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Abstract—The past flourishing years of sequential point-of-
interest (POI) recommendation began with the introduction of
Self-Attention Network (SAN), which quickly superseded CNN or
RNN as the state-of-the-art backbone. To realize the fine-grained
users’ behavior patterns modeling, recent works utilize modified
attention mechanisms or neural network layers to process spatial-
temporal factors. However, due to the significant increase on
either model’s parameter scale or computational burden, we
argue that these methods can be further improved. In this paper,
we exploit two lightweight approaches, Time Aware Position
Encoder (TAPE) and Interval Aware Attention Block (IAAB), to
impel SAN by considering the spatial-temporal intervals among
POIs separately, where requiring neither extra parameters nor
high computational cost. On the one hand, TAPE, adjusting the
positions in sequences based on the timestamps dynamically and
generating positional representations with sinusoidal transfor-
mation, can enhance sequence representations to reflect both
the absolute order and relative temporal proximity among all
POIs. On the other hand, IAAB, point-wise adding the scaled
spatial-temporal intervals to the attention map, can promote
the attention mechanism attaching importance to the spatial
relation among all POIs under the constraints of time conditions
and providing more explainable recommendation. We integrate
these two modules into SAN and propose a Spatial-Temporal
Interval-Aware sequential POI recommender, namely STiSAN, as
an end-to-end deployment. Experimental results based on three
public LBSN datasets and one real-world city transportation
dataset demonstrate STiSAN’s superior performance (average
13.01% improvement against the strongest baseline). Moreover,
we validate the extensibility and interpretability of TAPE and
IAAB through metric evaluation and visualization separately.

Index Terms—sequential POI recommendation, positional en-
coding, attention mechanism

I. INTRODUCTION

Point-of-interest (POI) recommendation, as the sharp tool

of conjecturing users’ preferences and providing pleasant sug-

gestions, is the hot-spot for both industry and academia (e.g.

Location-Based Social Networks, LBSNs). According to the

assumption of users’ preferences dynamics, it can be classified

into two streams [1]: conventional POI recommendation is

inclined to make predictions from the view of static, where

defaulting the preference is stable, while sequential POI
recommendation holds the opinion that a user’s historical

check-ins should be considered, which might bring changes

to the user’s current or future preference.

* Yuanbo Xu is the corresponding author.
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Fig. 1. The influence of spatial-temporal factors on POI check-in activities.
The same historical POI sequence with different time intervals may lead user
1 and user 2 to visit different POIs.

The ideal behind sequential POI recommendation is always

mining the dependency from historical sequences [2], while

its paradigm has been shifting over the past decade along

with the development of information technology. Early works

like [3]–[10] are conducted on the basis of Markov Chain

(MC) and Matrix Factorization (MF). For instance, FPMC [11]

carries out a linear combination of MC and MF to model the

personalized transition between POIs. Credited to the great

improvements of computational power and data quality, deep

learning has achieved satisfactory performance in sequential

POI recommendation, and derived large amount of Neural

Network (MLP/RNN/CNN)-based models. For example, HRM

[12] utilizes multi-layer feed-forward network to capture the

complex and nonlinear relationship among POIs, GRU4Rec

[13] employs a modified gated recurrent unit to learn the

dependency inside sequence and Caser [14] adopts convolution

kernels to model the local dependent relationship across POIs.

The flourishing of sequential POI recommendation began with

the introduction of Self-Attention Network (SAN) [15] for its

remarkable potential in dealing with sequential issues. SASRec

[16] is a milestone work in this direction, which quickly

superseded CNN or RNN as the state-of-the-art sequential

recommendation backbone [17], [18].

The spatial and temporal information are two pivotal and

complementary factors in sequential POI recommendation

[19]–[22]. On the one hand, spatial information (e.g. geogra-

phy interval Δd) can describe the physical proximity between
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POIs [23], especially when individual mobility history [27]

usually exhibits the spatial clustering phenomenon [24]–[26].

On the other hand, temporal information (e.g. time interval

Δt) can reflect the relative temporal proximity among POIs,

which contributing to more personalized individual preference

modeling [28]. As the example in Fig. 1, user 1 and user 2

shared the same historical POI sequence “Hotel → Park →
Restaurant → Office → Market”, and then they visited

“Bar”, “SteakHouse” separately. Concentrated on their time

intervals Δt1 and Δt2, we can find the distinctiveness of

their historical sequences, which indicating their different

behavior patterns (e.g. user 1’s 2nd POI is closer to 1st

POI rather than the third one from the view of time, while

user 2 is on the contrary). If a sequential recommender only

considers POIs and spatial information, the representations for

these two users’ sequences would be highly similar, and the

recommendations might be biased from the ground-truth (as

the right half of Fig. 1). Intuitively, modeling temporal factors

would be conducive for distinguishing such same sequences

and realizing finer grained sequence representations.

Various approaches have been attempted to explore the

influence brought by temporal factors. Embedding the times-

tamps into sequence representations is the most direct one,

but its performance is not always as expected. For the reason

that POIs have no attributes about time which leads to the mis-

matching between historical sequence space and candidate POI

space [23]. Recent works try to integrate temporal information

more reasonably by modifying the network architecture, e.g.

conducting self-attention on temporal information to capture

the dependency [28] and introducing temporal relation matrix

to exploit temporal effect [29]. However, mapping temporal

information into high dimension space, as the premise of all

these advanced methods, brings a significant increase on either

parameter scale or computational cost, especially when the

computational complexity of backbone SAN is quadratically

correlated with the sequence length.

Towards this issue, we propose a Time Aware Position

Encoder (TAPE) in this paper, requiring neither extra pa-

rameters nor high computational burden (i.e., lightweight), to

consider the time intervals among POIs. It is sparked by the

positional encoding [15], where defaulting the POIs’ positions

in sequence are “1 → 2 → 3” (as shown in Fig. 1). Our

TAPE adjusts the difference between positions dynamically

based on the corresponding timestamps (e.g. “1 → 2.2 → 4.7”

for user 1 and “1 → 2.1 → 3.5” for user 2), and then

generates positional representations via sinusoidal transfor-

mation. After processed with TAPE, the representations are

enhanced with the ability of reflecting the relative temporal

proximity between POIs, which can be effectively captured by

SAN to distinguish similar sequences and provide fine-grained

preference modeling.

Take a step further, due to the global attention design of

SAN, the weighted averaging inhibits the relation among local

POIs [30], [31]. In sequential POI recommendation, it can be

described as SAN is expert in learning about dependency from

the whole sequence while weakening the spatial correlation
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Fig. 2. The distribution of strong spatial correlated POIs among users’
historical sequences in four datasets. The horizontal axis denotes positions,
and the vertical axis counts the number of POIs which are physically proximity
to the corresponding target POI (less than 10 km).

among neighboring POIs. POIs with strong spatial correlations

are critical for recommendation because the smaller geography

distance usually leads to the higher visiting probability [32].

