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ABSTRACT With the boosting of mobile devices, wireless sensor networks, and the internet of things,
abundant multi-modal data, such as GPS signal, sensor data, are produced intentionally or unintentionally,
which can represent the people’s active patterns, vehicle’s routes, and city’s flows to develop a smart city.
These multi-modal data are usually transmitted and received by signal stations deployed in the city. However,
reasonably choosing the signal stations’ locations is still an open issue for enhancing people’s life quality in
the smart city. To this end, we propose the Super Resolution Deduction (SRD) model for solving the signal
station selection problem. SRD first initializes the city map as a coarse-grained heat map representing the
capacity of the signal stations. Then an image-based super-resolution deduction model is proposed to obtain
a fine-grained signal station capacity for deploying. To be specific, we employ Dense Block to capture the
spatio-temporal correlations, C-Attention to selectively enhance useful feature maps, and S-Distribution to
impose structural constraints. By sharing the GPS data load with the new deployment of signal stations,
we ensure the smart city’s efficiency and effectiveness. Extensive experimental results on real-world dataset
Changchun City demonstrate that our proposed model achieves the superior performance among the state-
of-the-art baselines.

INDEX TERMS Signal station capacity, signal station selection, C-Attention, spatio-temporal correlations.

I. INTRODUCTION
Nowadays, the smartphone has become an indispensable part
of people’s daily life and its penetration rate in China has
exceeded 112.23 percent. The signal strength of a smartphone
often greatly affects the user experience. Specifically, due to
the limited load capacity of signal stations, the high traffic
flow may cause the overload of the signal stations and affects
the signal of the smartphone. Whereas, the region with fewer
people may face the problem of signal station deployment
waste. Hence, how to choose reasonable locations to deploy
new signal stations is particularly important. We need a
reliable method to deploy new signal stations to share the
GPS data load of the existing signal stations. So we propose
the Super Resolution Deduction (SRD) model for solving the
signal station selection problem. It can infer the fine-grained
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signal station capacity from the coarse-grained signal station
capacity to get the accurate locations of new signal stations
for deployment. Moreover, this method can make a great
contribution to the deployment of new signal stations in urban
development planning and the new city construction.

But traditional computer vision methods can’t directly
obtain accurate results under this complex background.
Meanwhile, inferring the fine-grained signal station capacity
faces the following challenges: 1) It is generally believed
that the bustling commercial and residential areas are the
most populous. However, the signal station capacity is not
only related to the function of the area but also the temporal
factors, i.e., the signal station capacity at different periods
is significantly different. For example, on working days,
people move from residential areas to office areas in the
morning, and the number of people in entertainment venues
increases at night. It can be seen that the signal station
capacity in different places changes over time. As a result,
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how to incorporate both spatial and temporal factors in
our problem is an important issue. 2) There are also some
structural constraints [1] (i.e., spatial levels) in our problem.
The sum of the signal station capacity volumes in subregions
strictly equals that of the corresponding superregion as shown
in Fig. 2. Furthermore, the signal station capacity in a
region will be affected by the signal station capacity in
the nearby regions, which will influence the fine-grained
inference. Failure to accurately capture these features will
result in a degraded performance, so we ought to consider
the spatio-temporal correlations between different regions to
improve the accuracy of our model. Fig. 1 shows the signal
station capacity of residential regions near non-commercial
areas and central commercial areas during the different times
of working days and non-working days. It can be seen that
even in the same functional area, the signal stations are
under different pressures. 3) Since using the computer vision
method for urban signal station deployment and each feature
map carries different information, we need to think about how
to selectively enhance useful feature maps to improve the
accuracy of themodel. 4) The distribution of the signal station
capacity in a given region is affected by various external
factors, especially special events. There are many typical
special events, such as the beginning of the new term and
convening of the meeting, which will put a lot of pressure
on the signal stations in these areas. Therefore, the trend of
crowd movement is also necessary to be considered.

FIGURE 1. The pressure of signal stations in different areas.

FIGURE 2. Signal station capacity in two granularities in Changchun.

Following the above comprehensive considerations,
we propose a deep neural network model named SRD. The
main contributions of this paper are as follows:
• By analyzing the particularity and challenge of the urban
signal station deployment, we design a novel inference
network called Super Resolution Deduction (SRD) to
solve this spatio-temporal correlation problem, which
employs Dense Block to address the influence of nearby
regions and capture the trend of crowd movement.

