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Abstract—Points-of-interest (POIs) recommendation plays a
vital role by introducing unexplored POIs to consumers and
has drawn extensive attention from both academia and industry.
Existing POI recommender systems usually learn latent vectors to
represent both consumers and POIs from historical check-ins and
make recommendations under the spatio-temporal constraints.
However, we argue that the existing works still suffer from
the challenges of explaining consumers complicated check-in
actions. In this paper, we first explore the interpretability of
recommendations from the POI aspect, i.e., for a specific POI,
its function usually changes over time, so representing a POI
with a single fixed latent vector is not sufficient to describe
POIs dynamic function. Besides, check-in actions to a POI is
also affected by the zone it belongs to. In other words, the
zone’s embedding learned from POI distributions, road segments,
and historical check-ins could be jointly utilized to enhance the
accuracy of POI recommendations. Along this line, we propose
a Time-dependent Zone-enhanced POI embedding model (ToP),
a recommender system that integrates knowledge graph and
topic model to introduce the spatio-temporal effects into POI
embeddings for strengthening interpretability of recommenda-
tion. Specifically, ToP learns multiple latent vectors for a POI in
different time to capture its dynamic functions. Jointly combining
these vectors with zones representations, ToP enhances the spatio-
temporal interpretability of POI recommendations. With this
hybrid architecture, some existing POI recommender systems
can be treated as special cases of ToP. Extensive experiments on
real-world Changchun city datasets demonstrate that ToP not
only achieves state-of-the-art performance in terms of common
metrics, but also provides more insights for consumers POI
check-in actions.

Index Terms—Recommender systems; knowledge graph; POI
recommendation; interpretability

I. INTRODUCTION

Location-based social networks (LBSNs), such as
Foursquare1 and Yelp2, are increasingly important, bridging
the gap between the physical world and online social
networking services based on personal preferences [1] [2]. In
LBSNs, consumers usually check in and share the experience
with friends when visiting a Point of Interest (POI) [3] [4].
These interaction data between consumers and POIs are
growing at an unprecedented speed, which makes it difficult
to accurately extract their preferences on POIs. To deal

�Corresponding Author is Yuanbo Xu.
1https://foursquare.com/
2https://www.yelp.com/

Fig. 1. An example to illustrate the dynamic function of POI over time and
the chanllenge to explain the consumers’ different purposes to check in POIs
in different zones at different time.

with the huge amount of data in LBSNs and understand
consumers’ personal preferences, POI recommender systems,
aiming at recommending consumers the POIs which they may
be interested in but haven’t checked-in yet, have attracted
increasing attention from both academia and industry.

Unlike traditional recommender systems that push goods on
the websites, e.g. news, music, and movies, POI recommen-
dation aims at providing consumers (in this paper, consumers
can be substituted by users) unexplored POIs according to
their preferences [5]. Specifically, POI recommendations can
be seriously affected by users’ personal preferences, POIs’
functions, and other real-world spatio-temporal factors. Con-
sidering these complicated factors, existing POI recommen-
dation models [2] [6] [7] [8] usually learn latent vectors to
model users’ preferences and POIs’ functions by embedding
historical check-in data and other side information (users’
natural characters, POIs’ descriptions, and check-in feedback
ratings). Then they utilize these latent vectors to make a POI
recommendation under various spatio-temporal restrictions,
which are widely applied in deep generative models.

Although POI recommender systems have achieved great
success, we are still facing many challenges: 1) Interpretabil-
ity: most POI recommendation models concentrate on preci-
sion improvement and lack explainable formulations to under-
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stand the complicated user-POI check-in actions. Hence, their
recommendation results are usually unexplainable. In the real-
world, different users usually visit the same POI for different
purposes. For example, in Figure.1, the consumer u may visit
POI p repeatedly with different reasons for each time. He may
visit p for sleep at midnight or just for a meal at noon. To
enhance the performance of the recommendation, the inter-
pretability of the model should be taken into consideration.
2) Dynamic POI representation: not only users’ preferences
but also POI’s functions are changing over time. In the real
world, a POI may be multi-functional, but its representation
in existing works is usually fixed, which limits the model’s
performance of POI recommendation. As shown in Figure.1,
POI p could act as a hotel, a mall, or a restaurant in different
time t. A fixed latent vector learned by embedding models
is not sufficient to explain the reason that a user visits a
POI. Instead, a time-dependent representation of POI will be
more meaningful and explainable for recommendations. 3)
Zone effect: the functions of the zone where POI locates may
enhance or weaken the POI’s recommendation priority. For
example, when users are in commercial centers (zones), they
perhaps prefer visiting the malls rather than visiting a hotel
or a restaurant (Fig.1). Hence, how to define the suitable zone
area and learn a reasonable zone’ representation for enhancing
POI recommendation is a more challenging problem.