To verify this, we define the maximum geography interval

as 10km [32] and visualize the distribution of historical POIs

sharing strong spatial correlation with the corresponding target

POI1. From Fig. 2, we can find that these POIs distribute not

only in users’ short-term check-ins (e.g. the last 128 POIs)

but also among users’ earlier visits (e.g. positions ranging

from 640 to 896 and from 768 to 896 in Gowalla and

Changchun, the whole sequence in Brightkite and Weeplaces).

Unfortunately, the aforementioned drawback limits SAN to

consider the spatial relation among all these local POIs and

decreases the recommendation accuracy especially when pro-

cessing longer sequences.

To avoid this issue, we are inspired by [29], [31] and

propose another lightweight module, Interval Aware Attention

Block (IAAB), where alternating an interval-aware attention

layer and a two-layer feed-forward network. Specifically, we

construct a spatial-temporal relation matrix based on the

geography and time intervals (Δd, Δt) among historical POIs

to reflect the spatial correlations under the constraints of

temporal conditions. Then, the attention layer introduces the

relation matrix, as the inductive bias, into the attention map by

point-wise addition. In this way, IAAB impels SAN attaching

importance to the spatial correlation among all POIs in the

whole sequence, which relieving the insufficient local attention

issue. Moreover, the explicit utilization of spatial-temporal

information in IAAB improves the interpretability.

We integrate the above two lightweight approaches into

the Self-Attention Network and propose a Spatial-Temporal

interval aware sequential POI recommendation framework,

1The target POI denotes a user’s last visited POI. The statistic is carried
on three public LBSN datasets and one real-world city transportation dataset:
Gowalla, Brightkite, Weeplaces and Changchun.
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namely STiSAN, as an end-to-end deployment. Our contri-

butions can be summarized as:

• We exploit two lightweight approaches Time Aware

Position Encoder (TAPE) and Interval Aware Attention

Block (IAAB) to consider the relative spatial-temporal

proximity among POIs separately, where requiring neither

extra parameter nor significant computational burden.

• We integrate TAPE, IAAB into SAN and propose a

Spatial-Temporal interval aware sequential POI recom-

mendation framework (STiSAN), as an end-to-end de-

ployment, to realize finer grained preference modeling

and provide more explainable recommendation.

• We conduct enormous experiments to evaluate our

method on three public LBSN datasets and one real-

world city transportation dataset. The experimental results

show that STiSAN gains 13.01% improvement on aver-

age against several state-of-the-art baselines. Apart from

validating the effectiveness of TAPE and IAAB under

our framework, we further carry on metric evaluations

and visualizations to verify their extensibility and inter-

pretability separately.

The rest of this paper is organized as follows. We first

give several basic concept definitions and formally state the

Top-K sequential POI recommendation problem in Section II.

Then, we elaborate on the details of our proposed approaches

in Section III. Next, we analyze the experimental results in

Section IV. Finally, we review related works in Section V and

conclude this paper in Section VI.

II. PRELIMINARY

In this section, we start from defining several basic concepts

and then providing a formal statement for Top-K sequential

POI recommendation problem. All important notations and

corresponding descriptions are listed in Table I.

A. Basic Definition

1) Definition 1 (Check-in): A check-in is denoted as a

quad-tuple cu = 〈u, p, g, t〉, which indicates that user u visited

POI p at time t and the POI’s location (GPS coordinate) is g.

2) Definition 2 (POI Sequence): A user u’s POI sequence

Su = cu1 → cu2 → · · · → cu|Su| records his/her |Su| check-ins

by chronological order. Each POI’s position in sequence is the

subscript of the corresponding check-in, e.g. 1, 2, · · · , |Su|.
3) Definition 3 (Relative Spatial-Temporal Proximity): The

relative spatial-temporal proximity between the i-th and j-

th POI in sequence is denoted as rij which consists of the

geography interval Δdij and time interval Δtij .

B. Top-K Sequential POI Recommendation

Top-K sequential POI recommendation is carried out ac-

cording to the following process: Given a user u’s POI

sequence Su = cu1 → cu2 → · · · → cu|Su|, mining the

dependency from visited POIs, modeling the user’s preference

based on the dependency and spatial-temporal information and

TABLE I
IMPORTANT NOTATIONS AND CORRESPONDING MEANINGS

Notations Descriptions

Su historical POI sequence for user u:

S the set of all training sequences

C the candidate POI set

p, g, t POI, corresponding exact location and timestamp

pos POI’s position in sequence

n the maximum historical POI sequence length

d, dh dimensions for latent representations

Δt,Δd time and geography interval

kt, kd thresholds for maximum time and geography interval

r relative spatial-temporal proximity

μ, σ the mean and standard-deviation for input vector

α, β, ε the parameters in layer normalization

N number of stacked Interval Aware Attention Blocks

L number of negative samples for model training

T the term to control negative samples distribution

w the weight for negative sample

yi,j the preference score over POI j at step i

R spatial-temporal relation matrix

E representation matrix for input sequence

P position representation matrix

W{Q,K,V } converting matrices for query, key, value

Q, K, V query, key, value matrix

A the attentive representations for input sequence

F the output of Interval Aware Attention Block

S representation matrix for user preference

C representation matrix for candidate set

recommending a list of K ranked POIs. It can be described

as the following equation,

TopKu = Rec (Su) , (1)

where TopKu is the Top-K recommendation list contains K
POI that the user u might visit in the future. Rec (·) is an

abstract function representation symbol to signify any sequen-

tial recommender which takes as input the user’s historical

sequence and provides a list of Top-K POIs.

III. METHODOLOGY

A. Framework Overview

The architecture of the proposed spatial-temporal interval

aware sequential POI recommendation framework STiSAN

is shown in Fig. 3. It follows the classic encoder-decoder

structure, where capturing the sequential dependency and

improving users’ preference representations separately. Two

proposed lightweight modules Time Aware Position Encoder

and Interval Aware Attention Block respectively replace the

vanilla positional encoding and self-attention mechanism [15].

One for enhancing POI sequence representations to reflect

relative temporal proximity, and the other pays focus attention

to the spatial correlation among local POIs.

During the training process, STiSAN takes the POI se-

quence excluded the last check-in cu1 → cu2 → · · · → cu|Su|−1

as source, and the sequence excluded the first cu2 → cu3 →
· · · → cu|Su| as target. At each step i, it aims at predicting

the i + 1-th visited POI. During the recommendation stage,
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Fig. 3. The framework of STiSAN. The details of two significant components TAPE and IAAB are revealed in dashed boxes.

STiSAN takes as input the whole POI sequence, and suggests

a list of ranked K POIs. Each component of STiSAN will be

elaborated on in the following sections.

