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Abstract—While Mobile CrowdSensing (MCS) has become
a popular paradigm that recruits mobile users to carry out
various sensing tasks collaboratively, the performance of MCS
is frequently degraded due to the limited spatiotemporal cov-
erage in data collection. A possible way here is to incorporate
sparse MCS with data inference, where unsensed data could be
completed through prediction. However, the spatiotemporal data
inference is usually “fractured” with poor performance, because
of following challenges: 1) the sparsity of the sensed data, 2) the
unpredictability of a spatiotemporal fracture and 3) the complex
spatiotemporal relations. To resolve such fracture data issues, we
elaborate a data generative model for achieving spatiotemporal
fracture data inference in sparse MCS. Specifically, an algorithm
named Generative High-Fidelity Matrix Completion (GHFMC)
is proposed through combining traditional Deep Matrix Fac-
torization (DMF) and Generative Adversarial Networks (GAN)
for generating spatiotemporal fracture data. Along this line,
GHFMC learns to extract the features of spatiotemporal data
and further efficiently complete and predict the unsensed data
by using Binary Cross Entropy (BCE) loss. Finally, we conduct
experiments on three popular datasets. The experimental results
show that our approach performs higher than the state-of-the-art
(SOTA) baselines in both data inference accuracy and fidelity.

Index Terms—Mobile CrowdSensing, data inference, spa-
tiotemporal fracture data, Generative Adversarial Network

I. INTRODUCTION

With the rapid developments and applications of 5th Gener-
ation Mobile Communication Technology (5G) [1], [2] and the
increasing popularity of portable and smart Internet of Things
(IoT) [1] devices. Mobile CrowdSensing (MCS) [3], [4], which
recruits users with carrying out mobile smart devices to collect
various types of data [5]–[7], has played an extremely powerful
role in the smart city. MCS can help the manager to not only
monitor the current and historical status, but also predict the
future situation. Due to the limited cost of MCS, sparse MCS
[8], which senses only limited subareas, came into being and
played an extremely significant role in MCS. Sparse MCS
relies on the data inference techniques for improving service
quality [9] in the context of sparse data. It significantly lower
the sensing cost, but also brings a series of problems such as
the spatiotemporal fracture data inference problem.
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the National Natural Science Foundations of China under Grant 61772230,
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Fig. 1: Examples to describe the spatiotemporal fracture data
inference problem of sparse urban crowdsensing.

The problem description for spatiotemporal fracture data
inference in sparse urban crowdsensing is shown in Fig. 1.
Given a whole city map, we artificially divide the map into
4 × 4 subareas and sense the data from these subareas. At
each time slot, due to the uncertainty of mobile users’ location
and the sensing budget constraint, we can hardly get all m
(m = 16) subareas’ sensed data. Specially, it may not achieve
any data of each subareas at some time slots (e.g. the time
slot 8 : 00 in Fig. 1). By collecting the sensed data after
n time slots, we can obtain the spatiotemporal matrix with
the size of m× n. It means that the spatiotemporal matrix is
sparse and even has fracture rows or columns. For the general
sparse case, the previous research has been able to complete
with high accuracy. But for the spatiotemporal fracture data,
which usually happens in real situations, the previous methods
will not be able to deal with. The fracture of the data may
cause some vital information to be lost, which even results
emergency. For example, there is an air pollution monitoring
system. If the system fails in some time slots, data collection
will not be carried out. So the other work that needs to
use these air pollution data will be affected in these time
slots. This phenomenon is called temporal fracture. Similarly,
there is also another phenomenon named spatio fracture. For
example, due to the limitation of data acquisition equipment,
some blind areas will not be able to collect air pollution data.
Therefore, both temporal and spatial fracture data are also
needed to be inferred correctly. However, the inference of
spatiotemporal fracture data under the background of sparse
MCS faces the following three challenges: 1) lack of enough
context information, 2) the irregular spatiotemporal fracture
data and 3) the complex spatiotemporal relationships.
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Actually, how to infer spatiotemporal fracture data in sparse
urban crowdsensing has not been perfectly solved. Some ex-
isting methods (e.g., IGMC [10], DMF [11], etc.) are strongly
dependent on the distribution of sensed data. They usually
take the sensed data as the convergence target. However,
for fracture data, we cannot provide any context element as
the convergence target, which weakens the performance of
existing methods by producing a series of meaningless chaos,
meaningless data. Therefore, how to implement data inference
without enough context information is the first challenge.

In a practical application scenario, the occurrence of spa-
tiotemporal fracture is usually random and unpredictable.
Moreover, the scale of spatiotemporal fracture is also un-
certain. (We have no knowledge of when the temporal data
fracture will appear and how long it will last.) Similarly, it is
also difficult to predict where spatial fracture will appear and
what scale the spatial fracture will be. Therefore, how to deal
with the irregular spatiotemporal fracture phenomenon is the
second challenge.

In previous studies [10], [12], [13], existing methods are
more inclined to obtain less error inference results. But in
fact, sometimes we are more interested in the spatiotemporal
distribution of data. For example, in a city traffic flow moni-
toring system, we may pay more attention to the distribution
of vehicle’s number in each area of the city and the change
tendency over time, rather than the number of vehicles. In
sparse MCS, due to the sparsity of data, it is extremely difficult
to extract the high fidelity spatiotemporal features of data.
Therefore, how to generate inferential data from sparse sensed
data that are more consistent with the real data distribution
is the third challenge.