To jointly address the above challenges, in this paper, we
propose a Time-dependent Zone-enhanced POI embedding-
based model (ToP), which is an end-to-end framework for
personalized and explainable POI recommendations. Specifi-
cally, a temporal knowledge graph embedding (TKGE) is em-
ployed to model the time-dependent representations of POIs’
functions from side information and check-in data. Then we
propose a Topic Zone Embedding component (TZE) to learn
meaningful representations for zones, where a road network-
based zoning method is employed to define the reasonable
zone areas from the physical map. Then the zone effects,
combining with spatial and temporal effects, could be used
to improve POI recommendations and understanding users’
check-in actions. Cooperating with these representations (POIs
and zones), a unified knowledge graph-based recommendation
model is devised to capture the dynamic of POI functions
and zone effects, and further make short and long time-term
explainable POI recommendations.

Our primary contributions can be summarised as follows:
• We explore the limitation of POI representations, and

address POI recommendation problems in an embedding
way with knowledge graphs, which adds interpretability,
dynamic of POIs’ functions and zone effects into POI
recommendations,

• According to the embedding results, we propose an end-
to-end recommender system - ToP - to jointly learn
both dynamic POIs’, zones’ representations, which sig-
nificantly improves the recommendation performance.
Besides, because ToP is a knowledge graph embedding
based model, it can make an explainable POI recommen-
dation.

• We evaluate ToP on Changchun city dataset with sev-
eral state-of-the-art recommendation models. The results
show that ToP not only achieves stable performance
compared with baselines in terms of common metrics
(e.g., HR and NDCG) but also provide more insights for
users’ check-in actions and POIs’ dynamic functions.

II. RELATED WORK

Our work is closely related to knowledge graph embedding
and POI recommendation models. In POI recommendations,
temporal and spatial effects have been incorporated into ex-
isting POI recommender systems [5] [9]. Some groups of
researchers have treated POI recommendation as a sequential
prediction problem, which takes the temporal period patterns
[10], [11] or sequential effects [12], [13] into considerations.
Another group of researchers has focused on the spatial
effects on user profiling and action pattern analysis for POI
recommendations. For instance, GeoMF [14] integrates spatial
effect of user geographical regions and its propagation into a
weighted matrix factorization framework. RankGeoFM [15]
proposes a ranking based geographical factorization method
incorporating the spatial-temporal factors. Besides spatio-
temporal effects, other types of information have also been
explored to enhance POI recommendation performance, such
as social influence [16] [4], POI category information [17],
and text information [18] of POIs. However, existing models
can not learn the dynamic function of a POI, which leads to
a biased recommendation.

From the angle of knowledge graph embedding models,
some effective recommendation models have been proposed
by researchers for enhancing accuracy. The basic idea of em-
bedding models for recommendation is to learn the user’s and
item’s representations respectively, input them into a model
and make a prediction [19]. TransX (TransE [20], TransD
[21], etc.) series of knowledge graph embedding are popular
in recommendations. [22] considers the nodes and edges of
multiple types with different attributes, and jointly learns the
embeddings for each node and edge. [23] deals with distinctive
challenges involved with predicting node importance in KGs,
and analyze the diversity of KG embeddings.

The combination of KG embedding and POI recommenda-
tion is boosting in recent years. For POI recommendation,
KG embedding can learn proper latent vector spaces for
representing POIs and users, which adds the interpretability
for recommendations. For KG embedding models, POI recom-
mendation is a reasonable application area because the user-
POI check-in actions can be formulated as a sparse knowledge
graph. PACE [13] builds a word2vec-based architecture to
jointly learn the embeddings of users and POIs to predict
both user preference over POIs and context associated with
users and POIs. KTUP [24] This model especially accounts for
various preferences in translating a user to an item, and then
jointly trains it with a KG completion model by combining
several transfer schemes. However, it is still a challenge to
utilize knowledge graph embedding methods to learn dynamic
POI representations for recommendations.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: JILIN UNIVERSITY. Downloaded on March 06,2024 at 12:02:28 UTC from IEEE Xplore.  Restrictions apply. 



III. PRELIMINARIES

A. Definitions

In POI recommender systems, U denotes a set of m users
U = {u1, u2, ...um}, and P denotes a set of n POIs P =
{p1, p2, ...pn}. In our proposed model, we define a user-POI
check-in action as a triplet Trupt <u,p,t>, which means u has
checked in p at time t.

Definition 1. Temporal User-POI Graph. A user’s check-
in actions in a time period T are represented as a temporal
user-POI graph GT =(V P , ET , T ), in which vertexes V P are
the POIs, and the edges ET are the check-in frequencies
between these POIs at this time. With many Trupt, this
graph can completely describe users’ check-in actions with
structural information representation, to learn a dynamic POI
representation pt.

Definition 2. POI-POI Graph. To consider the relation
between POIs from a global view, we build a global POI-POI
graph GP = (V P ,EP ), in which vertexes V P are the POIs’
categories, and the edges EP are the global relations between
different POI categories. In this paper, we integrate check-in
frequency and side information (e.g., the overlap percentage
or the transfer actions between different POI categories) into
edges between vertexes. This graph is fixed through all the
procedures, aiming at learning a global representation pg for
each POI category. We give an example of POI-POI Graph
and Temporal User-POI Graph in Figure.2.