B. Embedding Module

The Embedding module takes as input a user u’s POI

sequence Su and outputs the sequence representation E ∈
R

n×d, where n is the maximum sequence length and d
is the dimension. Each check-in’s representation vector is

the concatenation of POI embedding2 and GPS coordinate

encoding3.

Considering that different users’ sequences are inconsistent

in length, we split longer ones into several non-overlapping

sub-sequences of length n. For shorter sequences, we repeat-

edly add a “padding” check-in in the head of the sequence

until the lengths grow to n. We encode the padding check-ins

with zero vectors to avoid influencing the gradient updating.

C. Time Aware Position Encoder (TAPE)

Time Aware Position Encoder (TAPE) is modified on the

basis of vanilla positional encoding [15]. The core idea be-

hind TAPE is dynamically adjusting the differences between

positions according to the time intervals in POI sequence,

and further reflecting the relative temporal proximity. To be

specific, TAPE takes as input the timestamps t in sequence and

calculates the k+1-th POI position as the following equation:

posk+1 = posk +
Δtk,k+1

Δt
+ 1, (2)

2We embed POI p with torch.nn.embedding()
3The GPS coordinate g is processed by the geography encoder proposed

in [23]:https://github.com/libertyeagle/GeoSAN

where posk is the previous POI’s position and Δtk,k+1 =
tk+1 − tk is the time interval. Considering that times-

tamps distribute variously across different users, we normalize

the interval by the sequence average time interval Δt =
1

n−1

∑n−1
k=1 Δtk,k+1. We also add an extra 1 to make model

distinguish POIs sharing extremely small time intervals. Recall

the user 1 in Fig. 1, the positions are now transformed from

“1 → 2 → 3 → 4 → 5” to “1 → 2.2 → 4.3 → 6.4 → 9”,

where the differences between positions are in line with the

temporal correlations. Then, TAPE encodes the positions into

d dimension space with the following sinusoidal function [15]:

PE(pos, 2i) = sin(pos/100002i/d),

PE(pos, 2i+ 1) = cos(pos/100002i+1/d),
(3)

where i = 1, 2, · · · , d/2. The representation matrix for all

positions in sequence is denoted as P ∈ R
n×d, and we inject

it into sequence representation by E = E + P.

Algorithm 1 PyTorch-like Pseudo-code of TAPE

1 class Time_Aware_Position_Encoder (nn .Module ) :

2 def __init__ (self , d ) :

3 super (Time_Aware_Position_Encoder , self ) . __init__ ( )

4 self .div_term = torch .exp (torch .arange (d , 2 ) * − (math .log ( 1 0 0 0 0 . 0 ) /d ) )

5 def forward (self , x , t ) :

6 # x shape: (n, d)
7 # t shape: (n)
8 pre_t = torch .clone (t )

9 pre_t [ 1 : ] = pre_t [ : − 1 ]

10 delta_t = t − pre_t
11 delta_t /= torch .sum (delta_t ) / ( x .size ( 0 ) − 1)

12 pos = torch .zeros_like (t )

13 pos [ 0 ] = 1 . 0

14 for k in range ( 1 , x .size ( 1 ) ) :

15 pos [k ] = pos [k − 1] + delta_t [k ] + 1

16 tape = torch .zeros_like (x )

17 tape [ : , 0 : : 2 ] = torch .sin (pos * self .div_term )

18 tape [ : , 1 : : 2 ] = torch .cos (pos * self .div_term )

19 return x + tape
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Notably, our TAPE, as a function, can reflect the temporal

information through carefully designed positions without ad-

ditional parameters. The PyTorch-like pseudo-code of TAPE is

revealed is Algorithm 14. Compared to the vanilla positional

encoding, TAPE only adds O(n) computational complexity

which can be negligible to the subsequent attention operations.

D. Spatial-Temporal Relation Matrix Building
Before devoting into the details of attention mechanism, we

first construct a spatial-temporal relation matrix R ∈ R
n×n,

as an inductive bias to reflect the relative spatial-temporal

proximity. As follows,

R =

⎡
⎢⎢⎢⎣
r11 0 · · · 0
r21 r22 · · · 0

...
...

. . .
...

rn1 rn2 · · · rnn

⎤
⎥⎥⎥⎦ ,

where we set R as the shape of lower triangle for preventing

information leakage [16], [23] that the model can only attend

to the previous i POIs when predicting the i + 1-th POI

at each step i. The spatial-temporal relation between the

i-th and j-th POI is denoted as rij . To achieve rij , we

define r̂ij = Δtij +Δdij consists of the corresponding time

and geography intervals. First, we consider that the precise

intervals are not useful beyond a certain threshold [28] and

then clip the intervals as formulated in (4) by maximum time

and geography interval thresholds kt, kd, respectively:

Δtij = min (kt, | ti − tj |) ,
Δdij = min (kd,Haversine (gi, gj)) ,

(4)

where Haversine (·) calculates the physical distance between

two GPS coordinates. Second, we argue that the relations

should be inverse to their intervals and implement the point

by rij = r̂max − r̂ij where r̂max is the max value among r̂ij .

E. Interval Aware Attention Block (IAAB)
To impel the model attaching important the spatial infor-

mation among local POIs and providing more explainable

recommendation, we introduce the spatial-temporal relation

matrix R and design an Interval Aware Attention Block

(IAAB). As shown in Fig. 3, IAAB alternates an interval

aware attention layer and a feed-forward network along with

the residual connection and layer normalization.
1) Interval Aware Attention Layer: The attention layer

takes sequence representation E and relation matrix R as input.

Firstly, it converts sequence representation E into query, key,

value matrices through three distinct matrices WQ,WK ,WV ,

Q = EWQ,K = EWK ,V = EWV , (5)

where Q, K, V ∈ R
n×d and W{Q,K,V } ∈ R

d×d. Then, the

layer explicitly combines the attention map (i.e., sequential

dependency) with the relation matrix by point-wise addition,

A = Softmax(
QKT

√
d

+ R)V, (6)

4For the sake of simplicity, we remove the dimension operations like
unsqueeze.() or squeeze.().

Algorithm 2 PyTorch-like Pseudo-code of IAAB

1 class Interval_Aware_Attention_Layer (nn .Module ) :

2 def __init__ (self , drop_rate ) :

3 super (Interval_Aware_Attention_Layer , self ) . __init__ ( )

4 self .dropout = nn .Dropout (drop_rate )

5 def forward (query , key , value , r_mat , mask ) :

6 # query, key, value shape: (n, d)
7 # r_mat shape: (n, n)
8 # mask shape: (n, n),
9 # where upper triangle elements are zero

10 r_mat = F .softmax (r_mat , dim= −1)

11 attn_scores = torch .matmul (x , x .transpose ( −2 , −1) )

12 attn_scores /= math .sqrt (query .size ( −1)

13 probs = r_mat + attn_scores
14 probs = F .softmax (probs .masked_fill (mask == 0 , −1e9 ) , dim= −1)

15 probs = self .dropout (probs )

16 return torch .matmul (probs , value )

where QKT /
√
d ∈ R

n×n denotes the attention map and

A ∈ R
n×d is the attentive results. Note that we scale R

with Softmax before the addition for normalization as shown

in Fig. 3. Moreover, the aforementioned information leakage

issue is also needed, and we achieve this point via setting the

upper triangle of attention map with “−∞” [23], [29].

