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Abstract—Invariant user preference learning is a core task
in recommender systems. Accurately modeling user preferences
is crucial, as it directly impacts the quality of recommen-
dations. However, heterogeneous user preferences in feedback
data often exhibit mixture distributions, which obscure invari-
ant preferences and introduce bias. Existing methods typically
address this issue by partitioning feedback data into multiple
environments and learning invariant preferences across them.
Nonetheless, these approaches often lack theoretical guarantees
for environment construction and fail to capture the dynamic
nature of user preferences across different environments. Along
these lines, we propose a novel framework, Invariant and
Environment-specific Preferences for unbiased recommendation
(IEPref). IEPref leverages auxiliary information as a reliable
signal to guide the environment classifier in partitioning the
environment, thereby enabling the learning of more stable
and generalizable user preference with theoretical guarantees.
Additionally, we design environment-specific proxy modules to
capture context-dependent preference patterns unique to each
environment. The environment classifier assigns each user-item
interaction to its corresponding latent environment, and both
invariant and environment-specific preferences are integrated
for recommendations. Extensive experiments on five real-world
datasets demonstrate that IEPref achieves superior performance
over existing baselines, effectively mitigating recommendation
bias while preserving personalized modeling capabilities.

Index Terms—Recommender Systems, Causal Inference, In-
variant Learning, Debiasing.

I. INTRODUCTION

With the rapid growth of online information, recommender
systems (RSs) have become essential for alleviating informa-
tion overload on platforms such as e-commerce, entertain-
ment, and social media [1]. By analyzing users’ historical
interactions [2], RSs identify and prioritize relevant content
to support efficient information access. Despite significant
advances in content-based recommendation, collaborative fil-
tering, and hybrid approaches, most existing methods rely on
the assumption that user feedback data is generated from a
single, unified distribution. However, this assumption rarely
holds in real-world scenarios. In practice, due to spatial [3] and
temporal heterogeneity, as well as the operational mechanisms
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Fig. 1: The figure illustrates the comparison between tradi-
tional invariant recommendation methods and our proposed
approach: (a) Traditional methods typically assume that the
user’s true preference is entirely invariant and treat variations
in preferences as noise induced by the environment; (b) Our
approach, while accurately modeling invariant preferences,
further incorporates environment-specific preferences to better
capture the dynamic nature of user preferences.

of recommender systems (e.g., seasonal changes, regional
differences, climate variation), user interactions are typically
drawn from a mixture of multiple latent distributions. This
mixture structure introduces biases that hinder the accurate
modeling of users’ true preferences.

Recent studies have attempted to address this challenge by
learning invariant preferences across multiple environments.
Notable examples include CausPref [4] and InvPref [5], which
adopt causal invariant learning medthod to capture stable user
preferences that remain robust across varying environments.
However, these approaches face several limitations. First, the
partitioning of data into environments is often heuristic and
lacks theoretical guarantees, resulting in potentially unreliable
representations. Second, focusing solely on invariant pref-
erences overlooks environment-specific user behaviors that
are crucial for personalized recommendation. As shown in



fig 1, conventional approaches (a) treat preference variation
as noise, lacking the ability to dynamically capture context-
aware behaviors. In contrast, our approach (b) interprets pref-
erence variation as environment-specific drift and assumes that
user preferences consist of both invariant and environment-
dependent components.

In this paper, we analyze user-item interactions from
the perspective of causal graphs, which provide guidance
for disentangling latent user preferences into invariant and
environment-specific components. Motivated by recent ad-
vances in invariant representation learning, we propose IEPref
(Invariant and Environment-Specific Preferences), a novel
learning framework. IEPref consists of three main modules: (1)
an Environment Classifier that leverages auxiliary information
(e.g., timestamps) to infer the latent environment of each
interaction, (2) an Invariant Preference (IPref) module that cap-
tures stable user-item preferences shared across environments,
and (3) an Environment-Specific Proxy (EProxy) module that
learns context-dependent patterns unique to each environment
via specialized proxy modules. By combining both invariant
and environment-specific modeling, IEPref enhances recom-
mendation accuracy and robustness.

The main contributions of this work are as follows:

o We analyze the generation process of user-item interac-
tions from the perspective of causal graphs and and dis-
entangle user preferences into invariant and environment-
specific preferences.