Definition 3. Zone Embedding. To cooperate with zone
effect for POI recommendation, we study the zone’s attributes,
including POI distributions and historical user-POI check-ins
to learn a zone embedding vector z for representing zone’s
functional attributes. Note that real-world, the zone’s functions
are also varying with time. In this paper, zone embedding z is
represented as zt for zone’s dynamic functions.

B. Problem statement:

Problem Statement In this paper, we study the POI rec-
ommendation problem cooperating with dynamic POI rep-
resentation and zone effect. For learning dynamic POI rep-
resentation, we aim to automatically learn a time-dependent
latent vector to represent the POI’s attributes, hence add the
model’s interpretability. We extract two graphs (temporal user-
POI graph and POI-POI Graph) from multi-source data (e.g.,
check-in data and side information), from where we represent

Fig. 2. Temporal User-POI graph and POI-POI graph. Both two kinds of
knowledge graphs extract the users’ dfferent check-in action patterns jointly.

the dynamic of POIs’ functions. Therefore we formulate this
problem as a task of temporal knowledge graph embedding
problem with multi-source data. Meanwhile, for zone effect,
we first divide the map into several fine-grained no-overlap
zones, and learn the zone embedding vectors from historical
check-in data and POI distributions. Hence, this task is a
joint embedding learning of dynamic POI and zone for an
explainable POI recommendation with multi-source data.

Formally, we formulate the problem as a two-stage task:
1) Embedding stage: given a c set of temporal user-POI

graphs GT
t1 , G

T
t2 ...G

T
tc , we aim to find a map function for each

GT
t → pt that takes each temporal user-POI graph GT

t as in-
put, and outputs the time-dependent vectorized embedding pt

of the POI. Meanwhile, compare pt with global representation
pg , we can add insights into the dynamic of POIs’ functions.
Also we need get zone embedding zt in this stage.

2) Zone-enhanced Recommendation: given zone embedding
zt learned by proposed model, we aim to enhance POI
recommendation with pg , pt, and zt, and explain why these
users check-in these POIs at this time.

IV. TIME-DEPENDENT ZONE-ENHANCED POI EMBEDDING

A. Framework Overview

Figure.3 demonstrates the overview of our proposed model
ToP, including the following tasks: 1) Learning dynamic POIs’
representations to explain the purpose of users’ check-in
actions. 2) Learning dynamic zone embeddings with multi-
source data. 3) Adding interpretability to enhance POI rec-
ommendations with dynamic POIs’ representations and zone
effects. In the first task, we build a POI-POI graph to learn
the global representation of POIs. we also build a set of
temporal user-POI graphs, and propose temporal knowledge
graph embedding (TKGE) to learn dynamic POI representa-
tions with global representations. In the second task, a topic
zone embedding model is developed to learn zone embeddings
with road networks, POI distribution, and historical check-in
data. In the last task, we apply a knowledge graph embedding
based model with dynamic POI representations and zone
embeddings to recommend Top-K POIs and analyze users’
check-in actions.

B. Temporal Knowledge Graph Embedding

In this section, we represent a POI with a set of time-
dependent dynamic embedding vectors. We develop a tem-
poral knowledge graph embedding (TKGE) model with the
following intuitions:

Intuition 1: Global representation: A POI should have
its basic attributes, e.g., a school or a hospital. The global
representation learned from POI-POI graph should be part of
the dynamic POI representation, and make its contribution to
POI recommendations. In our model, we should input global
representation as the initial POI representation through the
learning process.

Intuition 2: Time-dependent dynamic: Unlike other meth-
ods with a fixed embedding for POI representation, we explore
the insights on POIs’ time-dependent dynamic functions. We
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Fig. 3. An overview of learning dynamic POI representations and explainable Top-k POI recommendation via proposed model ToP.

argue that the temporal user-POI graph built from check-in
triplets are different at different time. Along this line, the
representation of POI should be dynamic at different time.
We need to capture the varying of POIs’ functions and learn
explainable representations.

1) Global Representation Learning: We first analyze the
POI-POI graph: there exists two special relations except for
the normal check-in relations: 1) circle visit: users may visit
from p1 to p2 and return from p2 to p1, which means (hp1 ,
r, hp2 )=>(hp2 , r, hp1 ), it is a symmetry relation. 2) combine
visit: users may visit p3 passed by p1 and p2, which means
(hp1

, r1, hp2
)∧(hp2

, r2, hp1
) =>(hp1

, r3, hp3
), r3 is a

composed relation of r2 and r1. Existing knowledge graph
embedding models, such as TransE [20], TransD [21] cannot
achieve a satisfying result according with the special relations
above in a graph.