In this way, our IAAB utilizes the spatial-temporal relation

to provide the attention map with positive revisions, which

strengthening model’s ability of considering the relative spatial

proximity among local POIs. Rather than embedding the

relation into high dimension space, the explicit combina-

tion improves models’ interpretability. The pseudo-code of

the interval aware attention layer is shown in Algorithm 2.

Compared to the vanilla self-attention mechanism [15], ours

requires neither extra parameters nor significant computational

burden and only increases nd FLOPs.

2) Feed-Forward Network: We employ a 2-layer point-

wise feed-forward network to encode the interactions between

different dimensions and endow the attentive results with non-

linearity [15]. It consists of two distinct linear layers and

activation function ReLU. As follows,

F = max (0,AW1 + b1)W2 + b2, (7)

where F ∈ R
n×d, W1 ∈ R

d×dh , W2 ∈ R
dh×d, s.t. dh > d and

b1, b2 ∈ R
1×d are the learned bias terms.

3) Residual Connection and Layer Normalization: Recent

works [15] have proved that multi-layer neural networks can

help model capture the hierarchical features of the input.

However, as the network goes deeper, the accuracy tends to be

saturated and then quickly degrades. As reported in [33], the

issue is caused by accumulated training errors of more layers

rather than over-fitting.

Thus, we stack N = 4 Interval-Aware Attention Blocks,

combined with residual connection and layer normalization, in

STiSAN for stabilizing and speeding up the training process.

Specifically, assuming the input is a vector x:

x = x + Layer (LayerNorm (x)), (8)

where Layer(·) can be either the attention layer or the feed-

forward layer and the normalization is conducted as:

LayerNorm (x) = α� x − μ√
σ2 + ε

+ β, (9)
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where � is an element-wise product (i.e., Hadamard product),

μ and σ are the mean and standard-deviation of x respectively.

α, ε and β are the learned parameters for scaling and biasing.

F. Target Aware Attention Decoder (TAAD)

According to [23], [29], [34], [35], the recommendation

might be sub-optimal if we directly match the output of N -th

IAAB F(N) with candidate POI set C. Therefore, we follow

[23] to introduce a Target Aware Attention Decoder (TAAD) to

improve the representations of user preference over candidates,

S = TAAD
(

F(N) | C
)
= Attn(C,F(N),F(N)),

Attn(C,F(N),F(N)) = Softmax(
CF(N)T

√
d

)F(N),
(10)

where S is the representation matrix for user preference and

C is the representation matrix for candidate set. We embed

the candidate POIs the same way as input sequence (i.e.,

the concatenation of POI embeddings and GPS coordinates

encodings). The aforementioned mask strategy is also needed

in TAAD for preventing information leakage.

G. Matching and Ranking

Recall that the user’s preference vector at the step i is Si ∈
R

1×d, we calculate the preference score yi,j over the candidate

POI j with the following matching function (11),

yi,j = f (Si,Cj) , (11)

where Cj ∈ R
1×d is the representation vector of POI j and

f(·) is the inner production.

After matching with all candidate POIs and ranking the

corresponding preferences scores, the model recommends a

list of Top-K POIs TopKu that the user u might visit in future.

H. Model Training

The binary cross-entropy loss function is widely-used for

optimizing sequential recommenders [16], [28]. However, for

the sake of efficient training, only one negative sample is

randomly picked from all unvisited POIs, which cannot make

fully effective use of the large number of negative samples

[23].Thus, for each target POI oi, we retrieve the L nearest

POIs around it as negative samples, and we introduce the fol-

lowing weighted binary cross-entropy loss function proposed

by [23] to optimize our model,

Loss = −
∑
Su∈S

n∑
i=1

(
logσ(yi,oi)+

L∑
l=1

wllog(1−σ(yi,l))

)
,

(12)

where S is the set of all training sequences and wl =
exp(yi,l/T )

∑L
l=1 exp(yi,l/T )

is the weight for negative POI l. T is the

temperature parameter to control the distribution of negative

samples. When T approaches positive infinity, the distribution

of negative samples will be equivalent to uniform.

TABLE II
THE STATISTICS OF FOUR DATASETS (AFTER PRE-PROCESSED)

Dataset Gowalla Brightkite Weeplaces Changchun

#user 31,708 5,247 1,362 344,258
#POI 131,329 48,181 18,364 2,135
#check-in 2,963,373 1,699,579 650,690 21,471,724
sparsity 99.93% 99.33% 97.40% 97.08%
avg. seq. length 53.0 146.0 325.5 43.0

IV. EXPERIMENTS AND DISCUSSIONS

In this section, we first introduce the datasets, baselines,

evaluation metrics, and implement details of STiSAN. Then,

we analyse experimental results, including overall recommen-

dation performance and ablation study. Moreover, we validate

the extensibility and interpretability of TAPE and IAAB.

Besides, we explore the model’s sensitivity with respect to dif-

ferent datasets characteristics. In summary, we conduct large

amount of experiments to answer the following questions:

• RQ1 Can our STiSAN provide superior performance

compared to several state-of-the-art baselines?

• RQ2 How is the effectiveness of the two proposed

components TAPE and IAAB under our framework?

• RQ3 Can TAPE and IAAB be effectively employed to

the vanilla self-attention network?

• RQ4 How is STiSAN’s sensitivity with respect to differ-

ent sparsity levels?

A. Datasets

We choose three public LBSN datasets: Gowalla5,

Brightkite6, Weeplaces7 and one real-world city transportation

dataset Changchun [36] to evaluate our proposed model. In

order to ensure the quality of datasets, the “cold” users

and “cold” POIs are filtered out during the pre-processing.

Specifically, we remove the users who visit less than 20 POIs

and the POIs that have been interacted with fewer than 10

times. During the partition of datasets, we take each user’s

most recent n+ 1 POIs in the whole sequence for evaluating

(i.e., the last previously unvisited POI as target and the front

n POIs as source input sequence), and all the POIs prior to

the target for training. We set the maximum sequence length

n = 100. Longer sequences will be divided into several non-

overlapping sub-sequences of length n from the end, and

shorter sequences will be repeatedly added “padding” POI in

the head until their lengths grow to n.

B. Baselines

To evaluate the effectiveness of our proposed STiSAN,

we compare it with various existing methods. For a better

understanding of these baselines, we now briefly introduce

our competitors:

5https://snap.stanford.edu/data/loc-gowalla.html
6https://snap.stanford.edu/data/loc-brightkite.html
7https://www.yongliu.org/datasets.html
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• POP is a simple popularity based model which first

calculates the interaction frequency of each POI and then

recommends the most popular POIs for users.