To deal with the challenges above, we propose a complete
model named Generative High-Fidelity Matrix Completion
(GHFMC) to address the spatiotemporal fracture data infer-
ence problem in sparse urban crowdsensing. To solve the
problem of insufficient context information, we combine the
Conditional Generative Adversarial Nets (CGAN) [14] with
the traditional Deep Matrix Factorization (DMF) [11]. Using
generative algorithm instead of inferential algorithm can avoid
the problem caused by the lack of convergence object. At the
same time, we use the idea of DMF to make use of the low
rank property of spatiotemporal matrix. In consideration of the
irregular of the spatiotemporal fracture, we use the conditional
vector estimation method which only faces the adjacent time
slot or the adjacent position. Finally, we have higher require-
ments for the effect of sparse matrix completion and hope
to achieve high fidelity matrix completion through generative
algorithm. Although the accuracy of matrix completion is not
significantly improved, high fidelity of matrix completion is
more conducive to the generation of spatiotemporal fracture
data. Compared with the traditional sparse matrix completion
algorithm, RMSE and R-squared of this method are better than
other methods. It shows that this method not only solves the
problem of spatiotemporal fracture data, but also can restore
fracture data with high accuracy and high fidelity, which
thanks to the generative algorithm we designed.

Our work has the following contributions:
• We formalize the sparse urban crowdsensing problem,

with the goal of recovering the spatiotemporal fracture
data from the sparse sensed data.

• We propose a multi-step urban crowdsensing method
named GHFMC, which aims to solve the problem of
inferring the spatiotemporal fracture data from sparse
sensed data and adapt to the irregular fracture.

• Compared with the traditional data inference methods in
MCS, our approach can effectively extract the complex
spatiotemporal relationship and make the characteristics
of the generated data more closer to the ground truth data.

• We evaluate our approach on three different types of typ-
ical urban sensing tasks. The experimental results verify
that our approach can improve the inference accuracy
and fidelity effectively when applying to spatiotemporal
fracture data in sparse MCS.

II. RELATED WORK

A. Sparse Mobile CrowdSensing

Mobile CrowdSensing (MCS) technology utilized smart
devices carried by mobile users to perform different series
of urban crowdsensing tasks [4], [15]. An example of traffic
speed measurement system [16] would reveal how powerful
the MCS was. By collecting a large number of spatiotemporal
data from numerous mobile users, the system mapped a large-
scale urban environment. However, in most cases, the sensing
cost is limited, and we can’t recruit users to collect data
without restraint. In the face of this situation, we will achieve
similar sensing result by sensing only a small amount of
specific data if we make full use of spatiotemporal relation-
ships among different subareas. By utilizing the spatiotemporal
relationships mined from sensed data, the value of the other
unsensed areas can be infered approximately [17]. The past
several years has witnessed a growing number of researchers
have developed a series of sparse MCS-based urban sensing
systems. Sparse MCS, an advanced data sensing paradigm,
senses only limited subareas and infers all the other unsensed
subareas. The example of urban noise monitoring system by
Rana et al. [18] achieved a fine-grained urban noise map.
Rana et al. applied the compressive sensing theory to the
sparse MCS in order to infer all unsensed data. There are also
many examples about sparse MCS in recent years. Liu et al.
[19] and He et al. [20] proposed a sparse MCS-based urban
air pollution and signal mapping systems. We can get some
inspiration from the existing applications of sparse MCS.

B. Matrix Completion for Spatiotemporal Data

From the perspective of the mathematical model, sparse
MCS can be equivalent to the completion problem of a
sparse spatiotemporal matrix. In the real application scenarios,
because the values of adjacent time slots or adjacent subareas
are close, the rank of the spatiotemporal matrix should be
small (low-rank). Based on this assumption, Matrix Factor-
ization (MF) for data inference came into being, which was
effective in processing spatiotemporal data with strong linear
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Fig. 2: The relationship between the physical model and the
mathematical model.

characteristics but takes large error in processing non-linear
data. Fan and Cheng [11] took advantage of the non-linear
neural network and proposed the Deep Matrix Factorization
(DMF) which improved the limitations of MF. On the basis
of DMF, Wang et al. [12] proposed an end-to-end model
for sparse industrial sensing and prediction. It means that
sparse MCS can not only realize the sensing of the current
time slot, but also achieve high-precision future prediction.
With the popularity of graph neural network (GNN), Zhang
et al. [10] showed a new idea named Inductive Graph-based
Matrix Completion (IGMC) about matrix completion by using
GNN. The performance of IGMC is better than DMF for
some datasets. What’s more, Wang et al. [13] considered the
influence of outlier data and proposed a new algorithm to
address the problem of outlier data inference. Considering the
spatiotemporal fracture, Xie et al. [21] propose a two-phase
MC-based data recovery scheme, which exploits the inherent
features of environmental data to recover the fracture data. In
the field of sparse matrix completion, existing work usually
ignored the fidelity of a matrix completion method. Generative
algorithms, such as Generative Adversarial Network (GAN),
are popular in recent years, and seem to achieve this effect.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

As shown in Fig. 1, our research is based on a classical
urban crowdsensing task that recruits mobile device users to
collect data from limited areas for recovering spatiotemporal
fracture data. In this subsection, we are going to build the
mathematical model of the system we propose. Fig. 2 shows
the relationship between the physical model and the mathe-
matical model and Table I includes the main notations that
are used in this paper.