To learn the global representations from the POI-POI graph,
inspired by RotatE [25], we propose structural RotatE (sRo-
tatE) as the knowledge graph embedding method. Motivated
from Euler’s identity eiθ = cos θ + i sin θ, sRotatE model
maps the entities and relations to the complex vector space and
defines each relation as a rotation from the source entity to the
target entity. In our proposd model, given a POI-POI graph
GP = (V P , EP ) with triplets (hp, rp, tp) (hp, tp both are
POIs’ global representations which can be switched according
to the relations), we expect that tp = hp ◦ rp, where hp,
tp ∈ Ck are the embeddings and ◦ denotes the Hadamard
(element-wise) products. Specifically, for each dimension i of
embeddings we expect that:

tpi = hp
i r

p
i , (1)

where hp
i , r

p
i , t

p
i ∈ C and the modulus |rpi | = 1. It turns out

that this simple but useful operation can effectively model
all the three relation patterns: symmetric/antisymmatric, in-
version, and composition. For example, if a relation r is
symmetric (circle visit), each element of r, i.e. ri should only
satisfy ri = e0/iπ = ±1; if r3 is a combination of other
two relations r1 and r2, r3 should only satisfy r3=r1 ◦ r2
(r1 = eiθ1 , r2 = eiθ2 , r3 = eiθ3 , and θ3 = θ1 + θ2).

According to the above definitions, for each relation
(hp, rp, tp) in POI-POI graph, we define the distance function:

dr = (hp, tp) = ∥hp ◦ rp − tp∥ . (2)

Negative sampling has been proved quite effective for both
learning knowledge graph embedding [26] and word embed-
ding [27]. To learn the representations, we need to minimize
the distance of positive relations (hp, rp, tp), and maximize
the negative ones. In our proposed model, we employ a
loss function with negative sampling as [25] for effectively
optimizing distance-based models:

Lp=− log σ(τ1−dr(hp, tp))−
nn∑
i=1

1

k
log σ(dr(ĥ

p

i , t̂pi )−τ1), (3)

where τ1 is a fixed margin, σ is a sigmoid funtion. (ĥ
p

i , t̂pi ) is
th i-th negative relation, and nn is the negative sample number.
Different from RotatE, for dynamic POI representation learn-

ing, we add two structural restrictions:
k∑

i=1

hp
i = 1,

k∑
i=1

tpi = 1

to accelerate the processing and avoid overfitting.
After this processing, we can get the global representation

pg ∈ Ck for each POI category.
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2) Temporal Dynamic Representation Learning: To learn
temporal dynamic representations from a set of user-POI
graphs, we need to measure the change of POIs’ functions over
time explicitly and also the interpretability of representations.
To solve the problem, we add time restrictions for sRotatE.

We restrict the dynamic POI representation pt with attention
weight vector w as the following form:

pt = wt ⊗ pg = wt
1pg

1 + wt
2pg

2...w
t
spg

s

= wt
1


pg11
pg12
...
pg1k

+ wt
2


pg21
pg22
...
pg2k

+ ...wt
s


pgs1
pgs2
...
pgsk

 ,
(4)

where s is the category number of POIs, k is the embedding

dimension.
s∑

i=1

wt
i = 1. With this form, our model can reveal

the dynamic of POIs’ functions by analyzing the weight
vector w. Note that at the beginning of this processing, the
initialization of POI weight vectors should be one-hot style
because all the POIs have their own category information. e.g.,
win of a hotel is initialized as [0-restaurant,1-hotel,0-bar]. And
after dynamic POI representation learning for time t, wt could
be [0.1, 0.2, 0.7], which reveals that this hotel changes to a
bar at time t.

Given a c set of temporal user-POI graphs GT
t1 , G

T
t2 ...G

T
tc ,

we can apply sRotatE on each user-POI graph at time t, like
we did on POI-POI graph:

dr = (ht, tt) =
∥∥ht ◦ rt − tt

∥∥ , (5)

Lt=− log σ(τ2−dr(ht, tt))−
nn∑
i=1

1

k
log σ(dr(ĥ

t

i, t̂ti)−τ2), (6)

where τ2 is a fixed margin, σ is a sigmoid funtion. (ĥ
t

i, t̂ti)
is the i-th negative relation, and nn is the negative sample

number,
k∑

i=1

ht
i = 1,

k∑
i=1

tti = 1.

With these loss functions on each user-POI graph at time c,
we can get the temporal dynamic representations p1, p2...pc

∈ Ck, which are the input of the recommendation model.

C. Topic Zone Embedding

In this section, we explore the zone effect on POI rec-
ommendations. For POI recommendations, the spatial effect
is important for candidate filtering and recommend methods,
and some existing models have done some effective work on
spatial effect. However, we argue that it is still insufficient: 1)
Candidate selection problem: Existing models usually utilize
a radius as the POIs’ candidate metric. As shown in Figure
4, they set a radius r to be 100 meters from POIs, and
only recommend these POIs to the users within the radius.
Recommendation models may be confused or misled, when a
user is not covered by any POI centered circular areas or a user
is just located in the intersecting region of several POI centered
circular areas. 2) Ignoring road networks: Some models split
the map with grids and consider the effect between grids [28],
[29]. This is also limited by ignoring connections between

Fig. 4. (a) is the basic map with POIs. (b) (c) indicate the limitations of
traditional POI recommendations. In (b), for u1, no POI is selected as his
candidates; for u2, models are confused by choosing p3 or p4 for u2. In
(c), models ignore the road network between grids. In (d), we consider the
road network and recommend POIs with different zone effect (different edge
colors).

grids. In the real-world, locations are split naturally by road
networks. Without considering the road networks, the neighbor
grids’ spatial effect is not convincing.