• We employ the S-distribution module to impose
structural constraints on the SRD, and also embed
the C-Attention module to selectively enhance useful
feature maps by adaptively adjusting the weight of each
feature map. It turns out that using these modules will
improve the inference performance of our method.

• We conduct extensive verification experiments on
mobile signaling data collected from Changchun. Our
verification experimental results demonstrate the sig-
nificant advantages of SRD compared with the state-
of-the-art baselines in effectiveness. Besides, we also
verify the effectiveness of different modules in SRD.
The experimental results prove that our method is a
better and more effective method for urban signal station
deployment.

II. FORMULATION
Definition 1 (Region): As shown in Fig. 2, we divide the

city into a × b grids based on latitude and longitude, where
a grid represents an region [3]. By increasing a and b we
can divide the city into smaller regions. This means we can
get a smaller and more detailed mobile signaling data, which
produces a more fine-grained signal station capacity.
Definition 2 (Signal Station Capacity): When a mobile

phone is connected to a signal station to obtain service, it will
passively generate a mobile signaling record. Let L ∈ RA×B

+

represents the signal station capacity at a specific time, where
each la,b ∈ R+ represents the signal station capacity in the
region (a, b).
Definition 3 (Structural Constraints): As described

in Fig. 2, given the scale factor T , each superregion is
composed of T × T subregions. To a certain extent, it also
indicates that there is a spatial structure relationship between
regions that cannot be ignored. Fig. 2 illustrates an example
as the scale factor T = 4: the superregion consists of 4 ×4
subregions. lCa,b is the volume of the coarse-grained signal
station capacity in a superregion, and lFa′,b′ is the volume of
its corresponding fine-grained signal station capacity. Given
the scale factor T , they both obey the following equation:

lCa,b =
∑
a′,b′

lFa′,b′ s.t.b
a′

T
c = a, b

b′

T
c = b, (1)

for simplicity, a = 1, 2, . . . ,A and b = 1, 2, . . . ,B in our
formulation.
Problem Statement: Infer the fine-grained signal station

capacity LF ∈ RTA×TB
+ by given a scale factor T ∈ Z+ and

coarse-grained signal station capacity LC ∈ RA×B
+ .

III. METHODOLOGY
Our framework follows the general procedure of super-
resolution image processing. Fig. 3 depicts the framework
of SRD which consists of two main components: Feature
Extraction and Upsampling. The Feature Extraction module
takes coarse-grained signal station capacity as its input,
and then uses Dense Block [4] with bottleneck to extract
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FIGURE 3. The SRD framework for 4× upscaling (Scale facter = 4). ⊕ denotes addition and ⊗ denotes Hadamard product.

spatio-temporal features of the city. After each Dense
Block, we introduce the C-Attention layer to selectively
enhance useful feature maps by the Squeeze and Excitation
method [5]. By using a skip connection [6], we use identity
mapping between low-level and high-level features to build
an information highway [6] to skip Dense Blocks to achieve
an effective gradient back-propagation. Taking weighted fea-
tures as a priori knowledge, the upsampling outputs a signal
station capacity distribution over subregions with respect to
each superregion by employing the S-distribution [2] which
imposes the structural constraints. Finally, the Hadamard
product of the distribution inferred by S-Distribution with
the upsampled coarse-grained signal station capacity gives
the fine-grained signal station capacity as the output of
SRD. We will elaborate on the detailed designs of Feature
Extraction and Upsampling modules in this section.

A. FEATURE EXTRACTION
In the input stage, we use a convolutional layer [7] (F kernels
with size of 9 × 9) to extract low-level features. Then M
Dense Blocks with the same structure take the low-level
feature map as input to construct the high-level feature map.
We use C-Attention to selectively enhance useful feature
maps by adaptively adjusting the weight of each feature
map. As shown in Fig. 4 and Fig. 5, the Dense Block is
composed of two parts: Bottleneck and Dense layer which
both consist of BN, ReLU [8], and conv for reducing the
amount of calculation and feature extraction respectively.
Differently, the conv in Bottleneck is 1 × 1 and the one
in dense layer is 3 × 3. There are M Dense Blcoks in
our framework and they all contain 32 Dense layers and
corresponding Bottlenecks. Since Dense Blocks can enhance