« We propose a novel invariant and environment-specific
learning method (IEPref) that collaboratively utilizes aux-
iliary information to learn both invariant preferences and
environment-specific preferences from training data, and
we provide the corresponding theoretical proofs.

e« We conduct extensive experiments on five real-world
datasets, and the results consistently show that our
method significantly outperforms state-of-the-art base-
lines in recommendation performance.

The remainder of this paper is organized as follows: Sec-
tion II reviews the related work. Section III introduces the
preliminaries, problem formulation, and the proposed IEPref
framework. Section IV presents the experimental results and
analysis. Section V concludes the paper and discusses future
research directions.

II. RELATED WORK

In this section, we comprehensively review invariant learn-
ing and unbiased recommendation.

A. Invariant learning

Contrary to the traditional Independent and Identically Dis-
tributed (IID) assumption, invariant learning [6] operates under
the premise that real-world data often originates from multiple
heterogeneous environments, each with distinct underlying
distributions. The primary objective of invariant learning is to
identify stable, causal features that remain consistent across

these varying environments, thereby enhancing model robust-
ness and generalization under distributional shifts. A founda-
tional approach in this field is Invariant Risk Minimization
(IRM), introduced by [7], which seeks to learn a single
predictor that performs optimally across all environments by
enforcing invariance in feature representations.

The theoretical underpinnings of IRM have been rigorously
analyzed by [8], who established the conditions under which
optimal invariant solutions exist, both in linear and nonlinear
settings. Their findings highlight a critical limitation of IRM:
its effectiveness heavily depends on the number and diversity
of available training environments. Specifically, if the number
of environments is insufficient or lacks meaningful heterogene-
ity, IRM may fail to identify truly invariant features, leading
to degraded generalization performance.

To enhance robustness in extreme or limited-data scenarios,
recent work has explored hybrid approaches that integrate
invariant learning with other principles. For example, [9]
combines IRM with the Information Bottleneck (IB) principle,
leveraging IB’s ability to compress noisy or irrelevant features
while preserving predictive information. This hybrid method
demonstrates strong performance even when invariant features
alone do not fully capture label-relevant information, offering
a more flexible solution for real-world applications.

A practical challenge in invariant learning is the need
for predefined environment labels, which are often costly
or infeasible to obtain. Addressing this, [10] proposes an
automated framework that infers optimal environment parti-
tions directly from data, enabling domain-invariant learning
without manual annotation. Meanwhile, [6] approaches the
problem from a heterogeneity perspective, introducing a novel
clustering method to group data into meaningful environments
that facilitate invariant feature extraction.

B. Unbiased recommendation

The observational nature of user behavior data inherently
introduces various biases [11], including but not limited to
selection bias, popularity bias, and exposure bias. These biases
arise from the fact that observed interactions are influenced
by external factors such as system recommendation [12], item
visibility, and user self-selection, rather than reflecting users’
true preferences. To address these challenges, debiasing meth-
ods aim to bridge the gap between the biased observational
data and the underlying unbiased data distribution, ensuring
that recommendation models learn more accurate and fair
representations of user preferences.

One prominent approach to debiasing is based on Inverse
Propensity Scoring (IPS), which adjusts the weights of ob-
served interactions to align with the unbiased distribution. For
instance, [13] and [14] leverage IPS to correct selection bias
by reweighting training samples according to their propensity
scores. Similarly, [15] employ inverse probability weighting to
mitigate popularity bias and positivity bias, ensuring that less
popular or less frequently exposed items receive appropriate
consideration. [16] further extend this idea by introducing a



dual-IPS framework, where two propensity-weighted predic-
tors generate pseudo-labels to refine the final recommendation
model.

Beyond propensity-based methods, another line of research
explores debiasing through information-theoretic principles.
[17] propose a framework based on the Information Bottle-
neck, which distills essential user preference signals while
filtering out spurious correlations induced by bias. [18] fur-
ther enhance this approach by imposing information-theoretic
constraints to balance predictions between biased and unbiased
data, promoting robustness against confounding factors.

Recently, invariant learning has emerged as a promising
direction for unbiased recommendation, focusing on learning
user preferences that remain stable across different envi-
ronments. For example, [19] leverage invariance and disen-
tanglement principles to isolate true user preferences from
popularity-driven interactions, effectively filtering out bias.
Similarly, [5] adopt the heterogeneous risk minimization
framework. [6] partitioning data into multiple environments
to learn invariant representations that generalize across differ-
ent bias conditions. However, while these methods improve
recommendation fairness, they often lack explicit constraints
to account for the dynamic nature of user preferences.