To solve the problems, we propose topic zone embedding
(TZE), which considers the road network in the real-world and
recommends POIs with zone effect. In TZE, we divide the map
with the road networks and learn the embeddings of each zone
from the POI distributions and historical check-in data. TZE
has some advantages: the model splits the map into no-overlap
subsections (zones) according to the road networks, where
all the users will be covered and only covered by one zone,
which solves the candidate selection problem; meanwhile,
because the zone has its function attributes represented by
its embeddings, the POIs are enhanced or weakened in each
zone, which leads to an accurate recommendation (as shown in
Figure.4 (d), p4 should be recommended to u2 rather than p3 at
this time because the zone embedding is yellow, which means
the zone’s attribution matches p4’s function, thus enhances p4).

In TZE, we first split the map with road networks with
ARCMAP, which is the map editing tool to extend and
correct the selected roads and divide the city areas into fine-
grained natural zones (shown in Figure.5(a)). Inspired by the
probabilistic latent topic model in text analysis, we formulate
TZE as follows:

Given a zone set z1, z2,... zc, and POIs in each zone,
TZE learn zone’s embedding from two aspects: temporal zone
relations and spatial zone relations. We first define POI pair:
a POI pair < pk,pe > is two POIs which are both checked by
one user at time t and t ± 1, respectively. A user’s check-
in historical data (p1, p2, p3,...pk...) can be treated as a
combination of many POI pairs (< p1,p2 >,< p2,p3 >...).
TZE extracts the temporal zone relations:

TCt
ij =

∑
pk∈zi

∑
pe∈zj

(
pt
k

)T
pt±1
e , pk, pe ∈< pk, pe >, (7)

where p is the POI’s dynamic representation learned in TKGE,
pt±1 is the previous or next check-in of one trajectory of a
user. In this way, TCt

ij measures the time correlation among
zone zi and zj .
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We define spatial neighbor zones: if two zones zi and zj
share two or more zone edges, they are spatial neighbor zones,
zi ∈ Nzj . For spatial zone relation, TZE model utilizes the
statistic of historical check-ins:

scij =
∑
pk∈zi

∑
pe∈zj

log(
#(pk, pe) · |L|
#(pk) ·#(pe)

), zi ∈ Nzj , (8)

where #(pk, pe) denotes the frequency of POI pair < pk, pe >
occurence. #(pk), #(pe) denote the frequency of single
check-in on pk and pe, respectively. |L| is the ratio of
< pk, pe > from all POI pairs. Considering the noise problem
and negative sampling, we utilize SCij to measure spatial zone
relations as:

SCij = max(
∑

pk∈zi

∑
pe∈zj

log(#(pk,pe)·|L|
#(pk)·#(pe)

· 1
nk

), 0)

= max(
∑

pk∈zi

∑
pe∈zj

log(#(pk,pe)·|L|
#(pk)·#(pe)

)− log nk, 0))
, zi ∈ Nzj ,

(9)
where nk is the negative sampling number.

We utilize temporal zone relation TCt
ij and spatial zone

relation SCij to build zone relation triplets. Considering TCt
ij

and SCij jointly, we formulate spatio-temporal zone relations:

rz = αTCt
ij + (1− α)SCij , (10)

where α is a spatio-temporal weight. Hence, we can achieve
a zone-zone graph with triplets (hz, rz, tz).

Finally, we learn zone embedding from this zone-zone graph
with sRotatE:

Lz=− log σ(τ3−dr(hz, tz))−
nn∑
i=1

1

k
log σ(dr(ĥ

z

i , t̂zi )−τ3),

(11)
where τ3 is a fixed margin, σ is a sigmoid function. (ĥ

z

i , t̂zi )
is the i-th negative relation, and nz is the negative sample
number. Specially, we restrict z like we did on dynamic POI
representation z = wz ⊗pg , same as Eq.4, and achieve a zone
weight vector wz for each time t.

D. ToP for Explainable POI recommendation

1) Short time-term and long time-term POI recommenda-
tions: After we get global POI representation pg , dynamic
POI representation pt and zone embeddings zt, ToP model
can make an explainable recommendation for different time t.
Specifically, ToP can achieve two different time-term recom-
mendation tasks:

Short time-term POI recommendation: For POI recommen-
dation in the same time period t, we employ knowledge
embedding based recommendation model [30] to give recom-
mendations with zone effect. Note that in this task, POIs’
representations are different from initializations, but stable
during the recommendation processure.