FIGURE 4. The Dense Block composed of dense layer and Bottleneck.

feature reuse, we superimpose a depth framework to make
the receiving field larger so that the features of the entire
city can be fully captured. In other words, every pixel on
the high-level feature map can capture the dependencies of
distant or even the whole city. After feature extracting by
M Dense Blocks, we use another convolutional layer (3 ×
3) and Batch Normalization (BN) [9] to ensure the feature
extraction. In the end, the output signal station capacity
distribution will show regional dependence with the original
region.

B. C-ATTENTION
Essentially, convolution is the feature fusion of a local
area, which includes feature fusion in space (H and W
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FIGURE 5. The structure of Bottleneck and Dense layer in Dense Block.

dimensions) and between channels (C dimension). For the
channel dimension, the convolution operation fuses all the
input channels by default. As shown in Fig. 6, we employ
C-Attention to focus on the significance of the feature maps
so that the model can adaptively adjust the weight of each
feature map.

FIGURE 6. The structure of C-Attention module with Squeeze and
Excitation.

The C-Attention mainly includes two operations, Squeeze
and Excitation [5], which can be applied to any mapping
X→ U, X ∈ RH

′
×W ′×C ′ , U ∈ RH×W×C . Taking convolution

as an example, the kernel is k = [k1, k2, · · · , kc], where kc
represents the cth kernel. Then output U = [u1, u2, · · · , uc]:

uc = kc · X =
C ′∑
f=1

ksc · x
s, (2)

where · represents the convolution operation, and ksc repre-
sents a 3D kernel, which learns the spatial relationship of
the features and sums the results of each channel, so the
feature relationship of each channel is mixed with the space
relationship learned by the kernel. The C-Attention is to
separate this fusion in order that the model can directly learn
the feature relationship between different channels.

Squeeze (Sq). Since convolution only takes effect in a
local area, it is difficult for U to obtain enough information
to extract the relationship between channels. We utilize the
Squeeze in the C-Attention, using the global average pooling

to encode the entire spatial features on a channel into a global
feature:

zc = Sq(uc) =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j). (3)

Excitation (Ex). Due to Squeeze gets the global feature,
we need another operation next to capture the significance of
feature maps. And this operation ought to meet two criteria:
first, it can learn the non-linear relationship between each
feature map; second, the learned weight is not mutually
exclusive. Based on this, the gating mechanism in the form
of sigmoid is adopted:

sc = Ex(zc,W ) = σ (W2ReLU(W1zc)), (4)

whereW1 ∈ R
C
r ×C , W2 ∈ RC×

C
r , σ represents sigmoid.

To reduce the complexity of the model and improve the
generalization ability, a bottleneck consists of two fully
connected (FC) layers is adopted, and the first fully connected
layer (W1) is used for dimensionality reduction with the
coefficient r (we set r to 16 in our experiment). And after
ReLU activation, there is another FC layer (W2) used to
restore the original dimensions. Finally, we get the weight of
each feature map:

x̃c = Scale(uc, sc) = sc · uc. (5)

C. UPSAMLING
In the Upsampling module, the features extracted by Dense
Blocks first pass through two SubPixel Blocks to perform an
T = 22 amplification operation, thereby generating hidden
features. As shown in Fig. 7, the SubPixel Block uses a
convolutional (3 × 3, F × 22) layer, followed by Batch
Normalization to extract features. Furthermore, it employs
PixelShuffle [10] to rearrange and upsample the feature maps
to double the size, and applies ReLU activation at the end.
As shown in Fig. 8, the PixelShuffle layer reshapes the tensor
from (H,W,C×r2) to (H×r ,W×r , C). After each SubPixel
Block, the size of the output feature maps will increase twice,
while the number of channels remains unchanged.

FIGURE 7. The overview of SubPixel Block.

Because it is different from ordinary image super-
resolution, in order to infer the accurate signal station
capacity, structural constraints must be fully considered. For
this reason, we have introduced a structure [2] to output signal
station capacity distribution.
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FIGURE 8. The PixelShuffle layer reshapes the tensor.

FIGURE 9. S-Distribution.