III. PROBLEM STATEMENT AND METHODOLOGY

Considering the dynamics of preferences, we first analyze
the data generation process in the recommendation scenario.
We then elaborate on the proposed framework of invariant and
environment-dynamic preferences in detail.

A. Preliminary

Let U = {u1,u2, .. 71,L‘U|} and V = {111,’02, o 7'U\V\}
denote the set of users and items, respectively. The user-
item interaction data is represented by a binary matrix y €
RIVIXIVI] where each entry y,,., = 1 indicates that user u has
interacted with item v, and y,, = 0 otherwise. For brevity,
we use u, v, and y,, , to denote the user, item, and interaction
indicator, respectively.

B. Causal View of Recommendtion Task

The causal graph [20] that generates the observed user-
item interactions can be represented in fig 2, where the edges
indicate the direction of causal influences. The details are
introduced as follows.

e U denotes the user, which contains the user’s behavior
history and profile (e.g. age and occupation).

o I denotes the item, which contains the history of feedback
from users and the profile (e.g. price and category).

o Pj denotes the user’s invariant preference, which is the
user’s lowest level of preference and does not change with
the environment.

o Ppg denotes the user’s environment-specific preferences,
and different environments have different environmental
preferences.

o E denotes a set of environments, the one that really
matters is the one to which the user and the item belong.

Fig. 2: Illustrates causal graph of data generation in recom-
mendation. U denote the user, I denote the item, and E denote
the environment. Py denotes the user’s invariant preference,
and Py denotes the user’s environment-specific preference.
The user-item interaction Y is jointly determined by P; and
Pg.

e Y denotes the observed user-item interaction, which is
determined by invariant preferences P and environment-
specific preferences Pg.

The interaction Y between the user and the project is deter-
mined by invariant preferences P; and environment-specific
preferences Pp. The dynamics of Py is reflected in the
number of environments E, which is an environment set
{e1, 2, ...,e3}, and the effect of E to Py is actually the effect
of e; on Pg in the environment set.

Traditional debiasing methods [13] exploit correlation to fit
data. The correlation between user-item and interaction have
two sources: static causal relationships (P to Y) and dynamic
causal relationships (Pg to Y). While traditional debiasing
methods may also learn dynamic relationships, they do not
take the influence of the environment E into account, ignoring
biases caused by different environments. Recent invariant
learning methods [5], [21], although they consider the influ-
ence of the environment E, only account for static causal re-
lationships (P to Y), neglecting dynamic causal relationships
(Pg to Y). Compared to traditional debiasing methods, they
may remove some biases due to different environments to a
certain extent. However, because they do not consider dynamic
causal relationships (Pg to Y), their predictions lose accuracy.
Additionally, their methods of partition environment [22] lack
constraints. Based on this, we propose a new invariant and
environment-specific preferences framework according to the
defined causal graph to address the debiasing problem. We
define the debiasing problem as follows:

Problem 1. (Recommendation Debiasing Problem). Given the

observational training data D, jL) e

{5, uj,15) Y, and
test data Dy = {(y;,u;‘- ,z;)}?zl where Dy, is collected
from multiple environments e, € €, and the test sample
{(yj,u}, i)} comes from the environment ey following the
distribution P, (Y,U,I) of environment €y, where €,y €
eoain- For all e1,e5 € €, e1 # ea <— P, (Y,UI) #

P.,(Y,U,I). The goal of reccommendation is to infer the user’s
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Fig. 3: illustrates the overall framework of IEPref, which
consists of three main modules: the Environment Classifier
leverages auxiliary information (e.g., time, timestamp) to infer
the latent environment of each interaction; the Invariant Prefer-
ence (IPref) module models user preferences that remain stable
across different environments; and the Environment-specific
Proxy (EProxy) module captures user preferences specific to
each environment. Finally, the model integrates both types of
preferences to make more accurate predictions of user-item
interactions.

preference under the environment of the test data based on
the training data, and leverage this information to accurately
predict the user’s feedback on items.

C. Proposed Framework

In order to solve the above debiasing problem in recom-
mendation, we propose a debiasing framework named IEPref,
which consists of three key modules.

