclude that
if we apply the SDC model, the ideal upper bound of SMCS
performance is P =(1/1+e−3)Popt ≈ 0.9527Popt. However,
the ideal situation cannot even be approximated in real-world
scenarios. Hence, instead of utilizing the upper bound of
utilizing SDC, we need to use λP in Eq. (9) for choosing the
proper SDC model for the specific SMCS scenarios without
considering the energy costs.

As we indicate in Eq. (6), Q is the cooperative factor for
EGSSC and ESSSC, EGSTC and ESSTC. We could formulate the
energy cost as follows:

EGSSC=eunit ·m · n · z;
EGSTC=estore ·m · n · z.

(11)

where m · n · z is the scale of tensor |Γ|, and eunit and estore
are the energy cost for collecting and storing one data value
dijk, respectively. Thus the global sensing (Q=1) energy cost
can be formulated as:

EG=(eunit + estore) · |Γ|; (12)

Considering the situation that SDC models only require
limited collected data, we could formulate SDC’s energy cost
as follows:
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Fig. 2. Pilot validations with different Q for SDC methods and downstream tasks.
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Fig. 3. Pilot validation for data inference quality. We add random noise
N(µ, σ) to simulate the data inference bias. Thus we use θbias as the metric
to evaluate the effect of added noise.

ESSSC=EGSSC · Q;

ESSTC=EGSTC · Q.
(13)

Utilizing the SDC module introduces the additional cost,
ESCC, related to the computing complexity. Specifically, we
can treat ESCC as a stable weight, which is also related to the
input data’s sparsity Q, which is formulated as:

EINTRO = ESCC=(ecompute) · |Γ| · Q, (14)

where ecompute is the energy cost of each computing. Hence,
by utilizing SDC, we could reduce the collecting and storing
energy costs:

ESAVE=(eunit + estore) · |Γ| · (1− Q). (15)

We could evaluate the energy cost by utilizing the following
metric λE:

λE = ESAVE/EINTRO

= (eunit + estore) · (1− Q)/(ecompute) · Q.
(16)

If the λE > 1, SDC benefits the SMCS framework by saving
energy costs, which means that Q < (eunit + estore)/(eunit +
estore + ecompute), and vice versa.

Cooperating with the pilot validations, especially Proposi-
tion 1 and Proposition 2, we notice that if Q is lower than
0.4, the downstream tasks and SDC’s performance cannot be
guaranteed, not even close to the theoretical optimal λP. Still,

if the Q is higher than (eunit + estore)/(eunit + estore + ecompute),
the introduced energy cost is higher than the saved energy,
which violates the goal of introducing SDC into the SMCS
framework. Hence, we give a simple but practical principle
for applying SDC to the SMCS framework:

Principle 1: In real-world SMCS scenarios, to enhance
the performance of the whole framework, 1) if the collected
data quality (Q) is lower than Q0, we need to deploy more
sensors to collect data; 2) if the Q is in the range (Q0,
Q1), we could introduce SDC models for better performance
and lower energy cost; 3) if the Q is higher than Q1,
SDC is not the proper choice for SMCS models, we could
utilize more sensors or modify the models of downstream
tasks. Q0 is an empirical parameter which is pre-defined and
Q1=(eunit + estore)/(eunit + estore + ecompute).

Without loss of generalization, we set eunit = estore =
ecompute in Eq. (16):

λE = 2 · (1− Q)/Q. (17)

When λE > 1, which means Q < 2/3 ≈ 0.667, SDC
benefits the SMCS framework by saving energy cost; when
λE < 1, which means Q > 2/3 ≈ 0.667, SDC introduces
more computing energy cost than the ones saving. To this
end, we set Q0=0.4, Q1=0.667 as the initial threshold of Q in
the experiment.

B. Metrics for selecting SDC models

With the above qualitative and quantitive analysis, we
ensure the data requirement conditions (Q0 < Q < Q1) for
utilizing SDC. However, when selecting SDC methods for
enhancing SMCS performance, we still need to analyze the
correlations between SDC accuracy θSDC and downstream task
performance Ptask.