To be specific, we design S-Distribution as shown
in Fig. 9. First, it performs sumpooling on input accord-
ing to the required scale factor. Its result goes through
Nearest-Neighbor Upsampling (NNUpsampling) with a scale
factor to get Sum. In the end, we get the probability
distribution: Out = Input � Sum.

Sump = Sumpooling(Input, Scalerfactor),

Sum = NNUpsampling(Sump, Scalerfactor),

Out = Input � Sum, (6)

where � represents division.
Finally, we upscale LC to get LCup ∈ RTA×TB+ by

NNUpsampling with the Scale factor T and then generate
the fine-grained signal station capacity to get the final result:
L̃F = LCup � Out .

D. OPTIMIZATION
For SRD, we can train the network through automatic
backpropagation by providing training pairs (LC , LF ) and
calculating the experience loss between (LF , L̃F ), where
LF is the true value and L̃F is the inference of our model.
Concretely, we use Mean Absolute Error (MAE) for the loss
function, as shown below:

MAE(LF , L̃F ) =
1
N

N∑
i

∣∣∣LFi − ˜LFi ∣∣∣ . (7)

IV. VERIFICATION EXPERIMENT
To verify the effectiveness of our method, we use Changchun
mobile signaling data to conduct verification experiments.
In order to better verify the effectiveness of our model,
we select the signal stations in the main districts of
Changchun. The latitude and longitude range we select is
shown in Table 1 and Fig. 10.

TABLE 1. Latitude and longitude.

FIGURE 10. The distribution of signal stations in Changchun.

A. SIGNALING DATASETS
Since lots of fine-grained mobile signaling data is available
as ground truth, we obtain the coarse-grained signal station
capacity by aggregating subregion signal station capacity
from the fine-grained counterparts. Specifically as shown
in Fig. 2, we divide the study area into 32×32 grids, count the
signal station capacity information in a grid every hour, and
infer the fine-grained signal station capacity of the four-fold
resolution (128× 128). In our experiment, we divide all data
into non-overlapping training data, test data, and verification
data according to a ratio of about 3: 1: 1. The training datasets
are shown in Table 2.

TABLE 2. Training dataset description.

The sample of the mobile signaling data is shown
in Table 3. The serial number is the unique identification of
each signal station. And Connection time is themoment when
the device connects to the signal station.

TABLE 3. The sample of the mobile signaling data.

B. NORMALIZATION METHOD
To speed up the convergence of SRD, data normalization
is adopted before the training. Since the input and output
are both positive, we use Min-Max normalization to map
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FIGURE 11. The distribution of signal station capacity.

the input and output to [0,1]. From the coarse-grained and
fine-grained density curve in Fig. 11, we can see a long tail
in both settings. The explanation is that there is sometimes
a high signal station capacity in some regions, which may
be due to the rush hours or traffic jams [1]. If we directly
use the maximum signal station capacity as the max-scaler,
it is inaccurate and most values will be much smaller than 1.
Therefore, we choose 250 as the max-scaler for fine-grained
data, and 5000 for coarse-grain data.

C. EVALUATION METRICS
We use two evaluation metrics to assess the model from
different aspects: Mean Absolute Error (MAE) and Mean
Absolute Percentage Error (MAPE). The formulas are as
follows:

MAE(LF , L̃F ) =
1
N

N∑
i

∣∣∣LFi − ˜LFi ∣∣∣ ,
MAPE(LF , L̃F ) =

100%
N

N∑
i

∣∣∣∣∣LFi − ˜LFiLFi

∣∣∣∣∣ , (8)

where N is the samples’ total number, ˜LFi is ith the inferred
value and LFi is the corresponding true value.

D. BASELINE
We compare the model with the following seven baselines
in a variety of fields. The baselines are Mean Partition,
Historical Average, SRCNN, ESPCN, VDSR, SRResNet,
DeepSD. We detail them as follows:

Mean Partition: We evenly distribute the signal station
capacity from each superregion to 4 × 4 subregions in the
coarse-grained map.

Historical Average: Similar to distributional upsampling,
Historical Average treats the value over each subregion a
fraction of the value in the respective super region, where the
faction is computed by averaging all training data.

SRCNN [11]: SRCNN is the first successful method to
introduce convolutional neural networks (CNN) into image
super-resolution problems.