Given a whole urban sensing map which is divided into
m subareas artificially, we aim at obtaining all values from
the m subareas with the condition of only m̃ sensed subareas
(m̃ << m) at each time slot. In order to represent each subarea
easily, we code these subareas by one-hot encoding. We use
an unit vector e

(i)
m×1 to denote the i-th subarea and only the

TABLE I: Main notations

Symbol Meaning
m, m0 number of all subareas and fracture subareas
n, n0 number of all time slots and fracture time slots
i, j index of a subarea and a time slot
k, l index of a column and a row of a sliced matrix
Y, Y′, Ŷ ground truth of the complete data, sparse data with

fractures, estimated data
C, CO labels of which subareas are sensed
A′ non-sparse matrix with spatiotemporal fractures
Â, B̂ temporal and spatial non-fracture matrix
Âs, B̂s sliced matrix of matrix Â and B̂
zO, z̃T, z̃S input vector of the generator for original step, temporal

generative step and spatial generative step
zT, zS common vector of the generator for temporal and spatial

generative step
zcT, zcS conditional vector of the generator for temporal and

spatial generative step

i-th element of the vector e(i) equals 1. So as to mark the
sensed subareas at the j-th time slot, we introduce the logical
value cij to denote whether the i-th subarea is sensed or not.
cij = 1 means the i-th subarea is sensed at the j-th time slot
and the sensed value is named y′ij . Conversely, if there is no
sensed data from the i-th subarea at the j-th time slot, we
will set cij = 0 and the value of y′ij will be evaluated as a
meaningless value (e.g., y′ij = ∞). Therefore, we can get a
logical vector c

(j)
m×1 =

∑m
i=1 cije

(i), which marks the sensed
subareas, and a sparse vector y

′(j)
m×1 =

∑m
i=1 y

′
ije

(i), which
denotes the sensed values of the j-th time slot. Similarly, we
use y

(j)
m×1 = [y1j , y2j , . . . , ymj ]

⊺ to denote the ground truth
vector of the j-th time slot.

The vectors that we present above can be combined to
matrices after n time slots. Cm×n = [c(1), c(2), . . . , c(n)]
denotes the situation of sensed subareas at each time slot;
Y′

m×n = [y′(1),y′(2), . . . ,y′(n)] denotes the sparse sensed
data of n time slots; Ym×n = [y(1),y(2), . . . ,y(n)] denotes
the complete ground truth. Then the mathematical relation of
these three matrices is

Y′ = Y ◦C, (1)

where ◦ denotes the Hadamard product (element product) of
two matrices. Then, the main task is building a data inference
function f(·) so as to infer all the unsensed data from the
sparse matrix Y′. The estimated matrix Ŷ can be calculated
by the following equation:

Ŷ = f(Y′). (2)

B. Problem Formulation

Problem [Spatiotemporal Fracture Data Inference via
Sparse MCS]: Given a sparse matrix Y′

m×n with spatiotem-
poral fractures, we aim to achieve the following two targets:

• Find a function f(·) to infer all unsensed value of the
sparse matrix Y′

m×n and make the complete matirx Ŷ =
f(Y′) be established.

• Ensure that the spatiotemporal fracture data can be recov-
ered correctly with a high accuracy and a high fidelity.
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Fig. 3: Framework overview.

In this process, the following objective value obj should be
kept as small as possible:

obj = λ1ε(f(Y
′),Y)− λ2R

2(f(Y′),Y), (3)

where ε(·, ·) and R2(·, ·) are used to measure the accuracy and
fidelity of data inference, respectively. In order to minimize
the objective value obj, we should first minimize the error
of the inference of non-fracture data and then focus on the
subsequent operations for fracture data. It will be a multi-step
process in the following approaches.

IV. SPARSE DATA INFERENCE OF GENERATIVE
HIGH-FIDELITY MATRIX COMPLETION

Aiming at the problem of spatiotemporal fracture data in-
ference in sparse urban crowdsensing, we design a framework
like Fig. 3 and our idea is shown as follows: Firstly, the
rows and columns corresponding to the fracture data are
deleted and we can get a sparse matrix with a smaller shape.
Then, the sparse matrix completion algorithm is used to infer
the unsensed data. Finally, the complete matrix we get is
used to infer the fracture data. There are essential differences
between sparse data and fracture data, and temporal fractures
and spatial fractures also need to be handled separately, so
different methods should be used for processing. In order to
make the final generated fracture data inference results have
higher fidelity, it is necessary to ensure that the inference
results of sparse data have high similarity with the ground
truth. Previous researches on sparse matrix completion mainly
focus on high accuracy matrix completion rather than high
fidelity. Therefore, we propose a high accuracy and fidelity
data inference algorithm for sparse data in this paper.

Assuming that there are m0 temporal fracture rows and n0

spatial fracture columns. We first delete these rows or columns
and then try to complete a pure sparse matrix A′ with the
shape of (m−m0)× (n−n0). Matrix A′ can be divided into
columns: A′ = [a′(1),a′(2), · · · ,a′(n−n0)]. The corresponding
logical matrix becomes to CO = [c

(1)
O , c

(2)
O , · · · , c(n−n0)

O ].
Unless the traditional matrix completion, we hope to make

the data inference result more similar to the ground truth on
the premise of ensuring high-precision matrix completion. As
shown in Fig. 4, inspired by GAN [22] and Deep Matrix
Factorization (DMF) [11], we design a novel method of sparse
matrix completion. The detailed algorithm of the original step
is introduced in the following several paragraphs. In order to
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Fig. 4: Structure of GHFMC (Original Step).

make it more easy for readers to understand, we give a pseudo
code flow table of original step in Alg. 1.