Given user’s check-in location pu at time t, we can apply
the following function to get the accurate representation of
users’ potential next check-in POI:

ps
rec = pu ◦ rt, (12)

where pu is the POI representation of pu at time t, rt is the
POI-POI relation at time t. Note that we utilize a set of time-
dependent vectors to represent the dynamic function of POI,
but at each time the representation is stable. We select the
zone where pu locates, and its neighbor zones as candidate
zones, calculate the similarity between ps

rec and ps
can:

sim(ps
rec,ps

can) = |ps
rec,ps

can|E , p
s
can ∈ zu ∪Nzu , (13)

where ps
can is the candidate POI pscan’s representation, and

pscan locates in zu or zu’s neighbour zones. |∗|E is the
Euclidean distance of *.

Long time-term POI recommendation: For POI recommen-
dations in the different time period t and t̃, we notice that the
POIs’ functions are dynamic over time, which reveals the time
effect; and the candidate should be more than which in short-
time term POI recommendation, which is under the spatial
restriction. So, the user’s potential next POI’s representation
for long-time term recommendation is:

pl
rec = pu ◦ rt̃. (14)

Note that we use POI-POI relation rt̃ to replace rt in
Eq.12. Then we consider spatial restrictions when computing
similarity, which adds candidate zones according to the time
span (t̃− t):

sim(pl
rec,pl

can) =
∣∣pl

rec,pl
can

∣∣
E
, plcan ∈ zu ∪N t̃−t

zu , (15)

We sort the similarity in ascending order and make a Top-K
POI recommendation with short time-term, or long time-term
restriction.

2) Zone-enhanced explainable ranking for recommenda-
tions: We add zone effect by computing a ranking score for
each candidate POI pcan in candidate sets as:

score(pcan) =
1

sim(prec,pcan)
+

λ

sim(prec, zpcan
)
, (16)

where λ is the balance weight for the zone effect. If λ=0, it
omits all the zone effects for POI recommendations. zpcan is
the zone embedding for where pcan locates. By this formula, if
the candidate POI is similar as the object user’s potential POI,
and the functions of the zone where it locates is more like the
object user’s potential POI’s function, the candidate POI will
achieve a higher score. By ranking these scores descending,
we can achieve time-dependent zone-enhanced Top-K POI
recommendations.

3) Interpretability: We can give some explainable insights
into recommendations: first, we can analyze the time effect
on POI by computing similarity of its temporal representation
with POI global representations (sim(pt,pg)), and achieve a
clear change of its attributes over time dimension. Hence, the
purpose of a user’s check-in action on POIs at different time
can be achieved, which can explain POI recommendations.
Second, by analyzing zone embedding’s dynamic function
(Eq.10,11), we can also understand the city’s pulse and give
introductions for urban computing.
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V. EXPERIMENT

In this section, we first describe the experimental settings,
including datasets, baselines, and other details. Subsequently,
we conduct extensive experiments to answer the following
research questions:

RQ1: How is the effectiveness of ToP? Can it provide a
competitive Top-K POI recommendation compared with the
state-of-the-art baselines?

RQ2: How does the proposed model enhance the inter-
pretability of POI embeddings? How does this interpretability
benefit the POI recommendation?

RQ3: How do the POIs’ dynamic representations capture
the temporal effect? How does zone embeddings capture
spatial effect?

RQ4: How do the hyper-parameters affect the performance
of ToP? Which are the optimal values?

A. Experimental Settings
1) Datasets and Preprocessing: We self-collect two raw

datasets of Changchun city:
(a) Trajectory dataset: It contains billions of raw trajecto-

ries collected by GPS device in smartphones, from July to
December in 2017. (b) POI dataset: It covers 3,402 POIs with
159 sub-categories of 12 main-categories. We delete the POIs
with less than 200 check-ins in six months and the trajectory
without any mobility in 24 hours as data pre-filtering.

We use the trajectories from 3rd July (Monday) to 9th July
(Sunday), which contains 2,394,096 trajectories, and 2,198
POIs with 68,758,293 check-ins to learn POIs embeddings.
First, we filter the POIs with no check-ins and rebuild two
datasets to validate our algorithm in different scales LeftTop
(longitude, latitude) - BottomRight (longitude, latitude), in-
cluding city scale LT (125.319,43.862) - BR (125.358,43.832)
and region scale LT (125.201,43.977) - BR (125.416,43.777),
which are shown in Figure.5). We spilt a day into 4 time
periods (6 hours for a time period. c=4). We also consider
the check-in diversity between weekdays and weekends. Fi-
nally we use four datasets to validate our model; City-scale
Weekdays (c-wd), City-scale Weekends (c-we), Region-scale
Weekdays (r-wd), and Region-scale Weekends (r-we). The
details of our datasets are shown in Table I.

(a) City-scale dataset (b) Region-scale dataset

Fig. 5. Changchun Datasets with different scales. The blue points are the
POI distribution. The black lines are the road networks. The different colour
are the zones. Note that zone distributions may be dynamic at different time.