ESPCN [10]: An efficient sub-pixel convolutional neural
network (ESPCN) employs a sub-pixel convolutional layer,
which aggregates feature maps in the LR space and constructs
an SR image in one step.

VDSR [12]: Since SRCNN has a series of shortcomings
such as slow convergence speed, VDSR adopts residual
learning to improve the learning rate, accelerate the conver-
gence speed, and deepen the network structure to improve
accuracy.

SRResNet [13]: SRResNet enhances VDSR by using the
residual architecture proposed by Hu et al. [6].
DeepSD [14]: DeepSD is the latest method formeteorolog-

ical statistics, which is basically performed by simply stack-
ing SRCNN. Compared with our method, the disadvantage is
that it has too many parameters.

To evaluate each component of SRD, we also compare it
with different variants of SRD:

SRD-C: In order to assess the effectiveness of the
C-Attention part, we only remove this module from SRD and
keep the other components unchanged.

SRD-S: Similarly, we remove the S-Distribution module
from SRD to further verify its effectiveness.

SRD-CS: We remove the C-Attention and S-Distribution
modules from the SRD and keep the other components
unchanged.

FIGURE 12. Visualization of signal station capacity in Changchun.

E. EXPERIMENTAL RESULT
The final result is shown in Fig. 12 (a). We summarize
the experimental results and find that our model improve
MAE and MAPE compared with other baselines, and
other experiments on different M-F will be discussed later.
In addition, we postpone the results of SRD-C and SRD-S
to the next experiment for more detailed research. As shown
in Table 4, we mark the best (F) and second best (∗) results
in all experiments. And we observe that SRD is the best of
all methods by 6.9% and 9% higher than the second for MAE
and MAPE.

TABLE 4. Results comparisons. F and ∗ represents the best and second
best result. SRD advances it by 6.9% and 9% for MAE and MAPE.
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1) STUDY ON S-DISTRIBUTION
To verify the effectiveness of the S-Distribution, we will
compare SRD-S with other variants. From Fig. 13 (a),
the S-Distribution module advances the SRD-CS in MAE
by 17.08% and in MAPE by 28.37%, which verifies the
superiority of the S-Distribution module.

2) STUDY ON C-ATTENTION
The C-Attention incorporates two important operations:
Squeeze and Excitation to describe the interdependence
between feature maps and automatically obtains the weight
of each feature map through learning. Hence, the C-Attention
can better capture the significance of the different feature
map. As shown in Fig. 13 (a), we compare SRD-C with other
variants. The C-Attention module advances the SRD-CS in
MAE by 19.3% and in MAPE by 21.3%, which verifies the
superiority of the C-Attention module.

SRD is superior to SRD-C and SRD-S inMAE andMAPE,
which proves that the combination of the two modules can
further improve the model performance.

FIGURE 13. Performance comparison of various structural constraints.

3) STUDY ON PARAMETER SIZE
The setting of M-F in Fig. 14 presents the number of Dence
Blocks (M) and the kernels (F) of Conv1. We can see that
adding more Dense Blocks and more kernels can improve the
performance of the model, but it also increases the training
time and memory space. After considering the tradeoffs
between cost and performance, we set the defaultM-F of SRD
to 6-128.

Different from Resnet, each convolutional layer of the
Dense Block outputs k feature maps. Notably, due to the
feature reuse of the Dense Block, as the network deepens,
the Dense Block will produce more outputs, So the size
of k needs to be set appropriately. Specifically, k is a
hyperparameter called the growth rate, and then we conduct
a series of comparison experiments on it. As shown in Fig. 13
(b), we find that setting a larger growth rate can improve our
model’s performance, but when the growth rate is 36, the error
of our model increases. This can be explained as when the
model pays too much attention to feature reuse, it will cause
overfitting. After taking into account the tradeoffs of cost,
performance and accuracy, we set the default k of SRD to 12.