The traditional GAN includes a generator and a discrimina-
tor. We tried to generate a group of fake data, which can con-
fuse the most advanced true and false discriminator. Therefore,
we need to constantly input labeled true and false data to the
discriminator in order to get the most advanced discriminator.
With the continuous improvement of the discriminator, the data
generated by the generator is forced to be more realistic. The
generator and the discriminator improve each other in repeated
competition, so we can get the most advanced discriminator
and generator by this type of training mode.

It seems that the traditional GAN can not directly solve the
problem of sparse matrix completion that we want to generate
the unsensed data by imitating sensed data. When DMF is
used for matrix completion, we use the low rank property of
spatiotemporal matrix. Supposing that the rank of a complete
spatiotemporal matrix is r, the input of the neural network is
set to an r-dimensional vector zr×1. In the process of training
DMF, z is regarded as a network parameter to be updated.
It can be proved that z is the low dimensional embedding
representation of the complete vector and contains all the
information of the complete vector. The Embedding vectors
are more suitable for complex mathematical operations than
complete vectors. Similarly, based on the same assumption,
we also set the input of the generator to an r-dimensional
vector. In this step, we name the generator GO(·) and the
discriminator DO(·). The j-th input vector of the generator
GO(·) is named z

(j)
O and ZO = [z

(1)
O , z

(2)
O , · · · , z(n−n0)

O ].
In addition, the sensed data is sparse, but the output of the

generator GO(·) is complete. Therefore, we cannot input the
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complete data into the discriminator without masking. When
training the discriminator, we want the discriminator to have
the ability to judge the true and false data, so the j-th output of
the discriminator corresponding to the positive label sample is
DO(a

′(j)) and the j-th output of the discriminator correspond-
ing to the negative label sample is DO(GO(z

(j)
O ) ◦ c

(j)
O ). In

the case of training the generator, the treatment is different.
We hope that the data generated by the generator can confuse
the discriminator, so we make the output of the generator
correspond to the positive label sample.

Finally, it is necessary to introduce the loss function of
our neural network. Our direct observation results only come
from the discriminator. Therefore, we choose the Binary
Cross Entropy (BCE) loss function. The loss functions of the
discriminator and the generator are

L
(j)
OD=−log(DO(a

′(j)))−log(1−DO(GO(z
(j)
O )◦c(j)O )), (4)

L
(j)
OG = −log(DO(GO(z

(j)
O ) ◦ c(j)O )). (5)

By training the generator and discriminator repeatedly, the
output of the generator will converge and the discriminator
will not be able to distinguish between true and false data.
At this point, the output vector of the generator is GO(z

(j)
O ).

Considering that some sensed data are known, we use these
sensed data instead of inferential data to represent the estimate:

â(j) = GO(z
(j)
O ) ◦ (1− c

(j)
O ) + a′(j) ◦ c(j)O . (6)

Finally, we can easily combine all the (n − n0) vectors to
get a complete matrix which as follows:

Â = [â(1), â(2), · · · , â(n−n0)]. (7)

V. FRACTURE DATA INFERENCE OF GENERATIVE
HIGH-FIDELITY MATRIX COMPLETION

Through the method of section IV, we get a complete matrix
Â with high precision and high fidelity. In this section, we will
deal with the matrix Â further and propose a spatiotemporal
fracture data generation method based on conditional GAN
(CGAN). According to the idea in Fig. 3, we deal with the
temporal fracture and spatial fracture step by step.

A. Temporal Generative Step

In this step, we use a non-sparse spatiotemporal matrix Â =
[â(1), â(2), · · · , â(n−n0)] to calculate the n0 deleted column
vectors â

(1)
TG, · · · , â(n0)

TG . Assuming that the fracture column
vectors appear between â(k0) and â(k0+1), then the temporal
non-fracture matrix B̂ can be expressed as:

B̂=[â(1),· · ·,â(k0),â
(1)
TG,· · ·,â

(n0)
TG ,â(k0+1),· · ·,â(n−n0)]. (8)

We must assume that there are similar spatiotemporal dis-
tribution characteristics in a period of time slots before and
after the temporal fracture data. In fact, we also verify that
the real data set does have such characteristics. However, the
time slot far away from the temporal fracture data is no longer
similar to the fracture. Therefore, we can only select a limited
number of columns as the input data of the training model.

Algorithm 1 The Original Step of Generative High-Fidelity
Matrix Completion

Input: the sparse matrix A′ = [a′(1),a′(2), · · · ,a′(n−n0)]

and the logical matrix CO = [c
(1)
O , c

(2)
O , · · · , c(n−n0)

O ]
Output: the complete matrix Â

1: Build the Generator and the Discriminator by using GO(·)
and DO(·), respectively;

2: Random Init ZO = [z
(1)
O , z

(2)
O , · · · , z(n−n0)

O ] and the NN
structure parameters of GO(·) and DO(·);

3: count := 0;
4: while not convergent and count < MAX ITER do
5: for j is from 1 to n− n0 do
6: Calculate DO(GO(z

(j)
O ) ◦ c(j)O ) and DO(a

′(j));
7: Fix the NN structure parameters of DO(·) to make

L
(j)
OD reduce;

8: Calculate DO(GO(z
(j)
O ) ◦ c(j)O ) and DO(a

′(j)) again;
9: Fix z

(j)
O and the NN structure parameters of GO(·)

at the same time to make L
(j)
OG reduce;

10: end for
11: count := count+ 1;
12: end while
13: return Â = GO(ZO) ◦ (1−CO) +A′ ◦CO.