1) Environment Classifier module: We consider that there
exists additional auxiliary information A € R% is associated
with (U, I,Y), we propose a Classifier that leverages auxiliary
information A for environmental inference, enabling invariant
learning from the heterogeneous dataset D without environ-
ment partition. Furthermore, in the subsequent subsections, we
establish the necessary and sufficient conditions for identifying
invariance and provide the theoretical foundation for utilizing
auxiliary information to perform environment partitioning.

We aim to learn a function h(-) : R% — RX that assigns
data to K environments.let 4(*)(-) denote the k-th entry of h(-),
with h(A) € [0,1]* and 3=, h(®)(A) = 1.We set up two linear
layers in the classifier to learn the environment to which the
samples belong:

h(A) = o (ha(h1(A))), ()

where hq,ho are linear layers, o is a softmax function.

2) Invariant Preference module: In order to model the
invariant preferences of users across heterogeneous environ-
ments, we introduce an Invariant Preference module. This
module captures invariant preferences based on the hetero-
geneous environments classified by the previously discussed

environment classifier. Specifically, We use u"* € R’ and
i"" € R to denote the invariant embeddings of user u and
item ¢, respectively. Given user u and item ¢, the invariant
preference m’™’ of v for item 4 is modeled as Hadamard

u,t ’
product of embedding u** and i'"":
_ uinv ® iinv, (2)

mnv

inv
U,

m

the invariant preference m;”f captures the underlying user
preferences across different environments, characterizing the
consistent interaction between user v and item v. From this,
the feedback yfﬁf is computed, which solely depends on the
invariant preference, reflecting the stable preference of user u
towards item i:

Yuri = p(m7), 3)
where ¢ is the feedback function. then we define a cross-
entropy loss function L;,, for mfj}f to capture invariant
preferences:

Liny = E(y?]}zva yu,i)' 4

To effectively capture the invariant user preference that
is invariant across different environments, we need to en-
sure that the invariant preference M maximally capture
invariance, how can we measure this? Inspired by IRM,
assuming the environments have been given by a classifier
h(-) , the measurement of the invariance of M transforms
into ensuring that the invariant preference M is optimal in
all environments. To measure the optimality of M in the
k-th environment, we can fit an environment-specific optimal
preference M}"”on the data from that environment. If M}
achieves a smaller value, then we know that M is not
optimal in this environment. We can further train a set of
environment-specific optimal preferences {M""}X | to mea-
sure whether the invariant preference M’ is simultaneously
optimal in all environments. Thus,we give its invariant penalty
term as follows:

K
Linmpenatry = M (A)((M™), V)
k=1
= (A eM).Y)], ()

next, we consider how to learn the partition function h(:). A
good partition function should generate environments among
which the environment-specific prefenece exhibit instability,
so that there is a large penalty if M extracts environment-
specific prefenece. Thus, we seek for an environment partition
that maximizes the invariance penalty. The overall framework
is provided below:

L(p, M Mi"”, e M?C"”, h),
(6)

since the above formula is challenging, we replace the invari-
ant penalty term with its first order approximation. Specifically
we replace it with the following formula:

min _max
©, M b (Minv,.. Minv}

K
Liny—penatty = »_ [|Vagine b8 (A) (M), Y[ (7)
k=1



3) Environment-specific Proxy module: In the IPref module
we got the invariant preferences Py in the causal graph,
in this module we need to get their environment-specific
preferences Pg. Similar to the IPref module, we use ug™” €
RE and if"" € R’ to denote the k-th denote the environment-
specific embeddings of user u and item i for the k-th envi-
ronment, respectively. Similarly we define the environment-
specific preference m{"*" for the k-th environment we assign
an environment preference to each environment individually:

®)
9

the environment-specific preference M°™ captures prefer-
ences specific to each environment through data obtained from
the classifier for each environment, then we can compute final
feedback yy, ; of the user u on item i, that is obtained from a
combination of invariant preferences and environment-specific
preferences:

env

__ ,env senv
mp =u, O,

Me™ — {m?w}f:h

inuv

yi,i = w(mu,l : mznv)7 (10)

where ¢ is the feedback function.