TABLE I
DESCRIPTION OF CHANGCHUN DATASETS

Datasets c-wd c-we r-wd r-we
#Users 2,239,529 1,839,685 544,414 321,524
#POIs 2,185 2,193 67 66

#Check-ins 49,716,815 19,041,478 4,138,466 1,501,011
Sparsity 98.9% 99.5% 88.6% 92.9%

2) Baselines: To evaluate our proposed model on POI
recommendations, we compare ToP with several representative
recommendation models, including:

NCF [19] This model is a general framework, which
replaces describing the interaction between users and items by
the inner product with a neural architecture that can learn an
arbitrary function from data. NCF is generic and can express
and generalize CF and MF models under its framework.

GeoMF [14] This model integrates spatial effect in user
geographical regions and its propagation.

RGeoFM [15] This model is a ranking based geographical
factorization method incorporating the spatial-temporal fac-
tors, and give a rank score to make recommendations.

PACE [13] This model builds a word2vec-based architec-
ture to jointly learn the embeddings of users and POIs to
predict both user preference over POIs and context associated
with users and POIs.

KTUP [24] This model especially accounts for various
preferences in translating a user to an item, and then jointly
trains it with a KG completion model by combining several
transfer schemes. We treat POI recommendation as a 1 to N
relation completion problem and solve it with KTUP.

In the experiment, we split the datasets into two non-
overlapping sets: for each user, the earliest 80% of check-
ins are the training set and the remaining 20% check-ins are
testing set. We initialize λ = 0.6 and α = 0.6 for city-scale
data, and λ = 0.7 and α = 0.5 for region-scale data. We
tune all the baselines to the best performance according to
references where they were proposed. All the evaluations are
performed on an x64 machine with Intel E5-1680 3.40GHz
CPU and 128GB RAM. The operating system is CentOS 7.4.

3) Metrics: We evaluate the model performance in terms of
two common ranking metrics: Hit Ratio (HR@N) and Nor-
malised Discounted Cumulative Gain (NDCG@N). Specifi-
cally, HR measures whether the POIs in test datasets show
within the top N in the ranked list, and the NDCG takes the
position of the POIs in test datasets into account and penalizes
the score if they are ranked lower in the list.

B. Overall Performance (RQ1)

We compare our methods with the baseline methods in
terms of two metrics: HR@N and NDCG@N. We give the
general comparison in Table II and Table III. Encouragingly,
it is clear that the performance of our proposed model ToP
is consistently better than all the baselines under different
datasets by a relatively large margin.

Note that RGeoFM and Pace are competitive to our pro-
posed ToP. Then we explore the ToP’s ability to make short-
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TABLE II
PERFORMANCE EVALUATION COMPARED WITH BASELINE METHODS ON HR@N AND NDCG@N (CITY-SCALE DATASETS). ∗ IS THE BEST

PERFORMANCE AND + IS THE BEST PERFORMANCE OF BASELINES.

Dataset Changchun c-wd Changchun c-we
Model NCF GeoMF RGeoFM Pace KTUP ToP NCF GeoMF RGeoFM Pace KTUO ToP
HR@5 0.222 0.231 0.203 0.264+ 0.143 0.273∗ 0.194 0.191 0.231 0.261+ 0.079 0.264∗

HR@10 0.274 0.216 0.254+ 0.250 0.162 0.375∗ 0.234 0.292 0.301 0.311+ 0.161 0.374∗

NDCG@5 0.221 0.220 0.201 0.333+ 0.194 0.401∗ 0.195 0.222 0.234 0.323+ 0.103 0.377∗

NDCG@10 0.179 0.274 0.231 0.301+ 0.131 0.333∗ 0.164 0.194 0.222+ 0.213 0.089 0.249∗

TABLE III
PERFORMANCE EVALUATION COMPARED WITH BASELINE METHODS ON HR@N AND NDCG@N (REGION-SCALE DATASETS). ∗ IS THE BEST

PERFORMANCE AND + IS THE BEST PERFORMANCE OF BASELINES.

Dataset Changchun r-wd Changchun r-we
Model NCF GeoMF RGeoFM Pace KTUP ToP NCF GeoMF RGeoFM Pace KTUO ToP
HR@5 0.197 0.214 0.297+ 0.291 0.098 0.334∗ 0.127 0.131 0.232 0.264+ 0.101 0.289∗

HR@10 0.211 0.472 0.465 0.513+ 0.201 0.573∗ 0.313 0.421 0.444+ 0.397 0.201 0.471∗

NDCG@5 0.333 0.354 0.397 0.421+ 0.201 0.520∗ 0.214 0.379 0.423+ 0.411 0.272 0.483∗

NDCG@10 0.231 0.377 0.411∗ 0.400 0.132 0.499∗ 0.222 0.214 0.402+ 0.311 0.203 0.478∗

Fig. 6. Comparison of short-term (tc, c = 0) and long-term (tc, c = 1, 2, 3)
POI recommendations with baselines.

term (tc, c = 0) and long-term (tc, c = 1, 2, 3) POI recom-
mendations, compared with RGeoFM and Pace on region-
scale datasets (weekdays) in Fig.6. The performance of RGe-
oFM and Pace recedes sharply when making the long-term
recommendation. Because ToP considers the POIs and zones
dynamic attributes, it can maintain stable performance for both
short and long time recommend scenarios.

