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Abstract

Session-based recommendation (SBR) aims to provide users
with satisfactory suggestions via modeling preferences based
on short-term, anonymous user-item interaction sequences.
Traditional single interest learning methods struggle to align
with the diverse nature of preferences. Recent advances re-
solved this bottleneck by learning multiple interest embed-
dings for each session. However, due to the pre-defining
scheme of interest quantity (e.g. the number of interests),
these approaches are deficient in adaptive ability towards
distinctive preference patterns across different users. More-
over, these methods rely solely on the current session and
ignore useful information from related ones. The short-term
property of sessions would magnify the insufficient repre-
sentation issue. To address these limitations, we propose a
Neural Process-based Multi-interest learning framework for
Session-based Recommendation, namely NP-MiSR. To be
specific, our method enables adaptive multi-interest repre-
sentation learning through two complementary mechanisms:
1) Neural Process-based Intra-session interest modeling:
We employ Neural Processes to model the distribution of
interests within a session, where the fixed interest configu-
rations are no longer needed. 2) Cross-session context fu-
sion: We extract interest distributions of similar sessions as
contextual priors to refine the current session’s interest rep-
resentation. Extensive experiments on three datasets demon-
strate that our method consistently outperforms state-of-the-
art SBR approaches with an average improvement of 38.8%.
Moreover, the few-shot learning task reveals that NP-MiSR
achieves a surprisingly favorable efficiency v.s. performance
trade-off where utilizing only 10% of the training data attains
95% of the recommendation performance.

Code: https://github.com/xtdysss/NP-MISR

Introduction
Session-based recommendation (SBR) aims to infer user
preferences based on their interactions within a single ses-
sion and provide tailored item suggestions accordingly
(Ludewig and Jannach 2018). A session typically refers to a
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short-term and time-ordered sequence of user-item interac-
tions, such as consecutive product clicks during one brows-
ing or shopping episode. This paradigm is especially valu-
able in scenarios involving anonymous or new users com-
mon in online platforms, where long-term user histories are
unavailable (Choi et al. 2024).

Existing SBR methods can be divided into two categories.
The first type is the single interest learning model, which
generates a single session-specific embedding to represent
the entire session’s interest over the next item (Wu et al.
2019). However, such a scheme fails to account for the
multi-interest nature on real-world scenarios (Shen et al.
2023). As shown in Figure 1, session S includes two interest
scopes: clothing and electronics. Obviously, these methods
overlook the diverse interests, compress them into a single
interest vector, cause the loss of personality and degrade rec-
ommendation performance.

To address this bottleneck, the second type proposes to
learn multiple interest representations for a single session.
However, these methods have two major limitations: 1) re-
quiring predefined interest configurations, e.g., the number
of interests, which reduces model flexibility and adaptabil-
ity (Lv, Liu, and Xu 2025), and 2) relying exclusively on the
current session while neglecting semantically related ses-
sions, resulting in suboptimal item representation. More-
over, existing multi-interest learning models approximate
interest representations through deterministic parameterized
functions, neglecting the inherent uncertainty in user inter-
ests (Jiang et al. 2025). As shown in Figure 1, these ap-
proaches can only provide a deterministic prediction while
neglecting underlying user intent shifting. These shortcom-
ings result in suboptimal recommendation performance.

In this paper, we focus on resolving the aforementioned
limitations through a multi-interest learning framework for
SBR that dynamically adapts to distinctive interest pat-
terns, enhances item representations by extracting informa-
tion from similar sessions and enables uncertainty-calibrated
interest refinement.

Firstly, we leverage Neural Processes (NPs)(Garnelo et al.
2018) to model the intra-session interest distribution of user
interests. This probabilistic framework eliminates the need
for pre-defined interest quantities and dynamically adjusts to
session-specific patterns. Moreover, we generate the current
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Figure 1: An illustrative example explains the differences between various paradigms in interest modeling. Neural Networks
learn a single parameterized function and thus make Solely Predictions, whereas Neural Processes learn the distribution of
functions and accordingly produce Predictions with Uncertainty that include both mean and variance components.

interest representation from the distribution via a resampling
mechanism where the uncertainty estimation is naturally in-
cluded for accommodating evolving intents.

Secondly, we incorporate cross-session dependencies
to enrich item representations. Specifically, we aggregate
relevance-filtered session embeddings as contextual priors
for NP through similarity-based session retrieval. Such pri-
ors contain patterns of identical items across distinct ses-
sions, enabling a multi-perspective item characterization
that comprehensively captures dynamic roles and contextual
dependencies.