Suppose that the column vectors we choose are â(k1), · · · ,
â(k0), â(k0+1), · · · , â(k2), then these column vectors will form
a matrix Âs = [â(k1), · · · , â(k0), â(k0+1), · · · , â(k2)].

We hope that matrix Âs contains as more vectors as possible
for training. It means we need a smaller k1 and a larger k2.
As the value of k1 decreases, the similarity between â(k1) and
â(k0+1) will decrease together. Similarly, As the value of k2
increases, the similarity between â(k2) and â(k0) will decrease.
We must ensure that the similarity is within a certain range,
otherwise the assumption that our method is applicable is no
longer valid. So, we set a threshold value of R-squared which
named thT. Then, the values of k1 and k2 shall satisfy the
following two constraint relationships:

max{R2(â(k1),â(k0+1)),· · ·,R2(â(k0−1),â(k0+1))}<thT, (9)

max{R2(â(k0+2), â(k0)), · · · , R2(â(k2), â(k0))} < thT. (10)

Next, our task is to calculate vectors â(1)TG, · · · , â(n0)
TG through

matrix Âs. Different from the original step, the data obtained
in the temporal general step is not sparse, and the generated
data is completely unknown. The original GAN is no longer
applicable for inferring such data. Compared with GAN, the
input vector of CGAN adds rc dimensions as the condition
vector. As shown in Fig. 5, inspired by CGAN [14], we design
a novel method of fracture vector inference. The detailed
algorithm of the temporal generative step is introduced in the
following several paragraphs. In order to make it more easy
for readers to understand, we give a pseudo code flow table
of temporal generative step in Alg. 2.

In this step, the k-th input vector of the generator is
z̃
(k)
T = [z⊺T, z

(k)⊺
cT ]⊺, which includes a common vector zT
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SÂ

G
AN

cr

...

Conditional
vector

C
om

m
on vector

C
om

m
on vector

G
AN

...

Inferential
conditional

vector

add a column

TG
~z

...

k1 k0 k0+1 k2

)(T g )(T g

Fig. 5: Structure of GHFMC (Temporal Generative Step).

Algorithm 2 The Temporal Generative Step of Generative
High-Fidelity Matrix Completion

Input: the sliced temporal fracture matrix Âs =
[â(k1), · · · , â(k0), â(k0+1), · · · , â(k2)]

Output: the temporal generative vectors â
(1)
TG, · · · , â(n0)

TG

1: Build the Generator and the Discriminator by using GT(·)
and DT(·), respectively;

2: Random Init zT, z(k1)
cT , · · · , z(k2)

cT and the NN structure
parameters of GT(·) and DT(·);

3: count := 0;
4: while not convergent and count < MAX ITER do
5: for k is from k1 to k2 do
6: Calculate DT(GT(zT, z

(k)
cT )) and DT(â

(k));
7: Fix the NN structure parameters of DT(·) to make

L
(k)
TD reduce;

8: Calculate DT(GT(zT, z
(k)
cT )) and DT(â

(k)) again;
9: Fix zT, z

(k)
cT and the NN structure parameters of

GT(·) at the same time to make L
(k)
TG reduce;

10: end for
11: count := count+ 1;
12: end while
13: Calculate z

(1)
cTG, z

(2)
cTG, · · · , z

(n0)
cTG by (13);

14: return â
(1)
TG = GT(zT, z

(1)
cTG), â

(2)
TG = GT(zT, z

(2)
cTG),

· · · , â(n0)
TG = GT(zT, z

(n0)
cTG).

and a conditional vector z
(k)
cT . In particular, in the process

of training GAN, the parameter zT will be shared with all
columns because we slice the data with similar features. Dif-
ferent columns only correspond to different conditional vector
z
(k)
cT . The training processes of the generator GT(·) and the

discriminator DT(·) are similar to original step. Each column
of the matrix Âs is as the training target of the generator
GT(·) and also as the positive sample of the discriminator
DT(·). Similarly, the BCE loss functions of the discriminator
and the generator are as follows:

L
(k)
TD = −log(DT(â

(k)))− log(1−DT(GT(zT, z
(k)
cT )), (11)

L
(k)
TG = −log(DT(GT(zT, z

(k)
cT ))). (12)
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Fig. 6: Structure of GHFMC (Spatial Generative Step).

When the training of GAN is finished, we can get a common
vector z

(k1)
cT and a series of condition vectors z

(k1)
cT , · · · ,

z
(k2)
cT corresponding to the columns of matrix Âs. In order

to generate temporal fracture data, it is necessary to generate
conditional vectors of similar forms for the fracture columns.
These condition vectors can be easily inferred by time series
inference algorithms (e.g. Bi-LSTM [23]). Assuming that the
condition vectors are z

(1)
cTG, · · · , z

(n0)
cTG and the time series

inference algorithm is gT(·), it is obvious that

(z
(1)
cTG, · · · , z

(n0)
cTG) = gT(z

(k1)
cT , · · · , z(k2)

cT ). (13)

So, we can easily generate fracture data with high fidelity
through â

(j)
TG = GT(zT, z

(j)
cTG), where j is from 1 to n0.