Thus, we design a novel metric for applying SDC in
the SMCS framework. To cooperate with the SDC accuracy
and downstream task performance, we formulate the overall
performance for SDC in the SMCS framework:

λSDC = (1− τ) · λSDC
E + τ · λSDC

P , (18)

where τ is the weight balance of the energy costs and the
performance enhancement. Without specific requirements, we
set τ=0.5. Note that the SDC selections should take the effects
of SDC on downstream tasks. We modify the calculation of
λP by replacing the likelihood:
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Fig. 4. SDC-EVA framework, a practical, flexible framework for applying different SDC methods in SMCS, considering computing complexity, storage space,
and structure cost. The right circle is the processing step order when applying this framework, and the black line separates the whole framework into two
parts: with/without SDC.

LLSDC − LLSDC, tasks. (19)

The calculation of likelihood is not the key question of this
work, which can be found in [15]. Thus we introduce the pre-
heuristic stage into SMCS: before we design a practical SMCS
framework, especially whether to utilize the SDC modules, we
should do the following estimation:

• Check the collected data quality Q.
• If the Q is in (Q0, Q1), calculate λSDC for selecting the

proper SDC models.

IV. SDC-EVA FRAMEWORK FOR APPLYING SDC IN
SMCS

With the proposed metric λSDC, we introduce a module into
traditional two-stage SMCS frameworks: the SDC-EVA mod-
ule, which extends the two-stage, one-way SMCS framework
to an explainable, heuristic framework, which is indicated in
Figure 4. The SDC-EVA module has the following functions:

• Calculate the collected data quality (Q).
• Decide whether to employ SDC or not (YES/NO).
• Calculate the metric λSDC for candidate SDC methods for

specific downstream tasks (if YES).
• Redeploy the sensor networks/input the collected data

into downstream models (if NO).

Note that if Q is lower than Q0, the SDC-EVA module
requires the SMCS framework to redeploy the sensor networks
to improve the Q because the poor data quality cannot be
remedied by introducing SDC modules. If Q is higher than
Q1, introducing SDC may add more energy cost with limited
performance, the SDC-EVA module may refine the data col-
lected procedure to enhance Q or directly input the collected
data SD into downstream tasks.

By adding the SDC-EVA module, the proposed SMCS
framework could achieve several goals:

• Decide whether to employ SDC or not (YES/NO) ac-
cording to the data conditions.

• Choose the proper SDC methods for specific tasks.
• Adjust the proposed SMCS framework with reasonable

explanations.
• Give guidance for data collection strategy.
We give the whole procedure of SDC-EVA in Algorithm 1:

V. EXPERIMENT AND VALIDATION

This section introduces the experimental settings, including
datasets, baselines, and other details. Subsequently, we present
extensive experiments to answer the following research ques-
tions:

RQ1: How does the hyper-parameter affect the performance
of SDC-EVA? Which are the optimal values?

RQ2: What is the effectiveness of SDC-EVA? Can it
provide an explainable, practical way to decide which SDC
should be employed?

RQ3: What is the effect of each module in SDC-EVA? How
does SDC-EVA work in the SMCS framework?

A. Data, task, baselines, and settings

1) Datasets: We self-collect two raw datasets of
Changchun City:

(a) Trajectory dataset: It contains billions of raw trajecto-
ries collected by GPS devices in smartphones from July to
December 2017. (b) POI dataset: It covers 3,402 POIs with
159 sub-categories of 12 main categories. We delete the POIs
with less than 200 check-ins in six months and the trajectory
without mobility in 24 hours as data pre-filtering. We present
these datasets’ visualization in Figure 5.

Without loss of generality, we also employ the benchmark
dataset Gowalla1, the details of both datasets are listed in
Table III.

1https://snap.stanford.edu/data/loc-gowalla.html
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Algorithm 1 SDC-EVA framework for SMCS scenarios
Require: collected data Γ, geo-scales m,n, time scale z, can-

didate sparse data completion models SDCs, downstream
tasks tasks, threshold Q0, Q1, parameters α, τ, β.