To achieve precise modeling of environment-specific prefer-
ences and facilitate environmental classification, we introduce
a set of dedicated preference proxies {p;}_; , where each
proxy p; corresponds to the ¢-th environment. The proxies
serve as reference points that guide the learning process for
each environment, ensuring that preferences are effectively
captured. We encourage samples from each environment to
move closer to their corresponding proxy while being repelled
from proxies associated with other environments, thereby
ensuring that preferences within each environment converge
toward their designated proxy. To formalize this approach, the
metric loss is defined as:

exp(7y - Sik)
L =—1lo > (D)
cross 2 <exp(’y “sik) + 2 exp(y - 32]))

where s;;, denotes the similarity between the environmental
data points in environment ¢ and their corresponding prefer-
ence proxy, v denotes the temperature coefficient. Given the
training samples {u{",i;""} in k-th environment, along with
their environment-specific preferences m{"’, we optimize
the environment proxy p; via the following objective. This
optimization ensures that the learned proxy closely represents

the preference structure of each environment:

env

1 exp (sim(m{™, py.))
Ly=——)> log| — — , (12)
i=1 Zj:l exp (sim(mg"™", p;))

where N denotes the number of samples in the %k th enviro-
ment, and sim denotes cosine similarity.

To capture both invariant and environment-specific prefer-
ences, we define the overall loss function L;,¢q; as:

Liotal = e(yi,i7 yu,i) + Leross + £pa (13)

where /¢ is the cross-entropy loss between the predicted feed-
back yf“ and the observed feedback ¥, ;. Finally, our objective
is to minimize the following overall loss, which combines
the contributions from invariant learning, environment-specific
preference modeling, and the regularization of proxy learning:

minl = actotal + ﬁﬁinv + )\Einvfpenalty7 (]4)

where «, 8, A\ are hyperparameters controlling the trade-offs
among different components of the loss.

D. Proof

We explain why we need to use auxiliary information from
a theoretical point of view. We start with a simple but general
setting: P = [Pr,Pg], M is the preference filter, and ¢ is a
general non-linear function H(-,-) is the cross-entropy loss.

Assumption 1. For a given invariant preference model
and any constant € > 0, there exists ¢ € ® such that
E[H (p(M (u,1),Y)] < H(Y|M(u,i)) + e

Assumption 2. [f the invariant preference violates the invari-
ance constraint, adding another environment-specific prefer-
ence would not make the penalty vanish, i.e., there exists a
constant § > 0 so that for environment-specific preference
P,, C Pg and any preference P, C P, H(Y|P.,, P2) —
H(Y|h(A), P.,, Py) > 0(H(Y|P.,) — H(Y|h(A), P.,).

Assumption 3. For any distinct preference Py, P>, we have
the conditional entropy that H(Y |Py, P2) < H(Y|Py) — ~
with fixed v > 0.

We next present our sufficient conditions to identify invari-
ant preference.

Condition 1. (Invariance Preserving Condition) Given in-
variant preference Py and any function h(-), it holds that
H(Y|h(A)) = H(Y|Py).

Condition 2. (Non-invariance Distinguishing Condition) For
any environment-specific preference P., € Pg, there exists a
function h(-) and a constant C > 0 such that H(Y |P,,) —
H(Y|P.,,h(A)) > C.

Condition 1 requires that invariant preference should remain
invariant with respect to any environment partition induced
by h(A). Otherwise, if there exists a partition where an in-
variant preference becomes non-invariant, then this preference
would induce a positive penalty. Condition 2 implies that
for each environment-specific preference, there exists at least
one partition so that this preference is non-invariant in the
split environments. If a environment-specific preference does
not incur any invariance penalty in all possible environment
partitions, we can never distinguish it from true invariant
preference.

Theorem 1 (Identifiability of Invariant Preference). With the
Assumptions 1-3 and the Conditions 1-2, if ¢ < %
and \ € [%], then we have L(M,,) < L(M), where
H(Y) denotes the entropy of Y. Thus, the solution to Equation
6 identifies invariant preference.



IV. EXPERIMENTS

In this section, we conduct extensive experiments to answer
the following questions:

e RQI: How does the IEPref perform in comparison to
other debiasing strategies?

« RQ2: To what extent do the different modules contribute
to the effectiveness of the IEPref?

e RQ3: Does the IEPref learn true environmental partition-
ing?

A. Experimental Settings

we detail datasets used and baselines compared as follows:

1) Dataset: We evaluate the effectiveness of the proposed
model on three widely-used real-world datasets: the KuaiRec
dataset [23], the MovieLens dataset' (including MovieLens-
1M, MovieLens-100K, and MovieLens-LatestSmall), and the
MIND dataset?.