Finally, the temporal non-fracture matrix B̂ can be calculated
by (8) and subsequent processing can be carried out.

B. Spatial Generative Step
In this step, we use a non-sparse spatiotemporal matrix B̂ =

[b̂(1)⊺, b̂(2)⊺, · · · , b̂(m−m0)⊺]⊺ to calculate the m0 deleted row
vectors b̂

(1)
SG, · · · , b̂

(m0)
SG . Assuming that the fracture row

vectors appear between b̂(l0) and b̂(l0+1), then the spatial non-
fracture matrix Ŷ can be expressed as:

Ŷ = [b̂(1)⊺, · · · , b̂(l0)⊺, b̂
(1)⊺
SG , · · · ,

· · · , b̂(m0)⊺
SG , b̂(l0+1)⊺, · · · , b̂(m−m0)⊺]⊺.

(14)

The process of the spatial generative step is basically the
same as the temporal generative step. Therefore, in this subsec-
tion, we only briefly introduce the meaning of each symbol and
give the algorithm flow in Alg. 3 and the sketch map in Fig.
6. B̂s = [b̂(l1)⊺, · · · , b̂(l0)⊺, b̂(l0+1)⊺, · · · , b̂(l2)⊺]⊺ denotes the
sliced spatial fracture matrix and thS denotes the threshold
value of R-squared we set. The values of l1 and l2 shall satisfy
the following relationships:

max{R2(b̂(l1),b̂(l0+1)),· · ·,R2(b̂(l0−1),b̂(l0+1))}<thS, (15)

max{R2(b̂(l0+2), b̂(l0)), · · · , R2(b̂(l2), b̂(l0))} < thS. (16)

The l-th input vector of the generator is z̃
(l)
S = [zS, z

(l)
cS ],

which includes a common vector zS and a conditional vector
z
(l)
cS . Similarly, the BCE loss functions of the discriminator and

the generator are shown as follows:

L
(l)
SD = −log(DS(b̂

(l)))− log(1−DS(GS(zS, z
(l)
cS )), (17)

L
(l)
SG = −log(DS(GS(zS, z

(l)
cS ))). (18)
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Algorithm 3 The Spatial Generative Step of Generative High-
Fidelity Matrix Completion

Input: the sliced spatial fracture matrix B̂s =
[b̂(l1)⊺, · · · , b̂(l0)⊺, b̂(l0+1)⊺, · · · , b̂(l2)⊺]⊺

Output: the spatial generative vectors b̂
(1)
SG, · · · , b̂(m0)

SG

1: Build the Generator and the Discriminator by using GS(·)
and DS(·), respectively;

2: Random Init zS, z
(l1)
cS , · · · , z

(l2)
cS and the NN structure

parameters of GS(·) and DS(·);
3: count := 0;
4: while not convergent and count < MAX ITER do
5: for l is from l1 to l2 do
6: Calculate DS(GS(zS, z

(l)
cS )) and DS(b̂

(l));
7: Fix the NN structure parameters of DS(·) to make

L
(l)
SD reduce;

8: Calculate DS(GS(zS, z
(l)
cS )) and DS(b̂

(l)) again;
9: Fix zS, z(l)cS and the NN structure parameters of GS(·)

at the same time to make L
(l)
SG reduce;

10: end for
11: count := count+ 1;
12: end while
13: Calculate z

(1)
cSG, z

(2)
cSG, · · · , z

(n0)
cSG by (19);

14: return b̂
(1)
SG = GS(zS, z

(1)
cSG), b̂

(2)
SG = GS(zS, z

(2)
cSG), · · · ,

b̂
(m0)
SG = GS(zS, z

(m0)
cSG ).

It should be noted that the conditional vector inference
method in the spatial generative step is different from that in
the temporal generative step. The premise of spatial inference
is that there is continuity and data correlation between each
subareas. For example, the air quality of a subarea is close
to its neighbor area. However, if the subareas are different
parking lots, the relationship between the parking numbers of
these parking lots may not be strong. In this case, we are trying
to estimate the number of cars in a parking lot without any
prior information. This is simply impossible. Therefore, we
only infer the spatial fracture data in the case of continuous
subareas. These condition vectors can be easily inferred by
data inference algorithms (e.g. DMF [11]). Assuming that the
condition vectors are z

(1)
cSG, · · · , z(m0)

cSG and the data inference
algorithm is gS(·), it is obvious that

(z
(1)
cSG, · · · , z

(m0)
cSG ) = gS(z

(l1)
cS , · · · , z(l2)cS ). (19)

So, we can easily generate fracture data with high fidelity
through b̂

(i)
SG = GS(zS, z

(i)
cSG), where i is from 1 to m0.

Finally, the spatial non-fracture matrix Ŷ can be calculated
by (14) and we achieve our targets by our approach GHFMC.

VI. PERFORMANCE EVALUATION

In this section, we first show the details of all the three
typical datasets and the latest or popular baseline methods
in the field of sparse data inference. Then we present the
performance evaluation results about each datasets for our
approach. In particular, in order to explain the purpose of the

experiments we test, the main research questions are given as
the following points:

• RQ1: Does our approach improve the accuracy and
fidelity of sparse matrix completion?