Ensure: downstream tasks performance Ptask.
1: Initialization: data initialization function INITIAL()

(Eq. (3)). hyperparameter αSDC (Eq. (3)) αQ (Eq. (9)),
SDC metric weight τ (Eq. (18))
Step 1

2: Collect data at Target Zone M;
3: Preprocess the collected data to form the collected data

tensor Γ;
Step 2

4: Input the collected data tensor Γ to SDC-EVA module.
Step 3

5: Calculate Q with Eq. (2);
6: if Q < Q0 or Q > Q1 then
7: Jump to Step 4;
8: end if
9: for each SDC in candidate SDC set do

10: Calculate λE, λP, respectively.
11: Calculate λSDC

12: end for
13: Select the proper SDC with the largest λSDC

14: Jump to Step 5;
Step 4

15: Refine the data collection strategy;
Step 5

16: if Q > Q1 then
17: Input Γ into downstream tasks, Jump to return;
18: end if
19: if Q0 < Q < Q1 then
20: Input Γ into selected SDC module, Jump to Step 6;
21: end if

Step 6
22: Input predicted data into downstream tasks;
23: return Output downstream tasks performance Ptask.

TABLE III
DESCRIPTION OF DATASETS

Datasets Changchun Gowalla
#Users 2,239,529 373

#locations 2,185 131,329
#Check-in actions 49,716,815 2,963,373

Sparsity 98.9% 99.9%

2) Downstream tasks: Based on the collected data, we
divide the map into (m=64) · (n=64), and (m=32) · (n=32)
for Changchun and Gowalla, respectively. We employ two
general downstream tasks: Global Monitoring: utilizes limited
collected data to monitor the global situation of the target
zone m ·n. The validation metric of global monitoring is θGB,
which is calculated by Eq. (7). POI recommendation: utilizes
the limited collected check-in data to deduce the next POI.
The validation metric of POI recommendation is θPR, which
is similar to [11].

Fig. 5. Changchun trajectory dataset and target user dataset. The blue points
in the Changchun trajectory dataset are the POI distribution. The black lines
are the road networks.

3) Employed Baselines: For SDC methods, we employ
three candidates:

basic MF [13], is widely used for data completion tasks,
particularly in sparse mobile crowdsensing scenarios. By de-
composing a spatiotemporal matrix into low-rank matrices,
MF effectively captures the underlying patterns in the data,
enabling accurate completion and prediction,

DMF [14], is a non-linear neural network approach that
enhances the capabilities of traditional matrix factorization for
data completion. By leveraging the power of non-linear mod-
eling, DMF improves the accuracy of sparse data completion
in various applications.

STDMF [5], is a powerful data-completion approach in
spatiotemporal datasets. By simultaneously considering the
spatial and temporal dimensions of the data, STDMF captures
the complex relationships and patterns, resulting in accurate
and comprehensive completion results.

Note that the θSDC of three methods is escalating, so is the
computing complexity.

For global monitoring, we employ two baselines:
UrbanPy [17], combines fine-grained data analysis, net-

work modeling, and machine learning algorithms and offers
a comprehensive solution for understanding and predicting
urban traffic dynamics.

UrbanSG [18], is a state-of-the-art technique for inferring
fine-grained urban flow information. Using conditional gener-
ative adversarial networks, UrbanSG effectively captures the
intricate patterns and relationships in urban traffic data, en-
abling accurate prediction and analysis for urban transportation
planning and management.

For POI recommendation, we employ four baselines:
ToP [11], is an advanced approach for providing person-

alized and explainable recommendations for points-of-interest
(POI). By incorporating time-dependent zone information and
embedding techniques, ToP effectively captures the spatio-
temporal characteristics of POIs, enhancing the accuracy and
interpretability of the recommender system.