To this end, we propose a Neural Process-based
Multi-interest learning framework for Session-based
Recommendation, namely NP-MiSR. The key contribu-
tions can be summarized as follows:

• To the best of our knowledge, we are the first to establish
the contact between Neural Processes and session-based
recommendation, which enables the functional distribu-
tion modeling of diverse session interests.

• The proposed NP-MiSR achieves adaptive multiple in-
terests learning for different sessions with uncertainty in-
cluded, and augments item representations via compre-
hensively considering contextual references.

• Empirical validation on three benchmark datasets
demonstrates the consistent superiority of NP-MiSR,
where the average improvement achieves up to 38.8%.
The ablation study proves the effectiveness of various
components in NP-MiSR. Moreover, the few-shot learn-
ing task reveals that our proposed algorithms is capa-
ble with a surprisingly good efficiency v.s. performance
trade-off that utilizing only 10% of the training data at-
tains 95% of the recommendation performance.

Related Work
Session-based Recommendation
With the in-depth research in the field of session-based
recommendation, various session recommendation methods
have been proposed. (Hidasi et al. 2015) et al. first in-
troduced the Gated Recurrent Unit for Session-based Rec-
ommendation (GRU4REC), which applies Recurrent Neu-
ral Networks (RNNs) to session-based recommendation.
Inspired by Transformer (Vaswani et al. 2017), the Self-
Attention based Sequential Recommendation model (SAS-
Rec) (Kang and McAuley 2018) stacks multiple layers to
capture item correlations.

However, sequence-based methods infer user preferences
through temporal ordering of given sequences, thus fail-
ing to model complex item transition patterns (e.g., non-
adjacent item transitions). To address this limitation, (Wu
et al. 2019) proposed a Gated Graph Neural Network model
(SR-GNN) that learns item embeddings on session graphs,
then obtains representative session embeddings by combin-
ing learned item embeddings with attention mechanisms.
(Wang et al. 2020) et al. developed the Global-Context En-
hanced Graph Neural Network (GCE-GNN), which captures
both global and local session information by constructing
global and session graphs.

Multi-Interest Learning
Pioneered by MaxMF (Weston, Weiss, and Yee 2013),
Multi-Interest Representation (MIR) gained momentum
with capsule-network-based methods: MIND (Li et al. 2019)
utilized dynamic routing to cluster interests, while ComiRec
(Cen et al. 2020) introduced self-attention to balance diver-
sity and relevance. Subsequent works enriched MIR through
temporal modeling (PIMIRec (Chen et al. 2021)), regu-



larization (Re4 (Zhang et al. 2022)), and advanced train-
ing strategies (REMI (Xie et al. 2023)). (Jiang et al. 2025)
proposed NP-Rec, designed for long-term sequential multi-
interest recommendation. Our NP-MiSR, although also uti-
lizing neural processes, is specifically designed for the
anonymous, short-session setting.

For session-aware scenarios, graph-based MIR methods
emerged: MI-GNN (Wang et al. 2023) jointly modeled his-
torical and current behaviors, whereas TMI-GNN (Shen
et al. 2023) increased item correlation density via inter-
est nodes. To address the over-generation of redundant in-
terests, DMI-GNN (Lv, Liu, and Xu 2025) further intro-
duced distance regularization between interest vectors, en-
forcing sparsity in multi-interest discovery. Despite signif-
icant progress, determining the optimal number of interests
and modeling the latent interests of individual users with un-
certainty remain critical challenges.

Methodology
In this section, we start from introducing neural pro-
cesses(NPs), and followed by a detailed description of NP-
MiSR.

Basic Definition
Let V = {v1, v2, · · · , vm} be all of items. Each anonymous
session, which is denoted by S = {vs1, vs2, · · · , vsl }, consists
of a sequence of interactions (i.e., items clicked by a user
in chronological order), where vsi denotes item vi clicked
within session S, and the length of S is l. A session set
S = {S1, S2, . . . , Sn} is defined as a set containing n such
anonymous sessions.