For the KuaiRec dataset, the test set adopts a full-exposure
setting, where all users are assumed to be exposed to the entire
item pool during evaluation. For the MovieLens datasets, we
follow the unbiased evaluation protocol proposed in [24],
where the test data is constructed to simulate a realistic
exposure scenario and accounts for 20 % of the total data
volume. Both the KuaiRec and MovieLens datasets contain
not only explicit user ratings on a 1-to-5 scale, but also
interaction timestamps, which we leverage as auxiliary fea-
tures for modeling environment context. Following standard
practice, we consider user-item interactions with ratings > 4
as positive samples, while the rest are either ignored or treated
as unlabeled data.

The MIND dataset is a large-scale news recommendation
benchmark, consisting of news articles and corresponding
user click labels. It records both impression logs and click
behaviors, making it suitable for modeling both exposure and
interaction. During the testing phase, we adopt the public
candidate set of news articles as the item pool for each user.

2) Baselines: We compared the following mainstream rec-
ommendation debiasing methods on the above two datasets:

o IPS [13]: A matrix factorization-based method that ap-
plies Inverse Propensity Scoring (IPS) to adjust for selec-
tion bias. It reweights observed interactions to approxi-
mate the unbiased user preference distribution.

o SNIPS [25]: An improved IPS variant that incorporates
multiplicative control variates, which reduces the variance
of IPS estimates and mitigates overfitting in the learned
propensity models.

o« CVIB [18]: A debiasing method that separates factual
and counterfactual mutual information in the Information
Bottleneck, introducing contrastive loss and confidence
penalty to enhance generalization.

o InvPref [5]: A framework that decomposes user pref-
erences into invariant and variant components across
different environments. Only the invariant part is used for

Thttps://movielens.org/

recommendation to ensure robustness to environmental
shifts.

o Fair [26]: A regularization-based method designed to
reduce popularity bias in learning-to-rank models. It
encourages fairness by penalizing over-reliance on item
popularity signals during training.

¢ MACR [24]: A multi-task learning framework that inte-
grates causal estimation into the training process. It iden-
tifies and neutralizes popularity-induced biases through
counterfactual reasoning during both training and infer-
ence.

o WMF [27]: The Weighted Matrix Factorization model, a
classical method that interprets implicit user behavior as a
combination of preference and confidence, and optimizes
recommendations through alternating least squares.

« EXMF [28]: An exposure-aware matrix factorization
model that treats user exposure as a latent variable, which
is jointly inferred with user preferences to improve the
overall recommendation quality.

3) Evaluation metrics: We measure the performance of
the model using the following metrics. NDCG (Normalized
Discounted Cumulative Gain) is a widely used metric in infor-
mation retrieval and recommendation systems for evaluating
the performance of ranking algorithms. NDCG @K specifically
refers to the NDCG value calculated for the top K results,
indicating the relevance of the top K recommendations. NDCG
combines relevance and rank position, providing a compre-
hensive measure of the ranking effectiveness. The calculation
of NDCG@K involves two main steps: computing DCG
(Discounted Cumulative Gain) and IDCG (Ideal Discounted
Cumulative Gain).

DCGQK

NDCGAK = 5eGak

K
rel;
DCGQK = _—
; logy (i + 1)’

where DCG measures the cumulative gain of a result list,
IDCG is the DCG value in the best possible case where all
relevant results are perfectly ranked and NDCG normalizes
DCG to a [0,1] range, eliminating the effects of varying result
list lengths and total relevance.

Recall@K is a commonly used metric in information re-
trieval and recommendation systems to evaluate the perfor-
mance of an algorithm. It measures the proportion of relevant
items that are successfully retrieved within the top K recom-
mendations.

Rel; N Rec;
Recall @K; = ﬁ
where Rel; denotes the set of items related to user 4, Rec;(x)
denotes the set of recommended items of user ¢ in the first K
positions.



TABLE I: Comparative analysis of debias performance across different models on five benchmark datasets: MovieLens-1M,

100k, LatestSmall, MIND, and Kuairec.