STiSAN [19], is a powerful technique for modeling spatio-
temporal interactions in sequential data. By incorporating self-
attention mechanisms, STiSAN effectively captures the depen-
dencies and dynamics between elements, enabling accurate
predictions and analysis in tasks such as video understanding,
action recognition, and trajectory forecasting.
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TABLE IV
OVERALL PERFORMANCE FOR APPLYING SDC-EVA IN GLOBAL MONITORING TASKS. ACC=MAPE

Datasets Changchun Gowalla
Q 0.4 SDC-EVA 0.5 SDC-EVA 0.6 SDC-EVA 0.4 SDC-EVA 0.5 SDC-EVA 0.6 SDC-EVA

UrbanPy

MF acc 0.5514 0.74 0.5314 0.81 0.4332 0.91 0.5661 0.88 0.5511 0.84 0.5472 0.74cost 374 386 394 346 344 435

DMF acc 0.4751 0.82 0.4641 0.79 0.4413 0.81 0.5714 0.71 0.5431 0.88 0.5401 0.83cost 549 581 597 547 554 564

STDMF acc 0.5211 0.71 0.5142 0.61 0.4371 0.78 0.5742 0.70 0.5612 0.64 0.5417 0.79cost 878 894 895 833 839 841

UrbanSG

MF acc 0.4613 0.66 0.4536 0.78 0.4435 0.78 0.4431 0.77 0.4325 0.77 0.4216 0.79cost 1430 1434 1466 1344 1364 1378

DMF acc 0.3916 0.79 0.3811 0.81 0.3714 0.79 0.3887 0.81 0.3771 0.84 0.3664 0.77cost 1540 1548 1577 1514 1522 1533

STDMF acc 0.3764 0.81 0.3644 0.80 0.3517 0.78 0.3641 0.76 0.3632 0.88 0.3521 0.80cost 1740 1744 1840 1701 1722 1756

LSPSL [20], introduces two self-supervised optimization
objectives to improve the long- and short-term preference
modeling, which is the state-of-the-art POI recommendation
method.

CTLE [21], is a bi-directional attention pre-trained location
embedding model incorporating the spatial-temporal context in
trajectories.

MAPE and HR@10 are the metrics for downstream meth-
ods’ performance, following the definition in references of POI
recommendation and global monitoring, respectively, and cost
is the computing time unit count.

4) Settings: In our work, for all the baselines and our
proposed methods, we have adopted a multi-step strategy
to systematically configure the parameters: 1) Initial Setup:
Based on prior knowledge and literature review, we started
with a set of reasonable initial values for each parameter.
2) Automated Tuning: To refine these initializations, we em-
ployed an automated hyperparameter optimization technique
called Bayesian optimization using the Optuna. This method
efficiently explores the parameter space by balancing explo-
ration and exploitation.3) Cross-Validation: During the tuning
process, we utilized k-fold cross-validation to ensure that the
selected parameters generalize well across different subsets
of the data. For data completion, POI recommendation, and
Global Monitoring tasks, we tune models’ parameters and
search the hyper-parameters to achieve their best performance
for the specific target. Then, we fix the models’ parameters.
For our proposed framework SDC-EVA, we set α = 2, τ =
0.5, β=1+e−αQ . We conduct all experiments on a server with
64GB RAM, a 12-core AMD 9 Ryzen 5900X CPU, and Nvidia
RTX 3090 GPU.

B. Overall performance (RQ1)

We utilize MAPE, HR@10 for accuracy, and cost for effi-
ciency to evaluate the different combinations of SDC methods
and the downstream tasks. Note that we record the computing
time under the same computing ability as the cost of each
combination. We hope to see whether the SDC-EVA could
select the most proper combination under different Qs. The
results are reported in Table IV and Table V. We have the
following discussion according to the results:

• In both downstream tasks, each method’s performance
(acc) becomes better when Q increases. Specifically,
UrbanPy+DMF and Urban+STDMF achieve the best

performance on Gowalla and Changchun in Global
monitoring task, respectively; STiSAN+STDMF achieves
the best performance on Gowalla and Changchun in
POI recommendation task. We notice that no combination
could dominate others on accuracy and efficiency, and
there is no simple and clear rule to follow for picking
SDC for specific downstream models.

• SDC-EVA can select the competitive combination for
different downstream tasks with different downstream
models with different Qs before SMCS framework
deploys and trains SDC models to test their effect,
which reduces the cost and deployment difficulty
greatly. Note that there is no dominating combination
for each scenario (Q, downstream models, candidate
SDC models). SDC-EVA does solve the data quality and
energy cost issues, which could be a guide for sparse
mobile crowdsensing framework design.