• BPR [8] is a generic optimization criterion for per-

sonalized ranking. We apply it to the normal matrix

factorization for users’ preferences modeling.

• FPMC-LR [19] extends basic matrix factorization with

geography constraints to learn the personalized transition

matrix between POIs.

• PRME-G [20] utilizes metric learning to project users

and POIs into the sequential transition space, user pref-

erence space, respectively, to learn user-specific transition

patterns. It considers geographical factors by multiplying

a travel-distance based weight.

• GRU4Rec [13] is a basic GRU based model for se-

quential recommendation. We implement it under our

framework, i.e., use all prior POIs for training

• Caser [14] is a CNN based model for sequential recom-

mendation. It employs horizontal and vertical convolution

filters to capture sequential dependency from the local

and global perspectives simultaneously.

• STGN [37] is a state-of-the-art LSTM based method,

which designs extra gates for capturing the spatial-

temporal correlations between successive POIs.

• SASRec [16] is the classic framework of applying self-

attention based encoder for sequential recommendation.

• Bert4Rec [18] analyses the limitations of unidirectional

sequential recommenders and models user’s behavior

sequence under the framework of BERT [38].

• TiSASRec [28] argues that different time intervals be-

tween interactions will influence the prediction and ex-

plore such impact with the proposed time aware self-

attention layer.

• GeoSAN [23] exploits a novel self-attention based ge-

ography encoder which shows the state-of-the-art perfor-

mance in modeling POIs’ exact locations.

• STAN [29] is a state-of-the-art sequential POI rec-

ommender that explicitly models the relative spatial-

temporal information among all POIs with the proposed

bi-layer attention architecture.

C. Metrics

We adopt two widely-used metrics, Hit Rate, and Normal-

ized Discounted Cumulative Gain (NDCG) [39], to measure

how well the target POIs in the test set are ranked. The larger

the values of metrics are, the better the performance is. We

report the two metrics at k = 5 and k = 10 in our experiments.

The specific information is as follows:

• Hit Rate at a cutoff k, denoted as HR@k, counts the

fraction of times that target POI is among the top k
recommendation list, as formulated in (13),

HR@k =

∑
|Eval||TopKk ∩ trg|

|Eval| , (13)

where Eval is the evaluation set. The recommendation

list and target for each historical sequence in Eval are

denoted as TopKk and trg respectively. Note that since

the number of target POI is 1, the metrics of Recall and

Hit Ratio are equivalent in such scenario [40].

• NDCG at a cutoff k, denoted as NDCG@k, rewards

the method that ranks the positive items in the first few

positions of the Top-K ranking list, as (14),

NDCG@k =
1

D

k∑
i=1

2|TopKi∩trg| − 1

log2(i+ 1)
, (14)

where TopKi is the i-th POI in the recommendation list

and D, the maximum possible value of DCG@k, is a

normalization constant.

For the sake of the efficient evaluation, we retrieve the near-

est 100 previously unvisited POIs around the target as negative

candidates. Hit Rate and NDCG can then be computed based

on the ranking of the 101 POIs.

D. Settings

The implementation details of our STiSAN are listed as

follows. For the late representations, we set the dimensions

of POI embedding and GPS coordinates encoding to 128,

and the sequence dimension d is concatenated to 256. For

the preference modeling, we stack N = 4 Interval Aware

Attention Blocks. During training process, we randomly pick

L = 15 POIs from the traget’s nearest 2000 neighbours as

negative samples. We set the learning rate and dropout rate

to 0.001 and 0.7. We train our STiSAN for 35 epochs on

Gowalla, 20 epochs on Brightkite, Weeplaces and Changchun.

The temperature parameter T is 1.0 for Gowalla, 100.0 for

Brightkite and Weeplaces and 500.0 for Changchun. Our

model is implemented on the PyTorch 1.8.08 and conducts

all experiments on a server with 122GB RAM, 12-core AMD

9 Ryzen 5900X@3.7GHz CPU and Nvidia RTX 3090 GPU.

E. Validations and Discussions

1) Overall Performance (RQ1): To evaluate the effective-

ness of our proposed STiSAN, we compare the overall recom-

mendation performance of STiSAN with the twelve baselines.

The experimental results are summarized in Table III. Note

that we test all baselines for 10 rounds, and take the average

value along with the variance as their final performance.

The last row reveals the improvements of STiSAN over the

strongest baseline. It is obvious that our method has superior

performance over all datasets on every metric. Specifically, we

have the following observations:

• Conventional popularity or matrix factorization based

methods like POP, BPR, and FPMC-LR have relatively

unsatisfactory performance compared to other baselines.

The main reason is the insufficient modeling of sequential

dependency or high-order interaction information.

• Due to the inability of processing long sequences and

the insufficient modeling of geographical information,

STGN performs poorly on four datasets even if it has

considered the spatial and temporal intervals. Meanwhile,

8https://github.com/jiangyiheng1/STiSAN.pytorch.
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TABLE III
OVERALL RECOMMENDATION PERFOMANCE COMPARISON (THE BEST SCORES ARE BOLDFACED AND THE SECOND SCORES ARE UNDERLINED)

Dataset Gowalla Brightkite Weeplaces Changchun

Metric HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10

POP 0.0146±0.000 0.0110±0.000 0.0266±0.000 0.0170±0.000 0.0259±0.000 0.0202±0.000 0.0423±0.000 0.0273±0.000 0.0369±0.000 0.0292±0.000 0.0575±0.000 0.0373±0.000 0.0246±0.000 0.0189±0.000 0.0420±0.000 0.0287±0.000

BPR 0.0142±0.001 0.0107±0.000 0.0263±0.000 0.0168±0.001 0.0450±0.001 0.0344±0.001 0.0760±0.001 0.0492±0.001 0.0749±0.001 0.0574±0.001 0.1023±0.000 0.0807±0.002 0.0681±0.004 0.0462±0.002 0.0954±0.000 0.0699±0.000

FPMC-LR 0.1264±0.000 0.0889±0.002 0.2005±0.001 0.1121±0.004 0.1731±0.006 0.1307±0.000 0.2534±0.002 0.1574±0.001 0.1975±0.000 0.1182±0.003 0.2811±0.005 0.2082±0.000 0.1738±0.001 0.0942±0.002 0.2567±0.000 0.1840±0.002

PRME-G 0.3408±0.003 0.2638±0.003 0.4579±0.003 0.3019±0.003 0.4260±0.003 0.3329±0.003 0.5442±0.003 0.3711±0.003 0.2595±0.003 0.1951±0.003 0.3549±0.003 0.2258±0.003 0.2317±0.003 0.1684±0.003 0.3372±0.003 0.2017±0.003