Method | MovieLens-1M | MovieLens-100k | LatestSmall | MIND | Kuairec
‘ NDCG@20 Recall@20 ‘ NDCG@20 Recall@20 ‘ NDCG@20 Recall@20 ‘ NDCG@20 Recall@20 ‘ NDCG@20 Recall@20

MF 0.087 0.081 0.032 0.074 0.041 0.102 0.239 0.479 0.536 0.522
FAIR 0.091 0.083 0.033 0.076 0.046 0.108 0.240 0.480 0.538 0.524
MACR 0.103 0.095 0.036 0.082 0.053 0.113 0.230 0.470 0.539 0.525
WMF 0.101 0.091 0.034 0.076 0.044 0.106 0.254 0.501 0.539 0.523
EXMF 0.093 0.082 0.032 0.072 0.041 0.102 0.246 0.481 0.537 0.522
1PS 0.102 0.082 0.033 0.073 0.046 0.106 0.240 0.482 0.543 0.526
SNIPS 0.104 0.086 0.034 0.075 0.048 0.109 0.241 0.485 0.545 0.525
CVIB 0.085 0.084 0.031 0.072 0.040 0.104 0.240 0.480 0.549 0.528
InvPref 0.089 0.085 0.035 0.077 0.051 0.110 0.253 0.509 0.553 0.539
TEPref 0.108 0.118 0.040 0.086 0.054 0.115 0.252 0.514 0.554 0.542
Improvement +3.8% +24.2% +11.1% +4.9% +1.9% +1.8% -0.4% +1.0% +0.2% +0.6%

B. Performance Comparison(RQ1)

We first compare the ranking performance of IEPref with
a suite of representative baseline models. Table I reports the
NDCG@20 and Recall@20 scores on five widely used bench-
mark datasets: MovieLens-1M, MovieLens-100K, MovieLens-
LatestSmall, MIND, and KuaiRec. The best result for each
metric is highlighted in bold, and the second-best is under-
lined. Our key observations are as follows:

o The result demonstrates that the IEPref model consis-
tently outperforms the baselines regarding Recall and
NDCG across various datasets and evaluation metrics,
indicating its superior ability to recommend relevant next
items to users. Remarkably, IEPref substantially improves
Recall and NDCG compared to the baselines.

o Compared to traditional matrix factorization models such
as MF, WMF, and EXMF, IEPref demonstrates substantial
improvements. This is especially apparent on MovieLens-
100K and LatestSmall.

o Traditional debiasing recommendation algorithms, such
as IPS and SNIPS, often outperform basic matrix factor-
ization (MF) methods, but their effectiveness tends to be
limited to specific datasets. In contrast, invariant learning-
based approaches like InvPref demonstrate strong perfor-
mance across multiple datasets by introducing invariant
preferences.

o IEPref further advances this line of work by incorporating
an Environment-specific Proxy module, which enables
the model to capture dynamic environment-specific pref-
erences while preserving invariant preferences. Compared
to traditional invariant recommendation methods, IEPref
achieves superior recommendation performance.

C. Ablation Study (RQ2)

Table II shows the ablation study of IEPref. We investigate
the impact of both the environment classifier and invariant
preferences (I) on the effectiveness of IEPref. Table II presents
the ablation study of IEPref, where we compare two important
variants: (1) IEPref w/o I (removal of invariant preferences)
and (2) IEPref w/o E (removal of environmental preferences).
Our key observations from this study are as follows:

o The ablation results highlight that when environmental
preferences are removed (IEPref w/o E), the model con-
tinues to outperform InvPref, showcasing the effective-
ness of the invariant learning method that incorporates
additional information. However, the overall performance
is reduced, underscoring the importance of including
environmental dynamics into the model. This indicates
that environmental preferences play a significant role in
capturing dynamic user behaviors and improving predic-
tion accuracy.

e In the case where invariant preferences are removed
(IEPref w/o 1), the model’s performance significantly
deteriorates. This demonstrates that invariant preferences,
which capture stable, long-term user preferences, are
crucial for enhancing the recommendation system. The
results confirm our analysis that invariant preferences
contribute significantly to the overall performance im-
provement, and without them, the model loses a key
component of its predictive power.

o In addition to the ablation study, we further evaluate
the impact of invariant and environmental preferences by
adjusting key hyperparameters: A\, o, and 3. These pa-
rameters respectively control the strength of change pref-
erences, constant preferences, and environmental prefer-
ences. Our analysis of model performance, specifically
with respect to NDCG@ 10, shows that the optimal values
for o and (B are at 10, while the optimal value of A
is 1000. This suggests that the strengths of constant
preferences and environmental preferences are not the
same, and the model achieves the best performance by
balancing between them. This balance ensures that both
stable (invariant) preferences and dynamic (environmen-
tal) preferences are captured effectively, leading to a more
robust and accurate recommendation system.