Neural Processes (NPs)
NPs aim at mapping an input xi ∈ Rdx to the corresponding
output yi ∈ Rdy based on an (infinite) family of conditional
distributions. In particular, one may condition on an arbi-
trary number of observed Contexts (XC ,Y C) to model an
arbitrary number of Targets (XT ,Y T ). The arbitrary prop-
erty requires the mapping procedure to be non-sensitive to-
wards the order of contexts or targets. The conditional dis-
tribution is

p(Y T |XT ,XC ,Y C) =

∫
p(Y T |XT , rC , z)p(z|sC)dz

(1)

where rC = r(XC ,Y C) ∈ Rd and sC = ψ(XC ,Y C) ∈
Rd are the finite dimensional representations. r(·) is an order
invariant deterministic function which aggregates contexts,
and ψ(·) is the latent one of the same properties. Given the
observation (xC ,yC), the global latent z ∈ Rd accounts for
incorporating uncertainties in the predictions Y T which is
modeled by a factorized Gaussian parameterized sC . Given
a random subset of contexts C and targets T , NPs learn
the parameters in the encoder-decoder architecture by max-
imizing the following ELBO with reparameterization trick
(Kingma, Welling et al. 2013),
log p(Y T |XT ,XC ,Y C) ≥
Eq(z|sT )[log p(Y T |XT , rC , z)]−DKL(q(z|sT )||q(z|sC))

(2)

where q, r and s form the encoder part, and the likelihood p
is referred as the decoder.

NP-MiSR
As shown in Fig.2, NP-MiSR primarily consists of a ses-
sion representation learning layer and the NP model. The
NP model further contains a deterministic encoder and a la-
tent encoder. Below, we will provide detailed descriptions
of each component of the model, as well as its training and
inference procedures.

Session Representation Learning Layer For each item
vsi in session S ∈ S, we obtain its corresponding item repre-
sentation hvs

i
through an embedding layer. We then employ

a session representation model to aggregate item represen-
tations within the session, ultimately deriving the compre-
hensive session representation hs. To ensure experimental
consistency, in subsequent experiments, we use GCE-GNN
as the “SBR Model” in Fig.2 to perform session representa-
tion extraction.

NP-MiSR Pipeline Next, we will introduce our model
from two perspectives: training mode and inference mode.

Training Mode. Considering the typically short length of
session-based recommendations poses challenges for effec-
tive sequence modeling, we opt to perform modeling at the
session set level rather than individual session level. Specif-
ically, for an input session set S , each session S ∈ S is
processed through the session representation learning layer
described in Section to obtain session representations hS as
xS , while using the embedding of the next item hvl+1

as ys.
We concatenate each pair (xs,ys) along the last dimen-

sion to form the session-label pair collection [X,Y ] ∈
R|S|×2d.

At each iteration, we select one session-label pair from the
set as the target pair [XT ,Y T ] ∈ R1×2d. We then construct
context pairs [XC ,Y C ] ∈ RC×2d by selecting the Top-C
session-label pairs with the highest similarity between X
and XT from the remaining pairs. In practice, it is feasi-
ble to sparsely sample a small subset from the dataset as
the scope for the model to retrieve contexts, thereby ac-
celerating both learning and inference. For any target pair
[XT ,Y T ], its corresponding context pairs [XC ,Y C ] can
be represented by the following formula:

CT =

{
(xc,yc) | c ∈

(C)
argmax

s̸=T
sim(xs,XT )

}
,

[XC ,Y C ] = Stack (xc ⊕ yc)(xc,yc)∈CT
,

(3)

where argmax(C) denotes the indices of the Top-C largest
values, ⊕ represents the vector concatenation operation, and
sim(·, ·) refers to the similarity computation function.

For the Deterministic Encoder that takes only the ob-
tained context pair [XC ,Y C ] as input, it first processes the
context using a MLPs r(·), then performs order invariant
aggregation over outputs of each session to obtain the deter-
ministic representation rC ∈ Rd.

For the Latent Encoder, which takes both the context and
target as inputs (using the context as an example here), it first
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Figure 2: Overview of NP-MiSR: It primarily comprises a session representation learning model and an NP model. The session
representation extraction layer can be replaced by any session model capable of extracting comprehensive session representa-
tions. In the figure, parts (a) and (b) are the flowcharts of the model’s training mode and inference mode, respectively, while
parts (c) and (d) demonstrate the detailed implementations of the deterministic encoder and latent encoder.

projects the input into a latent space via MLPs ψ(·). Subse-
quently, an aggregator is applied to aggregate the representa-
tions. The aggregated output is then passed through two sep-
arate MLPs to obtain the mean vector µ and variance vector
σ2, forming the prior distribution q(z|sC). Then, it sam-
ples K latent representations via reparameterization trick
zC ∈ RK×d. Towards the target input, the latent performs
in the same manner to get the posterior distribution q(z|sT )
and latent representations zT ∈ RK×d.