GRU4Rec 0.3264±0.003 0.2471±0.003 0.4503±0.002 0.2911±0.002 0.4078±0.003 0.3301±0.004 0.5282±0.003 0.3550±0.003 0.2817±0.000 0.2094±0.002 0.3838±0.003 0.2423±0.001 0.2535±0.001 0.1806±0.005 0.3528±0.002 0.2185±0.003

Caser 0.2327±0.001 0.1876±0.004 0.3688±0.002 0.2049±0.002 0.3164±0.001 0.2123±0.003 0.4302±0.001 0.3145±0.003 0.2735±0.003 0.1964±0.005 0.3712±0.000 0.2403±0.003 0.2691±0.001 0.1786±0.002 0.3577±0.001 0.2322±0.001

STGN 0.1655±0.001 0.1171±0.002 0.2915±0.002 0.1603±0.001 0.2721±0.002 0.1892±0.003 0.3614±0.000 0.2375±0.003 0.1864±0.000 0.1089±0.002 0.2671±0.003 0.1980±0.003 0.1378±0.001 0.0854±0.000 0.2176±0.001 0.1563±0.003

SASRec 0.3243±0.000 0.2452±0.000 0.4489±0.002 0.2853±0.001 0.4042±0.001 0.3217±0.000 0.5115±0.000 0.3562±0.003 0.2907±0.000 0.2171±0.000 0.3950±0.000 0.2507±0.000 0.1956±0.000 0.1435±0.000 0.3094±0.002 0.2387±0.002

Bert4Rec 0.3317±0.000 0.2440±0.001 0.4625±0.003 0.2853±0.002 0.3950±0.000 0.3051±0.000 0.5036±0.000 0.3424±0.000 0.2902±0.002 0.2105±0.004 0.3997±0.000 0.2614±0.001 0.2140±0.001 0.1577±0.000 0.3384±0.000 0.2703±0.002

TiSASRec 0.3326±0.001 0.2562±0.001 0.4831±0.000 0.3161±0.002 0.4086±0.000 0.3143±0.001 0.5122±0.000 0.3593±0.002 0.3051±0.001 0.2316±0.002 0.4379±0.000 0.2791±0.002 0.2039±0.003 0.1462±0.000 0.3143±0.000 0.2455±0.000

GeoSAN 0.4153±0.001 0.3327±0.001 0.5251±0.001 0.3680±0.001 0.4843±0.001 0.3958±0.003 0.5916±0.002 0.4303±0.002 0.3480±0.001 0.2677±0.002 0.4699±0.003 0.3069±0.000 0.2306±0.001 0.1725±0.002 0.3424±0.000 0.2706±0.002

STAN 0.4369±0.003 0.3544±0.001 0.5384±0.004 0.3864±0.005 0.4736±0.002 0.3819±0.002 0.5670±0.001 0.4263±0.001 0.3276±0.001 0.2341±0.003 0.4349±0.002 0.2830±0.001 0.2218±0.003 0.1695±0.002 0.3259±0.002 0.2597±0.003

STiSAN 0.4617 0.3721 0.5679 0.4053 0.5310 0.4339 0.6512 0.4727 0.4332 0.3437 0.5558 0.3833 0.2653 0.1944 0.3786 0.3075

Improv. 5.68% 4.99% 5.48% 4.89% 9.64% 9.63% 10.07% 9.85% 24.48% 28.39% 18.28% 24.89% 15.04% 12.71% 10.56% 13.64%

the performance of GRU4Rec proves the effectiveness of

our training strategy, i.e., dividing long sequences into

sub-sequences rather than only using the most recent

POIs, and we find that such strategy is also suitable for

SASRec. Caser shows higher recommendation accuracy

than STGN because the vertical convolution operations

help the model aggregate global sequence information,

which avoids the gradient vanishing issue in RNN.

• Thanks to the modeling of geographical factors and

evaluation metric (i.e., ranking target with nearest POIs),

PRME-G has better performance than CNN/RNN-based

and even some self-attention based-methods on Gowalla,

Brightkite and Changchun.

• In general, self-attention-based methods have more stable

and relative better performance for the strong ability to

capture global sequence information. However, due to the

neglect of geographical factors dominating the sequential

POI recommendation scenario, SASRec, TiSASRec, and

Bert4Rec are not as good as GeoSAN and STAN.

• GeoSAN and STAN are two strong baselines with decent

performance. For the Gowalla dataset, the embedded

spatial-temporal intervals help STAN to gain higher accu-

racy. While for Brightkite, Weeplaces and Changchun, the

geographical location modeling and the importance based

negative sampling can make up for the lack of temporal

factors in GeoSAN, especially under the geography based

evaluation metric.

• Our STiSAN consistently outperforms all baselines with

a large margin on all four datasets and achieves up to

13.71% HR@5, 13.93% NDCG@5, 11.10% HR@10 and

13.32% NDCG@10 improvements (on average) over the

second-best performances.

2) Ablation Study (RQ2): To analyse the influence of vari-

ous components on our framework, we conduct ablation study.

Our base model (denoted as Original) contains geography

encoder [23], Time Aware Position Encoder, Interval Aware

Attention Block, and Target Aware Attention Decoder. We

consider the following variants of our base model:

• I. Remove GE: We remove the geography encoder, and

use POI embedding and Time Aware Position Encoder to

represent POI sequence.

• I. Remove TAPE: We remove the Time Aware Position

Encoder, and use POI embedding, geography encoder and

vanilla positional encoding to represent POI sequence.

• II. Remove IAAB: We remove the spatial-temporal rela-

tion matrix in (6) and modify it to (15),

A = Softmax(
QKT

√
d
)V, (15)

• III. Remove SA: We remove the self-attention mechanism

in (6) and only use the spatial-temporal relation matrix

to prediction, as formulated in (16),

A = Softmax(R)V, (16)

• IV. Remove TAAD: We remove the Target-Aware Atten-

tion Decoder and match the output of the N -th IAAB

with candidate POI directly, as formulated in (17),

yi,j = f
(

F(N)
i ,Cj

)
. (17)

The results are summarized in Table IV. From this table,

we can have the following findings:

• Finding 1: The Time Aware Position Encoder is proved to
be helpful in enhancing sequence representation. Firstly,

we find that removing TAPE leads to 3.98%, 2.58%, and

8.03% performance decrease in terms of NDCG@5 on

three datasets respectively, which proves the effectiveness

of our TAPE in helping model to capture relative temporal

proximity between POIs. Moreover, we can see that

removing either spatial (Variant I) or temporal (Variant

II) descends the performance of Original. It demonstrates

that spatial and temporal information are both pivotal in

representing sequences.

• Finding 2: The Interval Aware Attention Block can pro-
vide attentive results with positive revisions. Comparing

Variant III with Original, we can see that removing IAAB

descends the performance in terms of NDCG@5 by

3.46%, 1.38%, and 6.26% on three datasets, respectively.