F. INFERENCE ERROR ANALYSIS
Fig. 15 displays the inference error |LFi −

˜LFi | and the brighter
the pixel, the greater the error. We find three areas with

FIGURE 14. The results of different M-F settings.

large error in the figure and locate the areas based on the
latitude and longitude. Two of these regions are Jingyang
Square and Rainbow Square, the other is Xinhai Fishing Park,
which is an entertainment venue. According to the findings,
we conclude that regions of the inference with large errors
are the regions with high traffic flow or numerous traffic
jams. Such areas are usually unstable and are easily affected
by weather and external factors. Therefore, there will be a
big deviation in the statistics of mobile signaling data of
these regions. This indicates that compared with ordinary
image super-resolution methods, we ought to focus on some
constraints, which require special design.

FIGURE 15. Visualization for inference errors in Jingyang Square,
Rainbow Square and Xinhai Fishing Park.

V. RELATED WORK
A. IMAGE SUPER RESOLUTION METHOD
Research on super-resolution images, trying to recover
from coarse-grained low-resolution images to high-resolution
images, has received more and more focus in recent years.
It has also been directly applied in many fields, such
as face recognition [15], fine-grained crowdsourcing [16]
and HDTV [17]. There are also a great number of image
super-resolution algorithms developed in the computer vision
field. To solve this problem, the early research pay attention to
the interpolation methods, such as Lanczos resampling [18].
Furthermore, some researches introduce statistical image
priors [19], [20] to obtain better performance. The advanced
methods focus on learning nonlinear mapping between
low-resolution images and high-resolution images, such
as neighbor embedding [21] and sparse coding [22], [23].
However, these methods still have insufficiency, and they
are still not enough to reconstruct realistic and fine-grained
textures of images.In recent years, a series of approaches
based on deep learning have made great progress in
reconstructing high-resolution images. In the early days,
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the CNN method is used to make low-resolution and
high-resolution images through end-to-end mapping to form
the image super-resolution architecture of CNN. Subse-
quently, an approach based on sub-pixel convolutional
layer is proposed, which can reduce the cost of restoring
high-resolution pictures. Inspired by VGGNet in image
classification [24], a deep CNN [12] is applied to the
method of recovering high-resolution images. Although
the application of the residual module in [12] has shown
that the depth has a positive effect on accuracy, as the
network’s depth increases, the efficiency and speed decrease
significantly, so it is difficult to improve performance only by
deepening the network depth. Later, in [13], a perceptual loss
function is proposed to focus on the better reconstruction of
high-frequency details. In [14], the performance of the model
is improved by deleting the redundant modules. However,
the above methods are only applicable to the pure image
problem, and are not suitable for our actual problem in terms
of efficiency and effectiveness, because mobile signaling
data has a very specific spatio-temporal correlation compared
with natural images. In the study of UrbanFM [2], we can
fully understand how to improve the accuracy of the model
through structural constraints. Nevertheless, in order to solve
the deployment of signal station problem, we need to capture
the trend of crowd movement, so we employ the Dense Block
for feature reuse to capture this trend.

B. SIGNAL STATION DEPLOYMENT ANALYSIS
The analysis and application of traffic data has become a hot
research topic in recent years [1]. In the early work [25], [26],
predictions of individual urban trajectories have already
begun. Nowadays, the forecast of total traffic flow outside
the trajectory [27] has gradually attracted people’s attention.
Inspired by deep learning techniques, more and more neural
network models are applied in the transportation field. For
example, in [28], the correlations between time and space are
modeled and studied to achieve better prediction results. But
in terms of the deployment of the signal stations, the existing
methods cannot reasonably deal with this issue. Therefore,
motivated by this, we propose the novel SRD framework to
solve the problem with efficiency and effectiveness.

VI. CONCLUSION
In this paper, we present a novel model called SRD based
on deep convolutional neural networks, which improves
the general process of image super-resolution methods to
achieve fine-grained signal station capacity inference. SRD
has addressed the challenges specific to the Urban Signal
Station Deployment problem. Meanwhile, C-Attention and
S-Distribution are employed to extract the feature importance
and spatial structural constraints, and we employ Dense
Block to further enhance feature reuse and capture the
mobility trends. Experiments have shown that our method
advances traditional methods by at least 6.9% and 9% in
terms of MAE and MAPE. Moreover, we have made a
new attempt on the deployment of urban signal stations

and applied the SRD method in real life to deal with the
issue of signal station deployment in cities. In the future,
we will do more studies on improving the model structure
and considering external factors, and pay more attention to
reducing inference errors in some hard areas to solve the
problem of signal station deployment.
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