For the Decoder, which takes the target session repre-
sentation XT , deterministic representation rC , and poste-
rior latent representation zT as inputs, we maximize the ev-
idence lower bound (ELBO). To achieve this, XT and rC
are replicated K times. These replicated representations are
concatenated with zT along the last dimension to form the
Decoder’s input. The Decoder then produces K prediction
vectors {ĥk}Kk=1, which are aggregated via mean pooling to
obtain the final session representation h′

S . The uncertainty
is computed as the entropy of mean(Wang et al. 2022). The

processing process of the Decoder can be described by the
following formula:

h′
S =

1

K

K∑
k=1

Decoder
([
X

(k)
T , r

(k)
C , zT

])
, (4)

where X(k)
T and r(k)C denote replicated inputs, ensuring di-

mensional compatibility with the latent variable zT during
concatenation.

For the Classifier, based on the obtained session represen-
tations h′

S , the final recommendation probability for each
candidate item is computed using their initial embeddings
and the current session representation. This is formulated by
first calculating the dot product between these representa-
tions, then applying the softmax function to obtain the out-
put prediction ŷ:

ŷi = Softmax
(
h′T

S · hvi
)
, (5)



Dataset # training # test # items Avg.Len
Diginetica 719,410 60,858 43,097 5.12

RetailRocket 433,643 15,132 36,968 5.43
Nowplaying 825,304 89,824 60,417 7.42

Table 1: Statistics of the used datasets.

where ŷi in ŷ denotes the probability of item vi appearing as
the next-click in the current session.

The final learning objective during model training is
formulated in Equation 2, where the likelihood term
p(Y T |XT , rC , z) is computed through the cross-entropy
loss between the probability distribution derived from Equa-
tion 5 and the one-hot encoded ground-truth labels of the
session. The DKL(·) term represents the Kullback-Leibler
divergence between the prior and posterior distributions:

L =Eq(z|sT )[− log p(Y T |XT , rC , z)]

+ β ·DKL(q(z|sT )||q(z|sC)),
(6)

where the likelihood evaluation is implemented as:

− log p(Y T |·) =
|V|∑
i=1

yi · log (ŷi) (7)

Inference Mode. Given a session set S, the NP-MiSR
aims to predict the next interaction item V S

l+1 for each ses-
sion S ∈ S . To prevent data leakage and address the un-
availability of V S

l+1 during prediction, we construct the tar-
get input XT ∈ R1×d using the aggregated representation
of the current session’s sequence V S

1:l. For context construc-
tion, we utilize other sessions’ subsequences V1:l−1 as their
input features x, with their respective l-th item representa-
tions Vl serving as labels y. These pairs are then organized
into context session-label pairs [XC ,Y C ] ∈ RC×2d follow-
ing Equation 3

During inference, only the context information is pro-
cessed through the encoders. The Latent Encoder trans-
forms its output via MLPs ψ(·) to generate mean vec-
tor and variance vector of the prior distribution q(z|sC).
Through the reparameterization trick, we sample K latent
vectors {z(k)C }Kk=1. The Deterministic Encoder maintains its
training-phase procedure to produce rC . Following the de-
coding scheme in Equation 4, we process the concatenated
inputs [XT , rC , zT ] to obtain the final session represen-
tation h′

S . The classifier subsequently computes the item
probability distribution.

Experiments
In this section, we report our experimental setting, includ-
ing datasets, baselines, evaluation metrics, and an analysis of
experimental results. We aim to answer the following ques-
tions:
• RQ 1: Compared with state-of-the-art methods in

session-based recommendation and multi-interest rec-
ommendation (SOTA), does our method demonstrate
competitive or better performance?

• RQ 2: How do different modules of NP-MiSR impact the
recommendation performance?

• RQ 3: How well does NP-MiSR perform when learning
from only a partial dataset?

• RQ 4: How do the model’s hyperparameters affect its
effectiveness?

Experimental Setup
The detailed experimental setup will be described below.

Dataset and Preprocessing We conducted experiments
on three real-world datasets(Diginetica, RetailRocket, Now-
playing) to verify the effectiveness of our method. The sta-
tistical characteristics of the processed datasets are presented
in Table 1. To ensure fair comparison with baseline meth-
ods, we adopted the same data preprocessing pipeline as SR-
GNN.

Parameter Setup For a fair comparison, we keep consis-
tent with the settings of GCE-GNN. We set both the embed-
ding dimension and latent vector dimension to 100, train for
20 epochs with a batch size of 100. Context ratio T set to
10%, sampling times K set to 10 times. All experiments are
conducted on an NVIDIA 3090Ti GPU with 24GB VRAM,
and each experiment is repeated more than three times.