It indicates that our IAAB can attach more importance
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TABLE IV
ABLATION STUDY (THE BEST SCORES ARE BOLDFACED)

Dataset Gowalla Brightkite Weeplaces

Metric HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10

Original 0.4617 0.3721 0.5679 0.4053 0.5310 0.4339 0.6512 0.4727 0.4332 0.3437 0.5558 0.3833

I. -GE 0.4080 0.3269 0.5082 0.3588 0.4002 0.3270 0.4911 0.3563 0.3737 0.2935 0.4853 0.3297

II. -TAPE 0.4485 0.3573 0.5524 0.3902 0.5203 0.4227 0.6388 0.4611 0.3899 0.3161 0.4993 0.3512

III. -IAAB 0.4522 0.3592 0.5564 0.3921 0.5230 0.4279 0.6394 0.4658 0.3994 0.3222 0.5132 0.3588

IV. -SA 0.4145 0.3172 0.5217 0.3511 0.4835 0.3893 0.5956 0.4255 0.3634 0.2767 0.4875 0.3165

V. -TAAD 0.4643 0.3780 0.5682 0.4087 0.5176 0.4233 0.6322 0.4602 0.4134 0.3246 0.5257 0.3609

to the spatial correlations, i.e, achieving more reasonable

attention weight assignment.

• Finding 3: The proposed TAPE and IAAB bring more
significant influence on Weeplaces. The main reason

lies in the characteristics of these three datasets. As

shown in Table II, the average POI sequence length in

Weeplaces (325.5) is much longer than Gowalla (53.0)

and Brightkite (146.0). According to our empirical obser-

vation, the spatial and temporal spans in the POI sequence

are positively correlated with its length, while TAPE

and IAAB are advanced in handling the relative spatial-

temporal proximity for longer sequences.

• Finding 4: Our framework still has competitive perfor-
mance even without self-attention mechanism. Comparing

Variant IV with the strongest baselines, we are surprised

to find that the recommendation accuracy, solely based

on the enhanced sequence representation with relative

temporal proximity and spatial-temporal relation matrix,

is slightly lower on Brightkite while higher on Weeplaces.

It demonstrates that the sequential dependencies, learned

by the self-attention mechanism and contained in spatial-

temporal intervals, have some similarities and can accom-

plish each other. We will delicately explore whether the

influence of spatial-temporal intervals is beyond the self-

attention mechanism in future work.

• Finding 5: The Target-Aware Attention Decoder is useful
only in certain circumstances. The possible reason is that

TAAD neglects the spatial intervals between the last POI

in the input sequence and candidate POIs.

3) Extensibility and Interpretability of TAPE (RQ3): We

set two experiments to answer this question from the angles

of metric evaluation and principle. Firstly, we replace the

positional encoding (denoted as PE) with TAPE in a vanilla

Self-Attention Network to verify whether or not TAPE can

bring improvements. The experimental results are revealed in

Fig. 4, and we can see that TAPE leads to average 5.36%

HR@10 improvement over all datasets. It proves that our

TAPE can be effectively adopted to the self-attention network.

Take a step further, towards the question “Why TAPE ?”,

we conduct the following visualization experiment. Firstly,

we randomly pick a user from Weeplaces whose historical
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Fig. 4. Extensibility of TAPE.

sequence length is 64, and visualize the time intervals between

successive visited POIs. From Fig. 5(a), we can see that

the distribution is non-uniform and varies significantly. The

diagonal elements in PE’s and TAPE’s average attention heat-

map reveal the difference between these two approaches. As

shown in Fig. 5(b) and 5(c), TAPE will partly strengthen or

distract the attention on the current position, and takes the

corresponding counter operation on the previous position (as

the lower triangle in heat-maps). In other words, the smaller

time interval between two successive POIs leads to the more

similar attention weights and vice versa, where proving that the

relative temporal proximity can be effectively captured by the

self-attention mechanism. Thus, we believe in that our TAPE

is a meaningful, practical and of course lightweight approach

for enhancing sequence representations.

4) Extensibility and Interpretability of IAAB (RQ3): We

also set two experiments to answer this question from the

view of metric evaluation and principle separately. Firstly,

we replace the Self-Attention mechanism (denoted as SA) in

a vanilla 4-layer Self-Attention Network with our IAAB to

explore the influence of various sequence lengths. As shown

in Fig. 6(a), 6(b) and 6(c), due to the insufficient attention

of local POIs, SA’s performance decreases dramatically es-

pecially when sequence length increases from 64 to 128.

Our IAAB effectively relieve this issue, and even helps SA

achieving superior recommendation accuracy on the length of
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64 in Weeplaces. It proves that IAAB can be a lightweight

alternative for SAN to consider spatial factors.

Moreover, we randomly pick a user in Weeplaces who

has visited 64 POIs. Fig. 7(a) shows the geography intervals

between historical and target POIs, and we can see that the

strong spatial correlated POIs are at the positions from 1 to

32 and from 44 to 64. Comparing the attention heat-maps of

SA and IAAB (as shown in Fig. 7(b) and 7(c)), it is obvious

that our IAAB can pay significant attention to these vital POIs

especially those distributed at more forward positions in this

sequence. The experimental results also demonstrate that our

method can provide explainable recommendations.

5) Sensitivity w.r.t Sparsity levels (RQ4): For the compre-

hensive analysis of our STiSAN, we set different cold user

/ POI thresholds in Weeplaces to achieve different sparsity

levels as shown in Table V. Then, we compare STiSAN with

two strongest baselines STAN and GeoSAN as shown in Fig.

8. According to the results, our STiSAN outperforms these

two baselines over all sparsity levels. Moreover, we find that

all methods’ performance increases first and then decreases

along with the dataset is becoming more dense. It is because

the under-fitting issue caused by the derisory training instances

(e.g., 92 users and 1324 POIs).

6) Computational Complexity Analysis: To further verify

whether or not our method is lightweight, we calculate the

Floating Point Operations (FLOPs) of our IAAB and the 4-

layer self-attention mechanism (denoted as SA). As shown in

Table VI, the additional computational burden is negligible

TABLE V
THE STATISTICS OF WEEPLACES UNDER DIFFERENT SPARSITY LEVELS

Dataset Weeplaces

cold POI threshold 30 60 80 90
cold user threshold 60 120 140 150
#users 709 278 133 92
#POIs 5,452 2,305 1,550 1,324
#check-ins 329,268 126,464 59,506 43,408

sparsity 91.48% 80.26% 71.13% 64.36%

(e.g. only adds 0.01M FLOPs on Brightkite and Changchun).