• For both downstream tasks, we only test the Q in
(0.4,0.5,0.6), which is validated in our prior experiments.
However, the different real-world situations may lead
to different thresholds for utilizing SDC (maybe not in
the range of (0.4,0.667)). However, all the researchers
could utilize our proposed methodology to customize
their personal SDC-EVA module.

C. Ablation Study (RQ2)

For the ablation study, we build several variants of the SDC-
EVA module. Note that the SDC-EVA considers both energy
cost and downstream tasks’ performance; we treat its result as
ground truth, and we build the EVA-* series variants:

1) EVA-P: an evaluation module that considers only down-
stream tasks’ performance, which means that λSDC = λP.

2) EVA-E: an evaluation module that considers only energy
costs, which means that λSDC = λE.

3) EVA-PSDC: an evaluation module that considers only the
SDC model’s performance, which means that we consider only
LLSDC in Eq. (10).

4) EVA-Ecompute: an evaluation module that considers the
computing energy cost is more important, ecompute=eunit+estore,
which means that the Q range that we could combine with
SDC is (0.4, 0.5) according to Eq. (17).

5) EVA-Eunit: an evaluation module that considers the
sensing energy cost is more important, eunit=2ecompute=2estore,

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3531362

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: JILIN UNIVERSITY. Downloaded on February 19,2025 at 03:04:16 UTC from IEEE Xplore.  Restrictions apply. 



9

TABLE V
OVERALL PERFORMANCE FOR APPLYING SDC-EVA IN POI RECOMMENDATION TASKS. ACC=HR@10

Datasets Changchun Gowalla
Q 0.4 SDC-EVA 0.5 SDC-EVA 0.6 SDC-EVA 0.4 SDC-EVA 0.5 SDC-EVA 0.6 SDC-EVA

ToP

MF acc 0.1456 0.64 0.2146 0.81 0.3579 0.87 0.1567 0.84 0.1974 0.81 0.2111 0.79cost 647 666 679 584 591 594

DMF acc 0.1974 0.74 0.2165 0.78 0.3666 0.85 0.1664 0.71 0.2464 0.82 0.2554 0.83cost 774 787 801 647 694 741

STDMF acc 0.2001 0.72 0.2324 0.80 0.3671 0.77 0.1674 0.68 0.2564 0.79 0.2877 0.87cost 994 1004 1104 894 901 974

STiSAN

MF acc 0.1882 0.69 0.2104 0.77 0.2224 0.74 0.1977 0.76 0.2197 0.74 0.2233 0.77cost 1904 1914 1922 1764 1774 1801

DMF acc 0.2194 0.71 0.2547 0.80 0.2234 0.80 0.2447 0.81 0.2644 0.88 0.2647 0.81cost 2041 2086 2111 1914 1923 1955

STDMF acc 0.2444 0.88 0.2679 0.82 0.3847 0.84 0.2547 0.80 0.2710 0.87 0.3910 0.89cost 2146 2188 2246 2041 2077 2104

LSPSL

MF acc 0.1456 0.64 0.2146 0.81 0.3579 0.87 0.1567 0.84 0.1974 0.81 0.2111 0.79cost 647 666 679 584 591 594

DMF acc 0.1974 0.74 0.2165 0.78 0.3666 0.85 0.1664 0.71 0.2464 0.82 0.2554 0.83cost 774 787 801 647 694 741

STDMF acc 0.2001 0.72 0.2324 0.80 0.3671 0.77 0.1674 0.68 0.2564 0.79 0.2877 0.87cost 994 1004 1104 894 901 974

CTLE

MF acc 0.1882 0.69 0.2104 0.77 0.2224 0.74 0.1977 0.76 0.2197 0.74 0.2233 0.77cost 1904 1914 1922 1764 1774 1801

DMF acc 0.2194 0.71 0.2547 0.80 0.2234 0.80 0.2447 0.81 0.2644 0.88 0.2647 0.81cost 2041 2086 2111 1914 1923 1955

STDMF acc 0.2444 0.88 0.2679 0.82 0.3847 0.84 0.2547 0.80 0.2710 0.87 0.3910 0.89cost 2146 2188 2246 2041 2077 2104

which means that the Q range that we could utilize SDC is
(0.4, 0.75) according to Eq. (17).