Evaluation Metrics We evaluate recommendation per-
formance using three metrics: both Hit Rate (HR@N) and
Mean Reciprocal Rank (MRR@N) are established met-
rics in recommendation research. In addition, we employ
the Coverage (COV@N) metric, a diversity indicator that
reflects the proportion of unique items appearing in top-N
recommendation lists across all sessions. All metrics follow
the higher-is-better principle. We set N = {5, 10, 20} to
examine performance at different recommendation lengths.

Baseline Our experiment compares NP-MiSR with the
following conversational models: GCE-GNN, CORE(Hou
et al. 2022), TAGNN(Yu et al. 2020), A-Mixer(Zhang et al.
2023), MiaSRec(Choi et al. 2024), Link(Choi et al. 2025),
DMI-GNN(Lv, Liu, and Xu 2025).

Overall Comparison (RQ1)
As shown in Table 2, which presents complete results of 7
baseline methods and our proposed method across 9 metrics
on three real-world datasets. It can be observed that DMI-
GNN and MiaSRec achieve second-best results on the ma-
jority of metrics across two datasets, which is attributed to
their simple yet effective multi-interest learning in session-
based recommendation. CORE also demonstrates competi-
tive performance on RetailRocket datasets, respectively.

Notably, our method consistently outperforms all base-
line methods across all metrics on each dataset. This com-
pelling evidence strongly validates the effectiveness of our
proposed approach.

Ablation Study (RQ2)
Our framework primarily consists of two core modules: a
session representation learning layer and an NP model. To
validate the effectiveness of each component, as shown in
Table 3, we design two variants: w.o. NP and w.o. SR. The



Dataset Metric
(%)

GCE-
GNN

CORE TAGNN A-Mixer MiaSRec DMI Link NP-
MiSR

IMPV.

Nowplaying

H@5 12.51 11.82 10.70 12.13 11.38 13.47 11.92 18.97 40.83%
M@5 7.57 6.74 7.08 7.69 6.90 8.16 6.54 12.04 47.55%
C@5 66.15 53.25 58.84 49.07 58.25 75.79 75.90 94.02 23.87%

H@10 17.02 18.22 14.43 16.83 16.67 18.86 17.55 24.19 28.26%
M@10 8.17 7.59 7.55 8.31 7.60 8.87 7.29 15.99 80.27%
C@10 78.00 67.31 71.59 61.54 68.43 87.34 87.46 97.59 11.58%
H@20 22.48 25.22 19.05 23.03 22.65 25.59 23.53 30.01 17.27%
M@20 8.54 8.08 7.86 8.74 8.01 9.34 7.70 20.48 119.27%
C@20 86.64 76.69 82.56 69.34 78.40 95.56 95.24 99.20 3.81%

Diginetica

H@5 29.37 28.59 26.11 27.38 29.51 29.97 29.38 41.17 37.37%
M@5 16.61 16.17 15.37 15.13 16.97 16.96 16.36 30.78 81.37%
C@5 67.15 65.22 47.44 66.17 64.09 69.76 72.01 87.11 20.96%

H@10 41.14 39.91 36.04 39.39 41.15 41.69 41.01 53.13 27.44%
M@10 18.17 16.67 16.82 16.72 18.51 18.51 17.90 42.12 127.55%
C@10 81.62 80.55 60.97 79.54 78.18 83.56 85.25 94.85 11.26%
H@20 54.14 52.88 49.90 53.21 54.21 54.95 54.33 65.09 18.45%
M@20 19.07 18.57 16.71 17.68 19.42 19.44 18.82 54.56 180.65%
C@20 92.54 89.37 74.90 90.01 90.26 94.03 94.60 98.49 4.11%

RetailRocket

H@5 40.29 47.15 36.77 40.55 42.80 42.35 41.52 47.64 1.04%
M@5 27.36 37.15 25.30 26.95 29.37 29.78 29.00 41.39 11.41%
C@5 40.80 43.20 37.11 39.15 38.82 41.99 41.44 57.32 32.68%

H@10 48.19 54.08 44.19 49.33 50.52 50.00 48.69 54.66 1.07%
M@10 28.43 33.08 26.30 28.14 30.41 30.81 29.95 48.99 48.09%
C@10 57.16 60.37 51.52 53.84 53.67 58.76 58.45 72.86 20.68%
H@20 55.96 61.67 51.89 57.18 57.48 57.59 56.12 62.04 0.59%
M@20 28.97 38.54 26.84 28.69 30.90 31.34 30.46 56.45 46.47%
C@20 73.61 82.59 66.04 69.65 70.52 76.18 77.25 85.76 3.83%

Table 2: Overall recommendation performance. The best and second scores are marked with boldface and underline forms,
separately. The last column “Impv.” stands for the improvement of our method against the strongest baseline.