• RQ2: Can our approach be more suitable for inferring
fracture data than other methods?

• RQ3: Is high fidelity data inference more conducive to
fracture data inference?

• RQ4: Can our approach cope with a larger data fracture
scale than other existing methods?

A. Datasets

Aiming at evaluating the spatiotemporal fracture data infer-
ence problem, we test on three popular urban crowdsensing
datasets, including U-Air [24], Sensor-Scope [25], and Parking
in Birmingham [26]. We provide a main content description
of these three datasets in Table II.

B. Baselines & Measures

1) Baselines: In order to effectively utilize the sparse
sensed data to infer spatiotemporal fracture data, we first
present the data inference algorithm with GHFMC. We mainly
compare our approach with the following multiple types of
data inference algorithms:

• KNN [8]: K-Nearest Neighbor, which calculates the av-
erage value of the top-K nearest sensed time slots.

• GPR [27], [28]: Gaussian Process Regression, which uses
Gaussian distribution to fit the sensed data values and
generate unsensed data.

• GRU [29]: Gated Recurrent Unit, which is a popular time
series prediction method and used to infer the value of
temporal fracture data.

• DMF [11]: Deep Matrix Factorization, which is a matrix
factorization-based neural network and usually used to
complete a sparse matrix.

• IGMC [10]: Inductive Graph-based Matrix Completion,
which is a Graph Neural Networks-based data inference
method and usually used to predict the unknown value
of recommender systems.

• AR-CF [30]: Augmented Reality Collaborative Filtering,
which is a new method to deal with the cold start problem
of recommender system.

2) Measures: In the following experiments, we will evalu-
ate our approach from the error and fidelity of data inference.

• RMSE: Root Mean Square Error, which denotes the data
inference error. A lower value of RMSE means the high
data inference accuracy.

• R-squared: Goodness of Fit, which denotes the data
inference fidelity. A higher value of R-squared means the
high data inference fidelity.

C. Sparse Spatiotemporal Data Inference (RQ1)
We start to test the accuracy and fidelity of sparse spa-

tiotemporal matrix completion for the GHFMC (Origianl Step)
algorithm. We artificially randomly extract a certain ratio of
sparse data, although the original datasets provide complete
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TABLE II: Statistics of three evaluation datasets

Datasets
U-Air Sensor-Scope Parking in Birmingham

Country - City China - Beijing Switzerland - Lausanne UK - Birmingham
Data (Unit) PM2.5 (µg/m3) Temperature (◦C) Parking occupancy rate (%)

Subarea 36 subareas each with 1km × 1km 57 subareas each with 50m × 30m 30 parking lots
Period & Duration 1h & 11d 0.5h & 7d 0.5h & 77d

Mean ± Std. 79.11± 81.21 6.04± 1.87 53.6± 26.3
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Fig. 7: Accuracy and fidelity of sparse data inference over
U-Air, Sensor-Scope and Parking in Birmingham.

spatiotemporal matrices. We set the sensed ratio from 50%
to 90% and complete the sparse matrix by different data
inference methods, which include KNN, GPR, DMF, IGMC
and GHFMC-O. In this experiment, we calculate both RMSE
and R-squared value to evaluate the data inference accuracy
and fidelity of each method for sparse spatiotemporal matrix
completion. The results of this experiment are shown in Fig. 7,
which includes all three typical urban sensing tasks. In order to
compare different experimental results of the same task easily,
we use a special coordinate system, which omits one common
abscissa axis and two independent ordinate axes.

The experimental results in Fig. 7 show that with the
increase of sensed ratio, the data inference error decreases and
the fidelity of data inference increases. It is easy to understand,
because the sensing task with larger sensed ratio is more easier
to achieve. KNN has better inference effect for data with strong
linear characteristics, and GPR assumes that the distribution of
data approximately obeys Gaussian distribution. However, the
real data are more nonlinear and the distribution characteristics
are more complex, so the performance of KNN and GPR
is poor. DMF, IGMC and GHFMC-O can extract complex
features from sensed data, so the accuracy and fidelity of data
inference are better than KNN and GPR.

Generative algorithm is a new attempt in the field of sparse
data inference. From the experimental results in Fig. 7, we
find that generative algorithm (GHFMC-O) seems to be more
suitable for sparse data completion than inferential algorithm
(DMF and IGMC) because of the smallest data inference error
and the largest data inference fidelity. In other words, the
generative algorithm can generate batch data with real world
distribution characteristics.

TABLE III: R-squared of fracture data inference under dif-
ferent methods over U-Air, Sensor-Scope and Parking in
Birmingham

DMF GRU IGMC AF-CF GHFMC-T
PM2.5 0.2648 0.9172 0.9194 0.9237 0.9443
Tem. 0.3081 0.7757 0.7867 0.8198 0.8282
Par. 0.6028 0.8731 0.8848 0.9006 0.9171

D. Spatiotemporal Fracture Data Inference (RQ2)
Then, we test the accuracy and fidelity of spatiotemporal

fracture data inference for the GHFMC (Temporal Generative
Step) algorithm. In this experiment, we randomly extract a
column from the complete matrix of the original dataset as
temporal fracture data. We try to recover the unsensed column
by different methods, which include GRU, AR-CF, DMF,
IGMC and GHFMC-T. We calculate the value of R-squared
in order to test the fidelity of fracture data inference, which is
the technical index we are most concerned about.