The results are reported in Table VI.

TABLE VI
ABLATION STUDY FOR SDC-EVA

Variant Q Global Mon Task POI Rec Task

EVA-P

0.4 F T
0.5 F F
0.6 F T
0.7 - -

EVA-E

0.4 F F
0.5 T F
0.6 T F
0.7 - -

EVA-PSDC

0.4 T T
0.5 T F
0.6 T F
0.7 - -

EVA-Ecompute

0.4 T T
0.5 T T
0.6 - -
0.7 - -

EVA-Eunit

0.4 T T
0.5 T T
0.6 T T
0.7 T T

SDC-EVA

0.4 T T
0.5 T T
0.6 T T
0.7 - -

From the ablation study, we have the following discussion:
• All variants can choose the right combination (marked

by T) for different tasks. However, the performance of
all the variants is not as stable as SDC-EVA. Specifically,
when we only consider PSDC, EVA-PSDC achieves the best
correct rate among variants (4/6). It indicates we should
consider energy cost and task performance when selecting
SDC in SMCS.

• Note that for different settings of ecompute, eunit (EVA-
Ecompute and EVA-Eunit), the correct rate of choosing SDC

is not affected, which means that our proposed SDC-
EVA can handle the different situations of computing and
sensing energy cost, validating its generalization ability
for various SMCS scenarios.

D. Parameter Study and A Case Study (RQ3)

We set different parameters to study their effects on SDC-
EVA. Specifically, we focus on several important parameters:
metric weight τ and performance parameter β={AIC, BIC}.
Without loss of generality, we set the Q from 0.4 to 0.6, with
each step 0.04. We focus on DMF+ToP (POI recommendation)
to check the effect of parameters on λSDC on both datasets.

The results are reported in Figure 6 and Figure 7. From the
results, we have the following discussion:

• The different values of τ force SDC-EVA to focus on
different aspects of candidate SDC methods. With a small
τ , SDC-EVA pays more attention to energy cost where a
low-complexity method is benefitted, and vice versa.

• For β, by analyzing the floating, we conclude that AIC
is proper for large datasets while BIC is proper for small
datasets. The reason is that AIC calculates the parameter
number of the candidate methods, while BIC is more
sensitive to the scale of datasets, which is indicated in
Eq. (10).

Besides, we give an example of how to utilize SDC-EVA
in real-world scenarios. In this scenario, the city planners try
to achieve a downstream task T , with collected data D. In the
traditional SMCS framework, if the D is sparse, city planners
would utilize the SDC module to predict the missing data and
finish the task T without any consideration of energy cost.
However, when we introduce SDC-EVA, we should employ
eunit, estore, and ecompute to calculate the additional energy cost
before we utilize SDC. Note that to utilize SDC-EVA, we
should deduce the Q0 and Q1. Specifically, Q0 is an empirical
parameter that is pre-defined (in this experiment, we set it to
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Fig. 6. Parameter study of τ of ToP+DMF on both datasets.
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Fig. 7. Parameter study of β of ToP+DMF on both datasets

0.4) and Q1=(eunit + estore)/(eunit + estore + ecompute). The SDC-
EVA model could help city planners decide whether to utilize
the SDC module or collect more data to achieve task T without
introducing additional energy costs, with the calculation of Q,
which is efficient for computing, as shown in Figure 8.

Besides, our method could be extended to different SDC
methods when we could calculate their accurate energy costs.
Note that utilizing SDC-EVA in distributed mode may in-
troduce different issues for calculating the cost of the SDC
module; we should carefully design the modified SDC-EVA
framework for a distributed computing environment. However,
we think that, with their accurate energy costs, a better trade-
off could be achieved. We may explore this in our next work.

Fig. 8. An example to utilize SDC-EVA in real-world scenarios.