7) Hyper-parameters Analysis: We explore the influence of

the thresholds kt, kd, which controlling the maximum time

interval and geography interval in spatial-temporal relation

matrix. We set kt = {0, 5, 10, 20} days. Correspondingly,

we set kd = {0, 5, 10, 15} kilometers. As the blue columns

in Fig. 9, when setting both kt and kd to zero, the recom-

mendation accuracy reaches the lowest on all four datasets.

This is because the entries in the spatial-temporal relation

matrix are all zero at this time, and it will add the same

value to attention weights after the Softmax function in the

interval aware attention layer, which actually disabling the

IAAB. Further, STiSAN achieves the best performance at

kt = 5, kd = 5 on Weeplaces, Changchun and tends to

be stable when kt, kd keeps increasing. For Gowalla and

Brightkite, the most suitable sets are kt = 10, kd = 15.
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Fig. 7. Interpretability of IAAB.

TABLE VI
COMPUTATIONAL COMPLEXITY COMPARISON (FLOPS)

Datasets Gowalla Brightkite Weeplaces Changchun

SA 0.83M 0.13M 0.04M 8.75M
IAAB 0.83M 0.14M 0.04M 8.76M

V. RELATED WORKS

In this section, we first review the related literature, includ-

ing attention mechanism, positional representation and sequen-

tial POI recommendation. Then, we discuss the connections

and differences between our method and existing models.

A. Attention Mechanism

Attention mechanism has been proved to be effective in

various tasks ranging from computer vision, natural language

processing to sequential recommender systems [16]. The core

idea behind such a mechanism is impelling the model to attach

more importance to the more relevant parts of input. In the

scenario of recommendation, existing methods, such as [41]–

[43], employ attention mechanisms to learn the importance of
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Fig. 9. Sensitivity w.r.t different hyper-parameter settings (NDCG@5).

different items, features, or interactions for predicting users’

preferences on unobserved candidates.

However, these models all treat the attention mechanism

as an additional component to a basic framework (e.g. atten-

tion+RNN/CNN) [33]. Note that these models’ performance

might be limited by issues caused the characteristics of the

original framework, such as gradient vanishing [44] and data

sparsity [45]. Recently, Transformer [15], a model solely

based on the attention mechanism, has shown its superior

performance in machine translation tasks which used to be

dominated by RNN/CNN-based approaches [16]. It proposed

a novel self-attention mechanism to calculate attention weights

of different tokens dynamically and flexibly according to the

input sequence. Inspired by the advanced performance, [16]

first introduced the self-attention-based encoder in sequential

item recommendation problems and validated its effectiveness.

The inherent drawback of self-attention is that the global

weights averaging inhibits the spatial relation among local

POIs [30], [31]. Our Interval Aware Attention Block (IAAB),

introducing the spatial-temporal relation matrix into attention

map as inductive bias, can help relieving this issue.

B. Positional Representation

Due to the symmetry property, the self-attention mechanism

is non-sensitive to the order of different tokens in sequence.
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To capture the token’s positional information, Transformer

[15] encodes the positions by sinusoidal function, an approach

of fixed and symmetric, and then adds them into sequence

representations. In this way, the tokens’ order in sequence can

be captured when carrying dot-product operations on sequence

representations. For large-scale and pre-trained models, [38]

shows that learning a set of absolute positional embedding

performs better than the fixed positional encoding. Differently,

[46] focuses on learning the relative positional relations among

tokens rather than directly learning positions. There are also

some works utilizing hybrid representations that contain both

absolute and relative positional information [47], [48].

We are sparked by these works and exploit the Time Aware

Position Encoder (TAPE) to encode the relative temporal

proximity among POIs into sequence representations, where

requiring neither extra learnable parameters nor significant

computational burden.

C. Sequential POI Recommendation

Along with the information technology developing and user-

POI interaction data accumulating, methods for sequential POI

recommendation have been evolving from Markov Chain [3]–

[5] and Matrix Factorization [6]–[10] to Multi-Layer Percep-

tron (MLP) [12], [49], [50], Recurrent Neural Network (RNN)

[51]–[55] and Convolution Neural Network (CNN) [56]–[58]

over the past decades. For instance, Factorizing Personalized

markov chains (FPMC) [11] linearly combines markov chains

and matrix factorization to model the personalized transition

between POIs. [19] extends FPMC to address the sparsity

issue of modeling personalized POI transitions. For neural

network-based models, Caser [14] utilizes horizontal and

vertical convolution kernels to capture sequential dependency

from the perspective of local and global simultaneously, and

GRU4Rec [13] employs a modified gated recurrent unit to

learn the pattern of users’ dynamic preference. STGN [37] in-

corporated spatial-temporal information by designing spatial-

temporal gates for controlling information flow. SASRec [16]

first introduced self-attention network into the sequential rec-

ommendation problem. Bert4rec [18] extended SASRec to

capture bidirectional sequential dependency. For considering

spatial or temporal factors, GeoSAN [23] proposes a self-

attention based geography encoder to encode POIs’ locations

and TiSASRec [28] designs a time aware self-attention mech-

anism to explore the influence of different time intervals on

prediction. In the most recent STAN [29] exploits a novel

spatial-temporal attention network, utilized the learned spatial-

temporal interval representations, has achieved the state-of-

the-art performance.

The difference of our proposed STiSAN from these exiting

works lies in that our framework, as an end-to-end deployment,

utilizes lightweight approaches (i.e., no extra learnable pa-

rameters and negligible computational complexity) TAPE and

IAAB to consider spatial-temporal factors. On the one hand,

TAPE mainly focuses on enhancing the sequence representa-

tions via encoding time intervals. On the other hand, IAAB

promotes attention mechanism attaching focus importance to

spatial relations and provides explainable recommendations.

VI. CONCLUDING REMARKS

In this paper, we propose two practical, meaningful and

lightweight approaches, Time Aware Position Encoder (TAPE)

and Interval Aware Attention Mechanism (IAAB), to promote

the self-attention network considering spatial-temporal factors

among POIs, where requiring neither extra parameters nor

significant computational burden. On the one hand, TAPE,

encoding the timestamps into sequence representations, can

reflect the relative temporal proximity. On the other hand,

IAAB, introducing the spatial-temporal relation into attention

map explicitly, impels the attention on spatial correlations. We

integrates these two approaches into the self-attention network,

and proposes a sequential POI recommender which achieves

state-of-the-art performance (13.01% improvement by aver-

age) on three public datasets and one real-world city trans-

portation dataset. Aside from evaluating TAPE’s and IAAB’s

effectiveness under our framework through ablation study, we

also combine them with the vanilla self-attention network.

We separately conduct metric comparison and visualization to

validate their extensibility and interpretability. Moreover, we

explore STiSAN’s sensitivity with respect to different sparsity

levels and hyper-parameter settings. Finally, we analyse the

Floating Point Operations to prove the lightweight.

In future, we will delicately explore the connections and

differences between the sequential dependencies learned by

self-attention and contained in spatial-temporal relation matrix.
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