The experimental results are shown in TABLE III. By com-
paring the R-squared of different methods, we find that the R-
squared value of DMF is the smallest, or even worse than that
using GRU directly for time series predition. This is because
DMF algorithm needs a convergence target to run effectively.
When a whole column of data is missing, there is no context
infomation for DMF. Then the output of the DMF will be
completely random. IGMC algorithm is a GNN-based method
which takes advantage of complex relationships, but it also
performs generally for temporal fracture data. It shows that
the increase of calculation cannot make up for the influence
of data fracture. AR-CF algorithm is the latest method to
deal with the cold start problem of the recommended system.
The cold start problem of the recommended system is similar
to the spatiotemporal fracture problem, so we also compare
the AR-CF. Indeed, AR-CF still performs well in the urban
crowdsensing dataset. However, due to the difference between
spatiotemporal data and user-item data, GHFMC-T performs
better than AR-CF. In the recommendation system, users and
projects exist in isolation. So, we may draw the conclusion
that our approach is more suitable for continuous data than
discrete data.

E. Influence of Sparse Data Inference Accuracy on Fracture
Data Inference (RQ3)

From the first experiment, we found that GHFMC-O per-
forms best in sparse data inference accuracy and fidelity. In this
experiment, we will verify whether the high fidelity we pursue
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Fig. 8: Accuracy and fidelity of fracture data inference over
U-Air, Sensor-Scope and Parking in Birmingham.

in the sparse data completion step is meaningful. We directly
use the data inference results of different sparse data inference
methods under different sensed ratios. Then, we used GHFMC,
which has been verified to be most suitable for spatiotemporal
fracture data inference, to perform operations similar to the
last experiment. we calculate both RMSE and R-squared value
to evaluate the data inference accuracy and fidelity of each
method for spatiotemporal fracture data inference. The results
of this experiment are shown in Fig. 8.

The experimental results show that our approach GHFMC-
O not only performs best in sparse data inference, but also
is conducive to further processing fracture data of sparse data
background. It is easy to understand that we need data as real
as possible to train our GHFMC-T. Under the sparse back-
ground, the fidelity of complete data obtained by KNN, GPR,
DMF and IGMC is all worse than GHFMC-O. Considering
that the sparse data inference error of KNN and GPR is much
higher than that of DMF, IGMC and GHFMC-O, we only
compare DMF, IGMC and GHFMC-O in the next discussion.
These three methods can effectively extract the non-linear
features of data and show similar sparse data inference error.
Therefore, on this premise, we have reason to admit that
GHFMC-O can indeed generate inference results that are more
consistent with the distribution law of real data.

F. Impact of Fracture Data Scale (RQ4)
Finally, we will test how large scale fracture data our

approach can adapt. It is obvious that with the increase of
continuous fracture data scale, the inference of fracture data
is becoming more and more difficult. Reflected in the technical
indicators, the error is getting larger and larger. In the actual
urban crowdsensing scene, we only tolerate errors within a
certain range. Therefore, we test the number of effective
fracture data scale that can be recovered by different methods
under different error thresholds. We first test the RMSE with
the fracture data scale of 1-10 time slots by different methods.
Then, by setting different RMSE thresholds, we count how
many time slots of the test results are below the threshold.
The experimental results are shown in the Fig. 9.

As the RMSE threshold decreases, more data points become
ineffective. It means that our requirements for data inference
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Fig. 9: Inference accuracy under different fracture data scales
over U-Air, Sensor-Scope, and Parking in Birmingham.

results are becoming more and more strict. We find that even
under such a strict threshold (There are a little number of
effective fracture data scale by DMF, IGMC, GPR and KNN),
GHFMC can also perform best. This is because the data
inference error of our approach is less than that of other
baseline methods for any scale of fracture. This experiment
indirectly verifies that our approach can generate high fidelity
fracture data. Although other methods perform well in the
field of sparse data inference of non-fracture data, when
encountering spatiotemporal fracture data, I suggest to apply
GHFMC to deal with spatiotemporal fracture data especially
when the fracture scale is large.

VII. CONCLUSION

In this paper, we propose the approach to address the
problem of spatiotemporal fracture data inference in sparse
urban crowdsensing. In detail, we propose a general urban
sensing method named GHFMC, which aims to generate
all unsensed value with a high accuracy and fidelity. With
the benefit from the idea of DMF and GAN, GHFMC is
proposed to extract the spatiotemporal features of the sensed
data more effectively, and generates inference data more close
to the real data distribution more easily. By the test about
three different types of classical urban sensing tasks from
three popular datasets, we verify that the performance of our
approach outperforms the state-of-the-art (SOTA) baselines,
which include the methods not only in the field of MCS but
also other similar fields. In addition, it’s necessary to explain
that every sub-module (Original step, temporal generative step
and spatial generative step) could be used in an ad-hoc manner
with functionalities independently. For example, for the case
of non-fracture data, GHFMC-O can also be used for sparse
data inference and achieve better data inference accuracy and
fidelity. For the case of non-sparse fracture data, we can skip
matrix completion step and use GHFMC-T or GHFMC-S to
infer the fracture data directly. It seems that our work can be
improved. For example, 1) the algorithm based on GaN has
high time complexity, and 2) the temporal and spatial fracture
data inference are not carried out at the same time. Moreover,
our approach can be applied in a wider range of crowdsensing
tasks (e.g. congestion detection, traffic speed monitor, etc.),
although we test only three tasks in the evaluation experiments.
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