D. In-depth Analysis (RQ3)

We conducted a sensitivity analysis regarding the number of
environments, as shown in Fig 5 (a). The blue line corresponds
to the full model (IEPref), and the red line represents the
variant without environment modeling (IEPref w/o E). As the
number of environments increases, the performance of IEPref



TABLE II: Ablation Study on MovieLens and Kuairec datasets.

Model | MovieLens | Kuairec
‘ NDCG@20 NDCG@30 ‘ Recall@20  Recall@30 ‘ NDCG@20 NDCG@30 ‘ Recall@20  Recall@30
IEPref w/o 1 0.096 0.101 0.103 0.119 0.526 0.587 0.520 0.641
IEPref w/o E 0.101 0.106 0.112 0.123 0.538 0.593 0.517 0.650
IEPref 0.108 0.112 0.118 0.132 0.554 0.609 0.542 0.675
Improvement +6.9% +5.7% +5.4% +7.3% +3.0% +2.7% +4.8% +3.8%

KuaiRec - NDCG@10

KuaiRec - Recall@10
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Fig. 4: Hyperparametric sensitivity analysis.
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Fig. 5: (a) shows the sensitivity analysis with respect to the
number of environmental variables. (b), (c), and (d) present
t-SNE visualizations of preference representations on the
Kuairec dataset. Specifically, (b) corresponds to our proposed
method, (c) shows the result after removing environmental
proxies, and (d) illustrates the visualization of the InvPref
method.

w/o E improves, but it begins to degrade when the number of
environments becomes excessively large. While the trends for
IEPref and IEPref w/o E are generally similar, a significant
divergence occurs when the number of environments is 4 or
5: IEPref w/o E continues to improve, while IEPref starts to
decline. This suggests that the benefit of modeling preference
variation is not linearly scalable with the number of envi-
ronments, indicating the need for an optimal balance in the
number of environments.

To further illustrate how environment modeling affects user
preference representations, we provide a set of visualizations
on the KuaiRec dataset under different settings:

o When using our proposed IEPref model with environment
modeling enabled (number of environments set to 6
in Fig 5 (b)), we observe a clear separation between
environment-specific preferences in the latent space. This
demonstrates that the model effectively learns and dif-
ferentiates user preferences corresponding to different
environments.

o In the absence of the environment-specific proxy(Fig 5
(c)), the representation of user preferences becomes no-
ticeably more entangled. This suggests that removing the
proxy module weakens the model’s ability to isolate and
model environment-dependent variations in user behavior.

o The visualization from InvPref(Fig 5 (d)), which captures
only invariant preferences, shows that all environments
are collapsed into a shared invariant preference space.
The invariant preference vector lies approximately at the
center of all clusters, reflecting its theoretical invariance.
Interestingly, environment 0 appears to encompass the
entire invariant space, while environments 1-5 effectively
merge into environment 0. This indicates that relying
solely on invariant preferences fails to adapt to the nu-
anced differences among environment-specific behaviors.

V. CONCLUSION

In this paper, we proposed the Invariant and Environment-
speciffc Preferences (IEPref) framework aimed at addressing
the challenges of unbiased recommendation in real-world
scenarios. Traditional recommendation methods often face
diffffculties when dealing with data originating from mixed or
shifting distributions, which hinders their ability to accurately
capture users’ true underlying preferences. To overcome this
limitation, our approach employs causal graph techniques
to explicitly distinguish between invariant user preferences
that remain stable across different contexts and environment-
speciffc preferences that vary depending on dynamic factors.



By leveraging auxiliary information such as timestamps and
contextual signals, IEPref effectively partitions user interac-
tions into distinct environments, allowing the model to learn
both stable and dynamic components of user preferences. This
dual modeling strategy enables more precise and personal-
ized recommendations, as the model can adapt to preference
changes induced by varying environmental conditions without
losing sight of core user interests.

Looking ahead, future work could focus on extending
the IEPref framework in several promising directions. One
potential avenue is to integrate IEPref with other advanced
recommendation paradigms, such as sequential recommenda-
tion and session-based recommendation systems, where user
preferences evolve more rapidly and exhibit more complex
temporal dependencies. Additionally, exploring the application
of IEPref in cross-domain recommendation or multi-modal
recommendation settings could further enhance its generaliz-
ability and practical impact. Finally, investigating more sophis-
ticated environment partitioning strategies and causal inference
techniques may lead to even more accurate disentanglement
of user preferences and improved recommendation quality.
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