E. Experiment Conclusion

The above three experiment results validate that:

• The results of SDC-EVA could be the heuristic module
before the SMCS deployment (solve sensing data quality
issue).

• SDC-EVA could trade off the energy-saving benefit and
the deployment SDC costs for applying SDC in the
SMCS framework (relieve energy cost issue).

VI. RELATED WORK

Our work is closely related to sparse mobile crowdsensing
and data completion models.

A. Sparse Mobile Crowdsensing

Sparse mobile crowdsensing is a variant of mobile crowd-
sensing. This popular technology leverages the ubiquity of
mobile devices equipped with various sensors to perform urban
crowdsensing tasks [6], [18], [22], [23]. Compared to tradi-
tional wireless sensor networks (WSNs), MCS offers unique
advantages in terms of scalability and flexibility. However,
the cost associated with recruiting many participants can be
prohibitive. To address this limitation, SMCS is proposed as
a solution that leverages limited conditions, such as sensing
specific areas or collecting a subset of data, to reduce energy
consumption. Several studies have been conducted to optimize
SMCS frameworks. Li et al. [12] focused on task allocation
and achieved a diverse and spatially optimized coverage within
a limited budget for different application scenarios. Wang et
al. [7] proposed a decentralized matrix factorization algorithm
to enable sparse MCS without the need for location or data
aggregation to a central server. Bian et al. [24] addressed the
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problem of selecting data instances to maximize the perfor-
mance of trained models under budget constraints. However,
existing SMCS frameworks are typically two-stage and do
not consider the energy consumption and impact of the SDC
module on downstream tasks.

B. Data Completion Models

Sparse data completion aims to solve the problem of com-
pleting a sparse spatiotemporal matrix [4], [25], [26]. In real-
world SMCS scenarios, neighboring time slots or subareas
often exhibit close values, implying that the rank of the spa-
tiotemporal matrix should be low. Matrix factorization (MF)
has been widely adopted for data inference, as it effectively
handles spatiotemporal data with strong linear characteristics.
However, MF may introduce significant errors when process-
ing non-linear data. To address this limitation, Fan and Cheng
[13] proposed Deep Matrix Factorization (DMF), which lever-
ages non-linear neural networks to enhance the capabilities of
MF. Wang et al. [7] extended DMF with an end-to-end model
for sparse industrial sensing and prediction, enabling high-
precision future predictions in addition to current time slot
sensing. The emergence of graph neural networks (GNNs)
has also contributed to data completion models. Zhang et
al. [27] introduced Inductive Graph-based Matrix Completion
(IGMC), a novel approach that leverages GNNs for matrix
completion. IGMC has demonstrated superior performance
compared to DMF for certain datasets. Xie et al. [28] proposed
a two-phase matrix completion-based data recovery scheme
that exploits the inherent characteristics of environmental data
to recover missing values. However, existing SDC models
primarily focus on improving the accuracy of data completion
and often overlook the trade-off between computing cost and
sensing cost, which is crucial for the practical application of
SDC in SMCS.

VII. CONCLUDING REMARKS

In this paper, we qualitatively and quantitatively investigate
the impact of SDC on the SMCS paradigm. We initially
establish an upper bound (λP) for performance when utilizing
SDC in SMCS under different levels of sensing data spar-
sity (Q). Subsequently, we propose a practical and flexible
framework (SDC-EVA) for applying various SDC methods in
SMCS while considering computing complexity, storage space
requirements, and other costs involved. Notably, our proposed
framework enables researchers to assess the necessity and fea-
sibility of introducing SDC into SMCS before designing and
deploying their systems based on specific data sparsity levels.
We conduct experiments using real-world scenarios involving
diverse combinations of SDC techniques with downstream
tasks; our results demonstrate that SDC-EVA significantly
improves SMCS as a heuristic module.

In the future, we will explore how to bridge the down-
stream tasks and the whole SMCS framework, which may
be built upon the basic SDC-EVA framework. Besides, the
data distribution, including the relationship between missing
and observed data, may become the next key factor in de-
veloping SMCS application scenarios. Moreover, researchers

could combine side information and NLP technology with the
proposed SDC-EVA module for specific MCS tasks.
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