Dataset
Metric (%)

Retailrocket
H@5 M@5 H@10 M@10 H@20 M@20

Original 47.01 41.39 54.66 48.99 62.04 56.45
w.o. NP 40.29 27.36 48.19 28.43 55.96 28.97
w.o. SR 3.88 1.50 5.01 1.93 6.75 2.60

Dataset
Metric (%)

Diginetica
H@5 M@5 H@10 M@10 H@20 M@20

Original 41.17 30.78 53.13 42.12 65.09 54.56
w.o. NP 29.37 16.61 41.14 18.17 54.14 19.07
w.o. SR 2.61 1.32 4.47 1.55 6.85 1.69

Table 3: Ablation study.

variants that remove the neural process and session represen-
tation learning layer are tagged as “w.o.NP” and “w.o.SR”,
separately. w.o.SR replaces the session representation learn-
ing layer with a simple embedding layer with learnable
weights for session representation aggregation. The exper-
imental results reveal the following findings:

• Observation 1: The NP module substantially enhances
recommendation performance. Comparative analysis be-
tween the full implementation and the w.o. NP variant
demonstrates that incorporating neural processes yields
an average performance improvement of 39.58% across
all datasets. This enhancement stems from two synergis-

tic mechanisms: (1) The multi-sampling strategy in the
latent encoder extends the single-point output of the ses-
sion representation layer to capture diverse interest dis-
tributions; (2) Subsequent averaging operations provide
uncertainty estimation in final recommendations, effec-
tively mitigating the risk of overconfidence in current
preference predictions.

• Observation 2: The session representation learning layer
proves essential for generating meaningful interest repre-
sentations. The w.o. SR variant exhibits significant per-
formance degradation, primarily due to the lack of effec-
tive session representation extraction(e.g., GNN). Simple
weight aggregation fails to learn discriminative session
representations, consequently hindering the establish-
ment of meaningful session-item correlations. Our com-
plete NP-MiSR framework successfully integrates the
complementary strengths of both session representation
learning and neural processes, thereby achieving state-of-
the-art recommendation performance. Notably,as shown
in Fig.3, by integrating the NP model with multiple dia-
logue models, the experimental results demonstrate that
all hybrid models achieve significant performance im-
provements, which strongly validates the versatility and
compatibility of the NP model.
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To verify that NP-MiSR has a good ability to balance effi-
ciency and overhead, we designed the experiment as shown
in Figure 4.

In the figure, “NP-MiSR*” represents results learned us-
ing only 10% of the data across three datasets; “NP-MiSR”
corresponds to results learned using the full dataset; and
“Second-best” indicates the best value achieved by the com-
pared baseline models trained on the full dataset. It demon-
strates that NP-MiSR using reduced data achieves results
comparable to the best-performing baseline models, even
surpassing them on the Diginetica dataset. This indicates
NP-MiSR’s exceptional efficiency in session data utiliza-
tion.

Impact of Hyperparameters (RQ4)
To understand the impact of different values of hyperparam-
eters sampling times K and context ratio T on the model
performance, we designed the hyperparameter experiment
as shown in the Figure 5.

As illustrated in Figure 5, we conducted comprehensive
experiments to evaluate the impacts of hyperparameters K
and T. The empirical results reveal that increasing the value
of K generally leads to improved model performance. This
phenomenon can be attributed to the enhanced capacity of
larger K values to better capture the functional distribution
learned by the model. Notably, the lower section of the figure
demonstrates that varying context ratios exhibit differential
effects across distinct datasets, which we hypothesize may
stem from the inherent distributional differences across the
datasets.
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Figure 5: Results of hyperparameters T and K on different
datasets.

Conclusion
In this paper, we propose a multi-interest session-based rec-
ommendation framework (NP-MiSR) that integrates neu-
ral processes with traditional session models. This frame-
work addresses two key issues in multi-interest approaches
for session-based recommendation: the lack of flexibility
in interest modeling and the challenge of fusing informa-
tion across sessions. We validate our results on three public
datasets.
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