C. Interpretability of POI dynamic functions (RQ2)

We explore the interpretability of POI dynamic functions.
To take insights into POI representations learned by ToP, we
visualize the attention weight w of two POIs at different time
through weekdays and weekends. As shown in Fig.7, p1 is
with label Cafe in POI category data, so the initialization of
w is one-hot style where the dimension Cafe is set to 1, the
other dimensions are set to 0. Then we apply our proposed
model ToP on p1, to learn the dynamic POI representations. On
weekdays, the most important features of p1’ representations
at different time t are Living, Office, Finance, and Public,
which reveals that p1 should be a cafe that locates in a
office building, and users often visit this location for work on
weekdays. However, at weekends, the most important features
change to Leisure, Cafe, Media, and Public, which reveals
that there exists many entertainments among p1 and users visit

Fig. 7. Visualization of dynamic POI representations through weekdays and
weekends. The color indicates the importance of dimensions in vectors.

this location for leisure and entertainment at weekends. To
validate our insights, We check the location of p1 and find that
there is a Wanda Plaza around p1. The users often visit Wanda
Plaza for work on weekdays and entertainment at weekends,
which is consistent with our inference from dynamic POI
representations. We can also see the dynamic from p2, and
many other POIs with our proposed model.

With these insights, we can give explainable recommen-
dations. For example, if users are in the zone near p1 on
weekdays at time t1, we should recommend some workplaces
for them because p1’ most important feature at t1 is office.
While if users are in the zone near p2 on weekends at t2,
we should give recommendations about finance or business
instead of shops, according to the p2’ dynamic representations.

D. Effect of spatial/temporal factor (RQ3)

We explore the effect of spatial/temporal factors in ToP.
Note that in ToP, we use zone embeddings to capture the
spatial effect and dynamic POI embedding to capture the
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(a) City-scale dataset (b) Region-scale dataset

Fig. 8. Validation of spatial/temporal effect of ToP on HR@N and NDCG@N.

(a) city-scale, weekdays (b) city-scale, weekends

(c) region-scale, weekdays (d) region-scale, weekends

Fig. 9. Visualization of dynamic zone embedding through weekdays and
weekends on city-scale and region-scale data at a time period.

temporal effect. Specifically, we build two sub models: No-
Zone enhanced ToP (NZ-ToP), which ignores the zone em-
beddings in Eq.16. And No-Dynamic POI representation ToP
(ND-ToP), which uses global POI representation pg to replace
pt. The results are shown in Fig.8. The great performance
improvement over NZ-ToP and ND-ToP indicates the effect
of spatial/temporal factors in ToP.

Moreover, according to the zone’s dynamic embeddings
learned by ToP, we explore the dynamic of zone’s function
through weekdays and weekends on city-scale and region-scale
data, as shown in Fig.9. Note that we merge the zones with
similar embeddings. From Fig.9(a), 9(b), we can find that the
zone’s embeddings on city-scale datasets are different between
weekdays and weekends at the same time, which reveals the
necessity of TZE in ToP for POI recommendations. While
in the lower part of Fig.9(c), the blue zone (weekday) is an
office function zone according to the embeddings learned by
TZE, while it changes to a purple zone (weekend) which is a
leisure zone. When validating this pattern in historical check-
ins, users would work in this zone on weekdays and rest for
fun at weekends, which inducts the recommendations. As a
result, the dynamic of zone’ functions also gives explanations
for users’ check-in actions.

E. Parameter Analysis (RQ4)

We explore the effect of ToP’s hyperparameters λ and α
on region-scale data. As shown in Fig.10. Note that the best
performance of HR@10 (weekdays) is achieved when λ = 0.3

(a) region-scale, weekdays (b) region-scale, weekends

(c) region-scale, weekdays (d) region-scale, weekends

Fig. 10. Analysis of hyperparameter λ and α.

and α = 0.4 and NDCG@10 (weekdays) when λ = 0.4 and
α = 0.5. While at weekends, ToP achieves best HR@10 when
λ = 0.2 and α = 0.5, NDCG@10 when λ = 0.1 and α = 0.5.
Note that α is relatively stable, and the smaller λ achieves
better performance at weekends. The reason is that the users’
check-in actions are regular on weekdays, where a larger λ can
enhance the zone effect and improve the performance. While
at weekends, users’ check-in actions are more irregular, where
the POI’s dynamic representations play a more important role
for POI recommendations.

VI. CONCLUSION

In this paper, we study the effect of POI’s dynamic functions
on POI recommendations. We proposed an end-to-end knowl-
edge graph embedding recommendation framework, called
ToP, to tackle this dynamic function learning problem for
POIs. By considering the time, space, and zone effects com-
prehensively, ToP can add interpretability into users’ check-in
actions and make an explainable POI recommendation. We
conducted extensive experiments to demonstrate the effective-
ness of our proposed framework on city-scale and region-scale
data, and give a discussion about the interpretability of ToP
and its superior performance compared with the state-of-the-
art baselines.
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